spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich
ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00j

Chapter 4: Synchronization

G 1T TOOK A LOT OF WORK, BUT THIS
il LATEST LiNUX PATCH ENABLES SUPRORT
A FOR MACHINES WITH 40% (P,
E| U FROM THE QLD LIMIT OF 1,024,
DO YOU HAVE SUPFERT FOR SMOOTH
FULL-SOREEN FLASH VIDEDYET?

NO, BUTWHO USES THA77

TSR -
' N
HEE

ﬁ s
f ': Source: xked :]

spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich
Example: multimedia scheduling

0 10 20 30
Time (msec) —>

Starting moment Deadline A
for A1,B1, C1 for A1 Deadline for B1
Deadline for C1
Al A1 A2 A3 A4 A5
B[_B1 | B2 B3 | B4 |
ciEd 3
40 50 60 70 80 90 100 110 120 130 140

3/12/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Rate-monotonic scheduling

= Schedule periodic tasks by always running task with shortest
period first.

= Static (offline) scheduling algorithm

= Suppose:
* m tasks
= C, is the execution time of i'th task
= P, is the period of i'th task

= Then RMS will find a feasible schedule if:

i% <m(2" ~1)

1

= (Proof is beyond scope of this course)

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Earliest Deadline First

= Schedule task with earliest deadline first (duh..)
= Dynamic, online.
= Tasks don’t actually have to be periodic...
= More complex - O(n) — for scheduling decisions

= EDF will find a feasible schedule if:
- C

<1

4P

= Which is very handy. Assuming zero context switch time...

3/12/2014

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Guaranteeing processor rate

= E.g. you can use EDF to guarantee a rate of progress for a long-
running task
= Break task into periodic jobs, period p and time s.
= Atask arrives at start of a period
= Deadline is the end of the period

= Provides a reservation scheduler which:
= Ensures task gets s seconds of time every p seconds

= Approximates weighted fair queuing

= Algorithm is regularly rediscovered...

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Multiprocessor Scheduling

3/12/2014

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Challenge 1: sequential programs on multiprocessors

= Queuing theory = straightforward, although:
= More complex than uniprocessor scheduling
= Harder to analyze

Core 0
Core 1
Core 2
Core 3

—

Task queue

I\
111

But...

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

It’s much harder

= Overhead of locking and sharing queue
= Classic case of scaling bottleneck in OS design

= Solution: per-processor scheduling queues

— [— (Com0)
— [[[[[[]—> (G 1]
— [[[[[[|— (cow2)
— [—> (Coea)

In practice, each
is more complex
e.g. MFQ

3/12/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

It’s much harder

= Threads allocated arbitrarily to cores
= tend to move between cores
= tend to move between caches
= really bad locality and hence performance

= Solution: affinity scheduling
= Keep each thread on a core most of the time
= Periodically rebalance across cores
» Note: this is non-work-conserving!

= Alternative: hierarchical scheduling (Linux)

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Challenge 2: parallel applications

= Global barriers in parallel applications =
One slow thread has huge effect on performance
= Corollary of Amdahl’s Law

= Multiple threads would benefit from cache sharing
= Different applications pollute each others’ caches

= Leads to concept of “co-scheduling”
= Try to schedule all threads of an application together

= Critically dependent on synchronization concepts

3/12/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Multicore scheduling

Multiprocessor scheduling is two-dimensional
= When to schedule a task?
= Where (which core) to schedule on?

General problem is NP hard ®

But it’s worse than that:

= Don’t want a process holding a lock to sleep
= Might be other running tasks spinning on it

= Not all cores are equal

In general, this is a wide-open research problem

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Little’s Law

Assume, in a train station:

= 100 people arrive per minute

= Each person spends 15 minutes in the station

= How big does the station have to be (house how many people)

Little’s law: “The average number of active tasks in a system is
equal to the average arrival rate multiplied by the average time a
task spends in a system”

3/12/2014

. S spcl.inf.ethz.ch
ETHziirich - /@; W @spel_eth

Our Small Quiz

= True or false (raise hand)
= Throughput is an important goal for batch schedulers
= Response time is an important goal for batch schedulers
= Realtime schedulers schedule jobs faster than batch schedulers
= Realtime schedulers have higher throughput than batch schedulers
= The scheduler has to be invoked by an application
» FCFS scheduling has low average waiting times
= Starvation can occur in FCFS scheduling
= Starvation can occur in SJF scheduling
= Preemption can be used to improve interactivity
= Round Robin scheduling is fair
= Multilevel Feedback Queues in Linux prevent starvation
= Simple Unix scheduling fairly allocates the time to each user
= RMS scheduling achieves full CPU utilization
= Multiprocessor scheduling is NP hard

. S spcl.inf.ethz.ch
ETHziirich - /@; W @spel_eth

Last time: Scheduling

= Basics:
= Workloads, tradeoffs, definitions
= Batch-oriented scheduling
= FCFS, Convoys, SJF, Preemption: SRTF
= Interactive workloads
= RR, Priority, Multilevel Feedback Queues, Linux, Resource containers
= Realtime
= RMS, EDF
= Multiprocessors

3/12/2014

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Goals today

= Overview of inter-process communication systems
= Hardware support
= With shared memory
= Without shared memory
= Upcalls

= Generally: very broad field
= Quite competitive... especially with microkernels

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Recap: Hardware support for
synchronization

3/12/2014

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

Disabling interrupts

Disable all
interrupts
/ traps
Critical
section —

v
Enable interrupts

State to be
protected

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

Disabling interrupts

= Nice and simple

= Can’t be rescheduled inside critical section

=> data can’t be altered by anything else
= Except...

= Another processor!
= Hmm....

= Very efficient if in kernel on a uniprocessor.

3/12/2014

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Test-And-Set instruction

= Atomically:

= Read the value of a memory location
= Set the location to 1

= Available on some hardware (e.g., PA-RISC)
= (actually, more a RAC — Read-And-Clear)

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Compare-And-Swap (CAS)

word cas (word *flag, word oldval, word newval) {
atomically {
if (*flag == oldval) {
*flag = newval;
return oldval;
} else {
return *flag;

}
}

= Available on e.g., x86, IBM/370, SPARC, ARM,...

= Theoretically, slightly more powerful than TAS
= Why?
= Other variants e.g., CAS2, etc.

3/12/2014

10

ETHziirich

Load-Link, Store-Conditional

Factors cas, etc. into two instructions:

1. 1L: load from a location and mark as “owned”

2. sc: Atomically:
1. Store only if already marked by this processor
2. Clear any marks set by other processors
3. Return whether it worked.

Available on PPC, Alpha, MIPS, etc...

spcl.inf.ethz.ch
¥ @spcl_eth

easS

ETHziirich
Back to TAS...
old = TAS(flag) |
if (old == True)
Critical
section

flag < False

spcl.inf.ethz.ch
¥ @spcl_eth

easS

Spin
forever
waiting?

3/12/2014

11

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Spinning

= On a uniprocessor:
= Not much point in spinning at all. What'’s going to happen?
= Possibly an interrupt

= On a multiprocessor:
= Can’t spin forever
= Another spin is always cheap
= Blocking thread and rescheduling is expensive
= Spinning only works if lock holder is running on another core

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Competitive spinning

= How long to spin for?

= “Competitive spinning”:
= Within a factor of 2 of optimal, offline (i.e., impossible!) algorithm

= Good approach: spin for the context switch time
= Best case: avoid context switch entirely
= Worst case: twice as bad as simply rescheduling

3/12/2014

12

. ’ spcl.inf.ethz.ch
ETHziirich /@1 W @spcl_eth

IPC with shared memory

e ’ spclinf.ethz.ch
ETHziirich /@1 W @spcl_eth

Techniques you already know ©

= Semaphores
= P,V operations

= Mutexes
= Acquire, Release

= Condition Variables
= Wait, Signal (Notify), Broadcast (NotifyAll)

= Monitors
= Enter, Exit

3/12/2014

13

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Focus here: interaction with scheduling

= Most OSes provide some form of these

= Key issue not yet covered: interaction between scheduling and
synchronization

= Example: Priority inversion
= Assuming a priority scheduler, e.g., Unix, Windows

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Priority Inversion

High priority

Acquire
lock

Low priority ——3

Time

3/12/2014

14

e . spclinf.ethz.ch
ETHziirich pdﬁz W @spcl_eth

Priority Inversion

High priority) ——

Acquire
lock

Low priority ——3 ——>®

Time

spcl.inf.ethz.ch

ETHziirich N ¥ @spcl_eth

Priority Inversion

o) (T

High priority y K

Acquire
lock

Low priority —3'—>® L5

Time

3/12/2014

15

spcl.inf.ethz.ch

ETHziirich > Y @spcl_eth

Priority Inversion

)

High priority ¥ K

Preemption

Med. priority

Acquire
lock

Low priority ——3 ——>®

Time

spcl.inf.ethz.ch

ETHziirich > Y @spcl_eth

Priority Inversion

e
2%

High priority 1 b
Preemption Inverted
priority
Med. priority
Acquire
lock
Low priority ——3 ———>)
>
Time

3/12/2014

16

spcl.inf.ethz.ch

ETHziirich ¥ @spcl_eth

Anyone recognize this?

spcl.inf.ethz.ch

ETHziirich /\< /L ¥ @spcl_eth

Priority Inheritance

* Process holding lock inherits priority of highest priority process
that is waiting for the lock.
— Releasing lock = priority returns to previous value
— Ensures forward progress

« Alternative: Priority Ceiling
— Process holding lock acquires priority of highest-priority process that can
ever hold lock
— Requires static analysis, used in embedded RT systems

3/12/2014

17

spcl.inf.ethz.ch

ETHziirich) Y @spcl_eth

Priority Inheritance

High priority ¥ &

Med. priority

Low priority B —

Time

spcl.inf.ethz.ch

ETHziirich) Y @spcl_eth

Priority Inheritance

High priority ¥ Q

Med. priority

Low priority —_—>

This process
acquires
high priority

Time

3/12/2014

18

spcl.inf.ethz.ch

ETHziirich > Y @spcl_eth

Priority Inheritance

w Acquire lock

High priority y ®)

Med. priority

This process
acquires
high priority

Release lock
Low priority —_— A

Time

e . spclinf.ethz.ch
ETHziirich pdﬁz W @spcl_eth

IPC without shared memory

3/12/2014

19

. ’ spcl.inf.ethz.ch
ETHziirich /@1 W @spcl_eth

Asynchronous (buffered) IPC

Process 1 RECV F:=>

Process 2

Time

e ’ spclinf.ethz.ch
ETHziirich /@1 W @spcl_eth

Asynchronous (buffered) IPC

Process 1 RECV F:=>

Receiver blocks
waiting for msg

Process 2

Time

3/12/2014

20

. ’ spcl.inf.ethz.ch
ETHziirich /@1 W @spcl_eth

Asynchronous (buffered) IPC

Process 1 RECV F:=>

Receiver blocks
waiting for msg

Sender does not
block

Process 2

Time

e ’ spclinf.ethz.ch
ETHziirich /@1 W @spcl_eth

Synchronous (unbuffered) IPC

Process 1 > RECV

Process 2 SEND F'='=" Q>

Time

3/12/2014

21

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Synchronous (unbuffered) IPC

Process 1 > RECV

Sender blocks
until receiver
ready

Process 2 SEND == Q>

Time

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Duality of messages and shared-memory

= Famous claim by Lauer and Needham (1978):

Any shared-memory system (e.g., one based on monitors and
condition variables) is equivalent to a non-shared-memory system
(based on messages)

= Exercise: pick your favourite example of one, and show how to
build the dual.

3/12/2014

22

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Unix Pipes

= Basic (first) Unix IPC mechanism

= Unidirectional, buffered communication channel between two
processes

= Creation:
int pipe(int pipefd[2])

= Q. How to set up pipe between two processes?

= A.Don’t! Create the pipe first, then fork...

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Pipe idiom (man 2 pipe)

int
?ain(int arge, char *argu[])

int pipefd[2]: Create a plpe

pid_t cpid:
char buf:

assert(arge == 2):

if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE):

cpid = fork():

if (cpid == -1) {
perror("fork");
exit(EXIT_FAILURE):

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]): /* Close unused write end */

while (read(pipefd(0], &buf, 1) > 0)
urite(STOOUT_FILEND, &buf, 1):

write(STDOUT_FILEND, "n", 1):
close{pipefd[0]);
_exit(EXIT_SUCCESS):

T oelse { #* Parent writes argv[1] to pipe */

close(pipefd[0]): /* Close unused read end */
write(pipefd[1], argu[1], strlen(arguv[1])):
close(pipefd[1]): /* Reader will see EOF */
wait{NULL): /% lait for child */

exit(EXIT_SUCCESS):

3/12/2014

23

3/12/2014

ETHziirich

Pipe idiom (man 2 pipe)

int

?ain(int arge, char *argu[])
int pipefd[2]:
pid_t cpid:
char buf:

assert{arge == 2);

if (pipe(pipefd) == -1) {
perror("pipe"): Fork
exit(EXIT_FAILURE):

cpid = fork():

if (cpid == -1) {
perror("fork");
exit(EXIT_FAILURE):

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]): /* Close unused write end */

while (read(pipefd(0], &buf, 1) > 0)
urite(STOOUT_FILEND, &buf, 1):

write(STDOUT_FILEND, "wn", 1):
close{pipefd[0]);
_exit(EXIT_SUCCESS):

T oelse { #* Parent writes argv[1] to pipe */
close(pipefd[0]): /* Close unused read end */
write(pipefd[1], argv[1], strlen{argv[1])):
close(pipefd[1]): /* Reader will see EOF */
wait(NULL); /% lait for child */
exit{EXIT_SUCCESS):

ETHziirich

Pipe idiom (man 2 pipe)

int

?ain(int arge, char *argu[])
int pipefd[2]:
pid_t cpid:
char buf:

assert{arge == 2);
if (pipe(pipefd) == -1) {

perror("pipe"):
exit(EXIT_FAILURE):

epid = Fork(); In child: close write
if (cpid == -1) {
perror("fork"); end

exit{EXIT_FAILURE):

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]): /* Close unused write end */

while (read(pipefd(0], &buf, 1) > 0)
urite(STOOUT_FILEND, &buf, 1):

write(STDOUT_FILEND, "n", 1):
close{pipefd[0]);
_exit(EXIT_SUCCESS):

T oelse { #* Parent writes argv[1] to pipe */
close(pipefd[0]): /* Close unused read end */
urite(pipefd[1], argu[1], strlen{argu[1])):
close(pipefd[1]): /* Reader will see EOF */
wait(NULL); /% lait for child */
exit{EXIT_SUCCESS):

24

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

Pipe idiom (man 2 pipe)

int
?ain(int arge, char *argu[])
int pipefd[2]:

pid_t cpid:
char buf:

assert(arge == 2):

if (pipe(pipefd) == -1) {
perror("pipe"):
exit(EXIT_FAILURE):

cpid = fork():

if (cpid == -1) {
perror("fork");
exit(EXIT_FAILURE):

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]): /* Close unused write end */

while (read(pipefd(0], &buf, 1) > 0)
urite(STOOUT_FILEND, &buf, 1):

write(STDOUT_FILEND, "wn", 1):
close{pipefd[0]);
_exit(EXIT_SUCCESS):

T oelse { #* Parent writes argv[1] to pipe */
close(pipefd[0]): /* Close unused read end */
write(pipefd[1], argv[1], strlen{argv[1])):
close(pipefd[1]): /* Reader will see EOF */
wait{NULL): /% lait for child */
exit{EXIT_SUCCESS):

Read from pipe and
write to standard
output until EOF

spcl.inf.ethz.ch

¥ @spcl_eth

Pipe idiom (man 2 pipe)

int
?ain(int arge, char *argu[])
int pipefd[2]:

pid_t cpid:
char buf:

assert(arge == 2):

if (pipe(pipefd) == -1) {
perror("pipe"):
exit(EXIT_FAILURE):

cpid = fork():

if (cpid == -1) {
perror("fork");
exit(EXIT_FAILURE):

if (cpid == 0) { /* Child reads from pipe */
close(pipefd[1]): /* Close unused write end */

while (read(pipefd(0], &buf, 1) > 0)
urite(STOOUT_FILEND, &buf, 1):

write(STDOUT_FILEND, "n", 1):
close{pipefd[0]);
_exit(EXIT_SUCCESS):

T oelse { #* Parent writes argv[1] to pipe */
close(pipefd[0]): /* Close unused read end */
urite(pipefd[1], argu[1], strlen{argu[1])):
close(pipefd[1]): /* Reader will see EOF */
wait(NULL); /% lait for child */
exit{EXIT_SUCCESS):

In parent: close read
end and write argv[1] to

pipe

3/12/2014

25

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Unix shell pipes
= E.g.:

curl --silent http://spcl.inf.ethz.ch/Teaching/2014-osnet/ | sed
's/[*A-Za-z]/\n/g' | sort -fu | egrep -v '~\s*$' | wc -1

= Shell forks each element of the pipeline
= Each process connected via pipes
= Stdout of process n — stdin of process n+1
= Each process then exec’s the appropriate command
= Exercise: write it! (hint: ‘man dup2'...)

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Messaging systems

= A good textbook will examine options:
= End-points may or may not know each others’ names
= Messages might need to be sent to more than one destination
= Multiple arriving messages might need to be demultiplexed
= Can’t wait forever for one particular message

= BUT: you’ll see most of this somewhere else!
= In networking

= Many parallels between message-passing operating systems and
networks

3/12/2014

26

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Example

= The concept of a “port” allows:
= Naming of different end-points within a process
= Demultiplexing of messages
= Waiting selectively for different kinds of messages

= Analogous to “socket” and “TCP port” in IPv4
= In Unix, “Unix domain sockets” do exactly this.
* int s = socket(AF_UNIX, type, 0);

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Naming pipes

= Pipes so far are only named by their descriptors
= Namespace is local to the process
= Copied on fork () .

= How to put a pipe in the global namespace?
= Make it a “named pipe”
= Special file of type “pipe” (also known as a FIFO)

3/12/2014

27

. s e R L p spcl.inf.ethz.ch
ETHziirich . NN Aﬂ’ W @spol._eth

tor@Llenny:
Hell

1 .
ntor@Llenny:

. s e R L p spcl.inf.ethz.ch
ETHziirich . NN Aﬂ’ W @spol._eth

Local Remote Procedure Call

= Can use RPC locally:
= Define procedural interface in an IDL
= Compile / link stubs
= Transparent procedure calls over messages

= Naive implementation is slow

= Lots of things (like copying) don’'t matter with a network, but do matter
between local processes

= Can be made very fast: more in the AOS course...

3/12/2014

28

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Unix signals

= Asynchronous notification from the kernel
= Receiver doesn’t wait: signal just happens

= Interrupt process, and:
= Kill it
= Stop (freeze) it
= Do “something else” (see later)

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Signal types (some of them)

m Description / meaning Default action

SIGHUP Hangup / death of controlling process Terminate process
B “Hanging up” the |

SIGINT Interrupt character typed (CTRL-C) S P process

SIGQUIT Quit character typed (CTRL-\) Core dump
SIGKILL kill -9 <process id> inate process
SIGSEGV Segfault (invalid memory referenc é:i’::bﬁ:gl ump
SIGPIPE Write on pipe with no reader Terminate process
SIGALRM alarm() goes off E.g., after other side of pinate process

. ipe has closed it
SIGCHLD Child process stopped or red

SIGSTOP Stop process) T Stop
SIGCONT Continue process Used by debuggers (e.g.,

gdb) and shell (CTRL-2)
SIGUSR1,2 User-defined signals Terminate process

Etc. — see man 7 signal for the full list

3/12/2014

29

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Where do signals come from?

= Memory management subsystem:
= SIGSEGV, efc.

= IPC system
= SIGPIPE

= Other user processes
= SIGUSR1, 2, SIGKILL, SIGSTOP, SIGCONT

= Kernel trap handlers
= SIGFPE

= The “TTY Subsystem”
" SIGINT, SIGQUIT, SIGHUP

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Sending a signal to a process

= From the Unix shell:
$ kill -HUP 4234

= From C:

#include <signal.h>
int kill(pid_t pid, int signo);

= “Kill” is a rather unfortunate name ®

3/12/2014

30

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Unix signal handlers

= Change what happens when a signal is delivered:
= Default action
= [gnore signal

= Call a user-defined function in the process
— the signal handler

= Allows signals to be used like “user-space traps”

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Oldskool: signal ()
= Test your C parsing skills:
#include <signal.h>

void (*signal(int sig, void (*handler) (int))) (int);

= What does this mean?

3/12/2014

31

. T e spcl.inf.ethz.ch
ETHziirich : W @spel_eth

Oldskool: signal ()

void (*signal(int sig, void (*handler) (int))) (int);
\)

\ L)
Y

= Unpacking this:

= Ahandler looks like
void my_handler (int);

= Signal takes two arguments...
An integer (the signal type, e.g. SIGPIPE)
A pointer to a handler function

= ... and returns a pointer to a handler function
The previous handler,

= “Special” handler arguments:
* SIG_IGN (ignore), SIG_DFL (default), SIG_ERR (error code)

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Unix signal handlers

= Signal handler can be called at any time!

= Executes on the current user stack
= If process is in kernel, may need to retry current system call
= Can also be set to run on a different (alternate) stack

=> User process is in undefined state when signal delivered

3/12/2014

32

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Implications

= There is very little you can safely do in a signal handler!
= Can’t safely access program global or static variables
= Some system calls are re-entrant, and can be called
= Many C library calls cannot (including _r variants!)
= Can sometimes execute a longjmp if you are careful
» With signal, cannot safely change signal handlers...

= What happens if another signal arrives?

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Multiple signals

= If multiple signals of the same type are to be delivered, Unix will
discard all but one.

= If signals of different types are to be delivered, Unix will deliver
them in any order.

= Serious concurrency problem:
How to make sense of this?

3/12/2014

33

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

A better signal () POSIX sigaction ()

New action for
signal signo

#include <signal.h>

Previous action
int sigaction(int signo, is returned
const struct sigaction *act,
struct sigaction *oldact);
Signal

handler

struct sigaction {
void (*sa_handler) (int); | Signals to be blocked in this
sigset t sa mask; handler (cf., £d_set)
int sa_flags;

void (*sa_sigac%ginfo_t * wvoid *);
};

More sophisticated signal
handler (depending on flags)

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Signals as upcalls

= Particularly specialized (and complex) form of Upcall
= Kernel RPC to user process

= Other OSes use upcalls much more heavily
* Including Barrelfish

= “Scheduler Activations”: dispatch every process using an upcall instead of
return

= Very important structuring concept for systems!

3/12/2014

34

