
spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 4: Synchronization

Source: xkcd

spcl.inf.ethz.ch
@spcl_eth

Example: multimedia scheduling

2

spcl.inf.ethz.ch
@spcl_eth

Rate-monotonic scheduling
§  Schedule periodic tasks by always running task with shortest

period first.
§  Static (offline) scheduling algorithm

§  Suppose:
§  m tasks
§  Ci is the execution time of i’th task
§  Pi is the period of i’th task

§  Then RMS will find a feasible schedule if:

§  (Proof is beyond scope of this course)

)12(
1

1
−≤∑

=

m
m

i i

i m
P
C

3

spcl.inf.ethz.ch
@spcl_eth

Earliest Deadline First
§  Schedule task with earliest deadline first (duh..)

§  Dynamic, online.
§  Tasks don’t actually have to be periodic…
§  More complex - O(n) – for scheduling decisions

§  EDF will find a feasible schedule if:

§  Which is very handy. Assuming zero context switch time…

1
1

≤∑
=

m

i i

i

P
C

4

spcl.inf.ethz.ch
@spcl_eth

Guaranteeing processor rate
§  E.g. you can use EDF to guarantee a rate of progress for a long-

running task
§  Break task into periodic jobs, period p and time s.
§  A task arrives at start of a period
§  Deadline is the end of the period

§  Provides a reservation scheduler which:
§  Ensures task gets s seconds of time every p seconds
§  Approximates weighted fair queuing

§  Algorithm is regularly rediscovered…

5

spcl.inf.ethz.ch
@spcl_eth

Multiprocessor Scheduling

6

spcl.inf.ethz.ch
@spcl_eth

Challenge 1: sequential programs on multiprocessors

§  Queuing theory ⇒ straightforward, although:
§  More complex than uniprocessor scheduling
§  Harder to analyze

Task queue

Core 0

Core 1

Core 2

Core 3

But…

7

spcl.inf.ethz.ch
@spcl_eth

It’s much harder
§  Overhead of locking and sharing queue

§  Classic case of scaling bottleneck in OS design

§  Solution: per-processor scheduling queues

Core 0

Core 1

Core 2

Core 3

In practice, each
is more complex

e.g. MFQ

8

spcl.inf.ethz.ch
@spcl_eth

It’s much harder
§  Threads allocated arbitrarily to cores

⇒ tend to move between cores
⇒ tend to move between caches
⇒  really bad locality and hence performance

§  Solution: affinity scheduling
§  Keep each thread on a core most of the time
§  Periodically rebalance across cores
§  Note: this is non-work-conserving!

§  Alternative: hierarchical scheduling (Linux)

9

spcl.inf.ethz.ch
@spcl_eth

Challenge 2: parallel applications
§  Global barriers in parallel applications ⇒

One slow thread has huge effect on performance
§  Corollary of Amdahl’s Law

§  Multiple threads would benefit from cache sharing

§  Different applications pollute each others’ caches

§  Leads to concept of “co-scheduling”
§  Try to schedule all threads of an application together

§  Critically dependent on synchronization concepts

10

spcl.inf.ethz.ch
@spcl_eth

Multicore scheduling
§  Multiprocessor scheduling is two-dimensional

§  When to schedule a task?
§  Where (which core) to schedule on?

§  General problem is NP hard !

§  But it’s worse than that:
§  Don’t want a process holding a lock to sleep
⇒ Might be other running tasks spinning on it

§  Not all cores are equal

§  In general, this is a wide-open research problem

11

spcl.inf.ethz.ch
@spcl_eth

Little’s Law
§  Assume, in a train station:

§  100 people arrive per minute
§  Each person spends 15 minutes in the station
§  How big does the station have to be (house how many people)

§  Little’s law: “The average number of active tasks in a system is
equal to the average arrival rate multiplied by the average time a
task spends in a system”

12

spcl.inf.ethz.ch
@spcl_eth

§  True or false (raise hand)
§  Throughput is an important goal for batch schedulers
§  Response time is an important goal for batch schedulers
§  Realtime schedulers schedule jobs faster than batch schedulers
§  Realtime schedulers have higher throughput than batch schedulers
§  The scheduler has to be invoked by an application
§  FCFS scheduling has low average waiting times
§  Starvation can occur in FCFS scheduling
§  Starvation can occur in SJF scheduling
§  Preemption can be used to improve interactivity
§  Round Robin scheduling is fair
§  Multilevel Feedback Queues in Linux prevent starvation
§  Simple Unix scheduling fairly allocates the time to each user
§  RMS scheduling achieves full CPU utilization
§  Multiprocessor scheduling is NP hard

13

Our Small Quiz

spcl.inf.ethz.ch
@spcl_eth

Last time: Scheduling
§  Basics:

§  Workloads, tradeoffs, definitions
§  Batch-oriented scheduling

§  FCFS, Convoys, SJF, Preemption: SRTF
§  Interactive workloads

§  RR, Priority, Multilevel Feedback Queues, Linux, Resource containers
§  Realtime

§  RMS, EDF
§  Multiprocessors

spcl.inf.ethz.ch
@spcl_eth

Goals today
§  Overview of inter-process communication systems

§  Hardware support
§  With shared memory
§  Without shared memory
§  Upcalls

§  Generally: very broad field
§  Quite competitive… especially with microkernels

spcl.inf.ethz.ch
@spcl_eth

Recap: Hardware support for
synchronization

spcl.inf.ethz.ch
@spcl_eth

Disabling interrupts

Disable all
interrupts

/ traps

Enable interrupts

State to be
protected

Critical
section

spcl.inf.ethz.ch
@spcl_eth

Disabling interrupts
§  Nice and simple
§  Can’t be rescheduled inside critical section

⇒ data can’t be altered by anything else
§  Except…
§  Another processor!

§  Hmm….

§  Very efficient if in kernel on a uniprocessor.

spcl.inf.ethz.ch
@spcl_eth

Test-And-Set instruction
§  Atomically:

§  Read the value of a memory location
§  Set the location to 1

§  Available on some hardware (e.g., PA-RISC)
§  (actually, more a RAC – Read-And-Clear)

spcl.inf.ethz.ch
@spcl_eth

Compare-And-Swap (CAS)

§  Available on e.g., x86, IBM/370, SPARC, ARM,…
§  Theoretically, slightly more powerful than TAS

§  Why?
§  Other variants e.g., CAS2, etc.

word cas(word *flag, word oldval, word newval) {
 atomically {
 if (*flag == oldval) {
 *flag = newval;
 return oldval;
 } else {
 return *flag;
 }
 }

}

spcl.inf.ethz.ch
@spcl_eth

Load-Link, Store-Conditional
Factors CAS, etc. into two instructions:

1.   LL: load from a location and mark as “owned”
2.   SC: Atomically:

1.  Store only if already marked by this processor
2.  Clear any marks set by other processors
3.  Return whether it worked.

Available on PPC, Alpha, MIPS, etc…

spcl.inf.ethz.ch
@spcl_eth

Back to TAS…

old = TAS(flag)
if (old == True)

flag ← False

Critical
section

Spin
forever

waiting?

spcl.inf.ethz.ch
@spcl_eth

Spinning
§  On a uniprocessor:

§  Not much point in spinning at all. What’s going to happen?
§  Possibly an interrupt

§  On a multiprocessor:
§  Can’t spin forever
§  Another spin is always cheap
§  Blocking thread and rescheduling is expensive
§  Spinning only works if lock holder is running on another core

spcl.inf.ethz.ch
@spcl_eth

Competitive spinning
§  How long to spin for?

§  “Competitive spinning”:
§  Within a factor of 2 of optimal, offline (i.e., impossible!) algorithm

§  Good approach: spin for the context switch time
§  Best case: avoid context switch entirely
§  Worst case: twice as bad as simply rescheduling

spcl.inf.ethz.ch
@spcl_eth

IPC with shared memory

spcl.inf.ethz.ch
@spcl_eth

Techniques you already know ☺
§  Semaphores

§  P, V operations

§  Mutexes
§  Acquire, Release

§  Condition Variables
§  Wait, Signal (Notify), Broadcast (NotifyAll)

§  Monitors
§  Enter, Exit

spcl.inf.ethz.ch
@spcl_eth

§  Most OSes provide some form of these

§  Key issue not yet covered: interaction between scheduling and
synchronization

§  Example: Priority inversion
§  Assuming a priority scheduler, e.g., Unix, Windows

Focus here: interaction with scheduling

spcl.inf.ethz.ch
@spcl_eth

Priority Inversion

Time	

Low	 priority	

High	 priority	

Acquire
lock

spcl.inf.ethz.ch
@spcl_eth

Priority Inversion

Time	

Low	 priority	

High	 priority	

Acquire
lock

Preemption

spcl.inf.ethz.ch
@spcl_eth

Priority Inversion

Time	

Low	 priority	

High	 priority	

Acquire
lock

Preemption Wait for
lock

spcl.inf.ethz.ch
@spcl_eth

Priority Inversion

Time	

Low	 priority	

Med.	 priority	

High	 priority	

Acquire
lock

Preemption Wait for
lock

Preemption

spcl.inf.ethz.ch
@spcl_eth

Priority Inversion

Time	

Low	 priority	

Med.	 priority	

High	 priority	

Acquire
lock

Preemption Wait for
lock

Preemption Inverted	
priority	

spcl.inf.ethz.ch
@spcl_eth

Anyone recognize this?

spcl.inf.ethz.ch
@spcl_eth

Priority Inheritance
•  Process holding lock inherits priority of highest priority process

that is waiting for the lock.
–  Releasing lock ⇒ priority returns to previous value
–  Ensures forward progress

•  Alternative: Priority Ceiling
–  Process holding lock acquires priority of highest-priority process that can

ever hold lock
–  Requires static analysis, used in embedded RT systems

spcl.inf.ethz.ch
@spcl_eth

Priority Inheritance

Time	

Low	 priority	

Med.	 priority	

High	 priority	

Acquire lock

Preemption Wait for lock

spcl.inf.ethz.ch
@spcl_eth

Priority Inheritance

Time	

Low	 priority	

Med.	 priority	

High	 priority	

Preemption

This process
acquires

high priority
Acquire lock

Wait for lock

spcl.inf.ethz.ch
@spcl_eth

Priority Inheritance

Time	

Low	 priority	

Med.	 priority	

High	 priority	

Preemption

Release lock

Acquire lock Wait for lock

Acquire lock

This process
acquires

high priority

spcl.inf.ethz.ch
@spcl_eth

IPC without shared memory

spcl.inf.ethz.ch
@spcl_eth

Asynchronous (buffered) IPC

Time	

Process	 2	

Process	 1	

SEND

RECV

spcl.inf.ethz.ch
@spcl_eth

Asynchronous (buffered) IPC

Time	

Process	 2	

Process	 1	

Receiver	 blocks	
wai@ng	 for	 msg	

SEND

RECV

spcl.inf.ethz.ch
@spcl_eth

Asynchronous (buffered) IPC

Time	

Process	 2	

Process	 1	

Receiver	 blocks	
wai@ng	 for	 msg	

SEND

RECV

Sender	 does	 not	
block	

spcl.inf.ethz.ch
@spcl_eth

Synchronous (unbuffered) IPC

Time	

Process	 2	

Process	 1	

SEND

RECV

spcl.inf.ethz.ch
@spcl_eth

Synchronous (unbuffered) IPC

Time	

Process	 2	

Process	 1	

SEND

RECV

Sender	 blocks	
un@l	 receiver	

ready	

spcl.inf.ethz.ch
@spcl_eth

Duality of messages and shared-memory
§  Famous claim by Lauer and Needham (1978):

Any shared-memory system (e.g., one based on monitors and
condition variables) is equivalent to a non-shared-memory system

(based on messages)

§  Exercise: pick your favourite example of one, and show how to
build the dual.

spcl.inf.ethz.ch
@spcl_eth

Unix Pipes
§  Basic (first) Unix IPC mechanism

§  Unidirectional, buffered communication channel between two
processes

§  Creation:
int pipe(int pipefd[2])

§  Q. How to set up pipe between two processes?

§  A. Don’t! Create the pipe first, then fork…

spcl.inf.ethz.ch
@spcl_eth

Pipe idiom (man 2 pipe)

Create a pipe

spcl.inf.ethz.ch
@spcl_eth

Pipe idiom (man 2 pipe)

Fork

spcl.inf.ethz.ch
@spcl_eth

Pipe idiom (man 2 pipe)

In child: close write
end

spcl.inf.ethz.ch
@spcl_eth

Pipe idiom (man 2 pipe)

Read from pipe and
write to standard
output until EOF

spcl.inf.ethz.ch
@spcl_eth

Pipe idiom (man 2 pipe)

In parent: close read
end and write argv[1] to

pipe

spcl.inf.ethz.ch
@spcl_eth

Unix shell pipes
§  E.g.:

curl --silent http://spcl.inf.ethz.ch/Teaching/2014-osnet/ | sed
's/[^A-Za-z]/\n/g' | sort -fu | egrep -v '^\s*$' | wc -l

§  Shell forks each element of the pipeline

§  Each process connected via pipes
§  Stdout of process n → stdin of process n+1
§  Each process then exec’s the appropriate command
§  Exercise: write it! (hint: ‘man dup2’…)

spcl.inf.ethz.ch
@spcl_eth

Messaging systems
§  A good textbook will examine options:

§  End-points may or may not know each others’ names
§  Messages might need to be sent to more than one destination
§  Multiple arriving messages might need to be demultiplexed
§  Can’t wait forever for one particular message

§  BUT: you’ll see most of this somewhere else!
§  In networking
§  Many parallels between message-passing operating systems and

networks

spcl.inf.ethz.ch
@spcl_eth

Example
§  The concept of a “port” allows:

§  Naming of different end-points within a process
§  Demultiplexing of messages
§  Waiting selectively for different kinds of messages

§  Analogous to “socket” and “TCP port” in IPv4
§  In Unix, “Unix domain sockets” do exactly this.
§  int s = socket(AF_UNIX, type, 0);

spcl.inf.ethz.ch
@spcl_eth

Naming pipes
§  Pipes so far are only named by their descriptors

§  Namespace is local to the process
§  Copied on fork() .

§  How to put a pipe in the global namespace?
§  Make it a “named pipe”
§  Special file of type “pipe” (also known as a FIFO)

spcl.inf.ethz.ch
@spcl_eth

Named pipes

spcl.inf.ethz.ch
@spcl_eth

Local Remote Procedure Call
§  Can use RPC locally:

§  Define procedural interface in an IDL
§  Compile / link stubs
§  Transparent procedure calls over messages

§  Naïve implementation is slow
§  Lots of things (like copying) don’t matter with a network, but do matter

between local processes
§  Can be made very fast: more in the AOS course…

spcl.inf.ethz.ch
@spcl_eth

Unix signals
§  Asynchronous notification from the kernel

§  Receiver doesn’t wait: signal just happens

§  Interrupt process, and:
§  Kill it
§  Stop (freeze) it
§  Do “something else” (see later)

spcl.inf.ethz.ch
@spcl_eth

Signal types (some of them)

Name Description / meaning Default action
SIGHUP Hangup / death of controlling process Terminate process
SIGINT Interrupt character typed (CTRL-C) Terminate process
SIGQUIT Quit character typed (CTRL-\) Core dump
SIGKILL kill -9 <process id> Terminate process
SIGSEGV Segfault (invalid memory reference) Core dump
SIGPIPE Write on pipe with no reader Terminate process
SIGALRM alarm() goes off Terminate process
SIGCHLD Child process stopped or terminated Ignored
SIGSTOP Stop process Stop
SIGCONT Continue process Continue
SIGUSR1,2 User-defined signals Terminate process

Etc. – see man 7 signal for the full list

“Hanging up” the
phone (terminal)

Can’t be
disabled!

E.g., after other side of
pipe has closed it

Used by debuggers (e.g.,
gdb) and shell (CTRL-Z)

spcl.inf.ethz.ch
@spcl_eth

Where do signals come from?
§  Memory management subsystem:

§  SIGSEGV, etc.

§  IPC system
§  SIGPIPE

§  Other user processes
§  SIGUSR1,2, SIGKILL, SIGSTOP, SIGCONT

§  Kernel trap handlers
§  SIGFPE

§  The “TTY Subsystem”
§  SIGINT, SIGQUIT, SIGHUP

spcl.inf.ethz.ch
@spcl_eth

Sending a signal to a process
§  From the Unix shell:

$ kill –HUP 4234

§  From C:
#include <signal.h>
int kill(pid_t pid, int signo);

§  “Kill” is a rather unfortunate name !

spcl.inf.ethz.ch
@spcl_eth

Unix signal handlers
§  Change what happens when a signal is delivered:

§  Default action
§  Ignore signal
§  Call a user-defined function in the process
→ the signal handler

§  Allows signals to be used like “user-space traps”

spcl.inf.ethz.ch
@spcl_eth

Oldskool: signal()
§  Test your C parsing skills:

#include <signal.h>

void (*signal(int sig, void (*handler)(int))) (int);

§  What does this mean?

spcl.inf.ethz.ch
@spcl_eth

Oldskool: signal()
void (*signal(int sig, void (*handler)(int))) (int);

§  Unpacking this:
§  A handler looks like
void my_handler(int);

§  Signal takes two arguments…
An integer (the signal type, e.g. SIGPIPE)
A pointer to a handler function

§  … and returns a pointer to a handler function
The previous handler,

§  “Special” handler arguments:
§  SIG_IGN (ignore), SIG_DFL (default), SIG_ERR (error code)

spcl.inf.ethz.ch
@spcl_eth

Unix signal handlers
§  Signal handler can be called at any time!

§  Executes on the current user stack
§  If process is in kernel, may need to retry current system call
§  Can also be set to run on a different (alternate) stack

 ⇒ User process is in undefined state when signal delivered

spcl.inf.ethz.ch
@spcl_eth

Implications
§  There is very little you can safely do in a signal handler!

§  Can’t safely access program global or static variables
§  Some system calls are re-entrant, and can be called
§  Many C library calls cannot (including _r variants!)
§  Can sometimes execute a longjmp if you are careful
§  With signal, cannot safely change signal handlers…

§  What happens if another signal arrives?

spcl.inf.ethz.ch
@spcl_eth

Multiple signals
§  If multiple signals of the same type are to be delivered, Unix will

discard all but one.

§  If signals of different types are to be delivered, Unix will deliver
them in any order.

§  Serious concurrency problem:
How to make sense of this?

spcl.inf.ethz.ch
@spcl_eth

A better signal()POSIX sigaction()

#include <signal.h>

int sigaction(int signo,

 const struct sigaction *act,
 struct sigaction *oldact);

struct sigaction {

 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_sigaction)(int, siginfo_t *, void *);

};
More sophisticated signal

handler (depending on flags)

Signals to be blocked in this
handler (cf., fd_set)

Signal
handler

Previous action
is returned

New action for
signal signo

spcl.inf.ethz.ch
@spcl_eth

Signals as upcalls
§  Particularly specialized (and complex) form of Upcall

§  Kernel RPC to user process

§  Other OSes use upcalls much more heavily
§  Including Barrelfish
§  “Scheduler Activations”: dispatch every process using an upcall instead of

return

§  Very important structuring concept for systems!

