

spci.int.ethz.ch y ∰@spci_eth Hzürici

Scheduling is...

Deciding how to allocate a single resource among multiple clients In what order and for how long

- Usually refers to CPU scheduling
 - · Focus of this lecture we will look at selected systems/research OS also schedules other resources (e.g., disk and network IO)
- CPU scheduling involves deciding:
 - Which task next on a given CPU?
 - For how long should a given task run? On which CPU should a task run?
 - Task: process, thread, domain, dispatcher, ...

THzürich spci.inf.ethz.ch y @spci_eth Scheduling · What metric is to be optimized? - Fairness (but what does this mean?) Policy (of some kind) - Balance/Utilization (keep everything being used) - Increasingly: Power (or Energy usage)

Usually these are in contradiction...

spci.inf.ethz.cl y @spci_eth Objectives General: Fairness Enforcement of policy Balance/Utilization • Others depend on workload, or architecture: Batch jobs, Interactive, Realtime and multimedia SMP, SMT, NUMA, multi-node

spci.inf.ethz.ch Challenge: Complexity of scheduling algorithms Scheduler needs CPU to decide what to schedule · Any time spent in scheduler is "wasted" time · Want to minimize overhead of decisions To maximise utilization of CPU But low overhead is no good if your scheduler picks the "wrong" things to run!

- ⇒ Trade-off between:
- scheduler complexity/overhead and optimality of resulting schedule

spci.int.ethz.ch y @spci_eth

spcl.inf.ethz.ch y @spcl_eth

spci.inf.ethz.ch y @spci_eth

√ Spciinf.ethz.ch
✓ Spci_nf.ethz.ch
✓ @spci_eth

Challenge: Frequency of scheduling decisions

Increased scheduling frequency
 ⇒ increasing chance of running something different

Leads to higher context switching rates, ⇒ lower throughput

Hzürici

- Flush pipeline, reload register state
- Maybe flush TLB, caches
- Reduces locality (e.g., in cache)

7 Efficiency of the second second

Hzürich

Interactive workloads

- "Wait for external events, and react before the user gets annoyed"
- Word processing, browsing, fragging, etc.Common for PCs, phones, etc.
- Goals:

Hzürici

Response time: how quickly does something happen?Proportionality: some things should be quicker

Soft Realtime workloads

- · "This task must complete in less than 50ms", or
- "This program must get 10ms CPU every 50ms"
 - Data acquisition, I/O processing
 Multimedia applications (audio and video)

Goals:

THzürich

- Deadlines
 Guarantees
- Predictability (real time ≠ fast!)

Hard Realtime workloads "Ensure the plane's control surfaces move correctly in response to the pilot's actions" "Fire the spark plugs in the car's engine at the right time" Mission-critical, extremely time-sensitive control applications Not covered in this course: very different techniques required...

spci.inf.ethz.ch y @spci_eth

Preemption

Hzürich

- Non-preemptive scheduling:
- Require each process to explicitly give up the scheduler
- Start I/O, executes a "yield()" call, etc.
- Windows 3.1, older MacOS, some embedded systems

Preemptive scheduling:

- Processes dispatched and descheduled without warning
 Often on a timer interrupt, page fault, etc.
- The most common case in most OSes
- Soft-realtime systems are usually preemptive
- Hard-realtime systems are often not!

ETH zürich	and the second se	spcLint.ethz.ch ∳ @spcLeth	ETH zür
Overl	head example (from Tanenbaum)		0
• Sup • Run • Wi	pose process switch time is 1ms each process for 4ms hat is the overhead?		:
		21	

ETHzürich Overhead example (from Tanenbaum) Suppose process switch time is 1ms Run each process for 4ms ⇒ 20% of system time spent in scheduler ® Run each process for 100ms 50 jobs ⇒ response time up to 5 seconds ® Tradeoff: response time vs. scheduling overhead

ETHzürich	C. Martine C.	spci.int.et	hz.ch :I_eth
First-come first-served			
 Simplest algorithm! 			_
Example:	Process	Execution time	
 Waiting times: 0, 24, 27 Avg. = (0+24+27)/3 	А	24	
= 17	В	3	
▪ But	С	3	
А		вс	
0	24	27 30	
			26

Star A Star Street St

spci.inf.ethz.ch y @spci_eth

Multi-level queues

Hzüric

- Can schedule different priority levels differently:
 Interactive, high-priority: round robin
 Batch, background, low priority: FCFS
- Ideally generalizes to hierarchical scheduling

Starvation 9. Strict priority schemes do not guarantee progress for all tasks 9. Solution: Ageing 10. Tasks which have waited a long time are gradually increased in priority 2. Seentually, any starving task ends up with the highest priority 3. Reset priority when quantum is used up

Hzürich Multilevel Feedback Queues Idea: penalize CPU-bound tasks to benefit I/O bound tasks Reduce priority for processes which consume their entire quantum Eventually, re-promote process I/O bound tasks tend to block before using their quantum ⇒ remain at high priority Very general: any scheduling algorithm can reduce to this (problem is implementation)

Septilated and a set of the set

Example: Linux o(1) scheduler

- 140 level Multilevel Feedback Queue
 0-99 (high priority): static, fixed, "realtime"
 - FCFS or RR
 - 100-139: User tasks, dynamic Round-robin within a priority level Priority ageing for interactive (I/O intensive) tasks
- Complexity of scheduling is independent of no. tasks
 Two arrays of queues: "runnable" & "waiting"
- · When no more task in "runnable" array, swap arrays

THzürici

spci.inf.ethz.ch y ∰ @spci_eth

Example: Linux "completely fair scheduler"

- Task's priority = how little progress it has made
 Adjusted by fudge factors over time
- Implementation uses Red-Black tree
 Sorted list of tasks
 - Operations now O(log n), but this is fast
- Essentially, this is the old idea of "fair queuing" from packet networks
 - Also called "generalized processor scheduling"
 - Ensures guaranteed service rate for all processes
 - CFS does not, however, expose (or maintain) the guarantees

spci.inf.ethiz.eh

Problems with UNIX Scheduling

- UNIX conflates protection domain and resource principal
 Priorities and scheduling decisions are per-process
- However, may want to allocate resources across processes, or separate resource allocation within a process
 - E.g., web server structure
 - Multi-process
 - Multi-threaded Event-driven
 - If I run more compiler jobs than you, I get more CPU time
- In-kernel processing is accounted to nobody

Hzürich spci.inf.ethz.ch y @spci_eth **H**zürich spci.inf.ethz.ch ∳@spci_eth Resource Containers [Banga et al., 1999] New OS abstraction for explicit resource management, separate from process structure Operations to create/destroy, manage hierarchy, and associate . threads or sockets with containers Independent of scheduling algorithms used All kernel operations and resource usage accounted to a **Real Time** resource container ⇒ Explicit and fine-grained control over resource usage ⇒ Protects against some forms of DoS attack Most obvious modern form: virtual machines .

spci.inf.ethz.ch → → ⊕ @spci_eth

Then RMS will find a feasible schedule if:

Hzürich

$$\sum_{i=1}^m \frac{C_i}{P_i} \leq m(2^{\frac{1}{m}}-1)$$

(Proof is beyond scope of this course)

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

Which is very handy. Assuming zero context switch time...

ETH zürich	and the second se	spci.inf.ethz.ch y @spci_eth	
lt's m	It's much harder		
Over Cla	head of locking and sharing queue ssic case of scaling bottleneck in OS design		
 Solut 	ion: per-processor scheduling queues		
In practice, is more con	each		
		5	

ETH zürid	:h speciate and the second and the		
Ch	Challenge 2: parallel applications		
- ((Slobal barriers in parallel applications → One slow thread has huge effect on performance Corollary of Amdahi's Law		
- 1	Iultiple threads would benefit from cache sharing		
- 0	Different applications pollute each others' caches		
- L	eads to concept of "co-scheduling"		
•	Try to schedule all threads of an application together		
- (Critically dependent on synchronization concepts		

spclint.ethz.ch

Multicore scheduling

Hzürich

- Multiprocessor scheduling is two-dimensional
 When to schedule a task?
 - Where (which core) to schedule on?
- General problem is NP hard Ø
- But it's worse than that:
 - Don't want a process holding a lock to sleep ⇒ Might be other running tasks spinning on it
 - Might be other running tasks sp
 Not all cores are equal
- In general, this is a wide-open research problem

<page-header><text><section-header><list-item><section-header>