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Last time 
§  Process concepts and lifecycle 
§  Context switching 
§  Process creation 
§  Kernel threads 
§  Kernel architecture 
§  System calls in more detail 
§  User-space threads  
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Scheduling is… 
Deciding how to allocate a single resource among multiple clients 

§  In what order and for how long 

§  Usually refers to CPU scheduling 
§  Focus of this lecture – we will look at selected systems/research 
§  OS also schedules other resources (e.g., disk and network IO) 

§  CPU scheduling involves deciding: 
§  Which task next on a given CPU? 
§  For how long should a given task run? 
§  On which CPU should a task run? 

 
Task: process, thread, domain, dispatcher, …  
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Scheduling 
•  What metric is to be optimized? 

–  Fairness (but what does this mean?) 
–  Policy (of some kind) 
–  Balance/Utilization (keep everything being used) 
–  Increasingly: Power (or Energy usage) 

§  Usually these are in contradiction… 
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§  General: 
§  Fairness 
§  Enforcement of policy 
§  Balance/Utilization 

§  Others depend on workload, or architecture: 
§  Batch jobs, Interactive, Realtime and multimedia 
§  SMP, SMT, NUMA, multi-node 

Objectives 
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Challenge: Complexity of scheduling algorithms 
§  Scheduler needs CPU to decide what to schedule 

§  Any time spent in scheduler is “wasted” time 
§  Want to minimize overhead of decisions  

To maximise utilization of CPU 
§  But low overhead is no good if your scheduler picks the  

“wrong” things to run! 

⇒  Trade-off between: 
scheduler complexity/overhead and 
optimality of resulting schedule 
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Challenge: Frequency of scheduling decisions 
§  Increased scheduling frequency  

⇒ increasing chance of running something different 

Leads to higher context switching rates,  
⇒ lower throughput 
§  Flush pipeline, reload register state 
§  Maybe flush TLB, caches 
§  Reduces locality (e.g., in cache) 
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Batch workloads 
•  “Run this job to completion and tell me when you’re done” 

–  Typical mainframe or supercomputer use-case 
–  Much used in old textbooks J 
–  Making a comeback with large clusters… 

•  Goals: 
–  Throughput (jobs per hour) 
–  Wait time (time to execution) 
–  Turnaround time (submission to termination) 
–  Utilization (don’t waste resources) 
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Interactive workloads 
§  “Wait for external events, and react before the user gets 

annoyed”  
§  Word processing, browsing, fragging, etc.  
§  Common for PCs, phones, etc.  

§  Goals: 
§  Response time: how quickly does something happen? 
§  Proportionality: some things should be quicker 
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Soft Realtime workloads 
•  “This task must complete in less than 50ms”, or 
•  “This program must get 10ms CPU every 50ms” 

–  Data acquisition, I/O processing 
–  Multimedia applications (audio and video) 

•  Goals: 
–  Deadlines 
–  Guarantees 
–  Predictability (real time ≠ fast!) 
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Hard Realtime workloads 
§  “Ensure the plane’s control surfaces move correctly in response 

to the pilot’s actions” 
§  “Fire the spark plugs in the car’s engine at the right time” 

§  Mission-critical, extremely time-sensitive control applications 

§  Not covered in this course: very different techniques required… 
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Scheduling assumptions and definitions 
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CPU- and I/O-bound tasks 

CPU-‐bound	  task:	  
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CPU- and I/O-bound tasks 

CPU-‐bound	  task:	  

I/O-‐bound	  task:	  
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CPU- and I/O-bound tasks 

CPU	  burst	   Wai<ng	  for	  I/O	  

CPU-‐bound	  task:	  

I/O-‐bound	  task:	  
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Simplifying assumptions 
§  Only one processor 

§  We’ll relax this (much) later 

§  Processor runs at fixed speed 
§  Realtime == CPU time 
§  Not true in reality for power reasons 
§  DVFS: Dynamic Voltage and Frequency Scaling 
§  In many cases, however, efficiency ⇒ run flat-out until idle.   
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Simplifying assumptions 
§  We only consider work-conserving scheduling 

§  No processor is idle if there is a runnable task 
§  Question: is this always a reasonable assumption? 

§  The system can always preempt a task 
§  Rules out some very small embedded systems 
§  And hard real-time systems… 
§  And early PC/Mac OSes… 
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When to schedule? 
When: 
 
1.  A running process blocks  

§   e.g., initiates blocking I/O or waits on a child 

2.  A blocked process unblocks 
§  I/O completes 

3.  A running or waiting process terminates 

4.  An interrupt occurs 
§  I/O or timer 

§  2 or 4 can involve preemption 
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Preemption 
•  Non-preemptive scheduling: 

–  Require each process to explicitly give up the scheduler 
•  Start I/O, executes a “yield()” call, etc. 

–  Windows 3.1, older MacOS, some embedded systems 

•  Preemptive scheduling: 
–  Processes dispatched and descheduled without warning 

•  Often on a timer interrupt, page fault, etc. 
–  The most common case in most OSes 
–  Soft-realtime systems are usually preemptive 
–  Hard-realtime systems are often not! 
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Overhead 
§  Dispatch latency:  

§  Time taken to dispatch a runnable process 

§  Scheduling cost  
= 2 x (half context switch) + (scheduling time)  

§  Time slice allocated to a process should be significantly more 
than scheduling overhead! 
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Overhead example (from Tanenbaum) 
§  Suppose process switch time is 1ms 
§  Run each process for 4ms 

§  What is the overhead? 
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Overhead example (from Tanenbaum) 
§  Suppose process switch time is 1ms 
§  Run each process for 4ms 

⇒ 20% of system time spent in scheduler ! 
§  Run each process for 100ms 

50 jobs ⇒ maximum response time? 
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Overhead example (from Tanenbaum) 
§  Suppose process switch time is 1ms 
§  Run each process for 4ms 

⇒ 20% of system time spent in scheduler ! 
§  Run each process for 100ms 

50 jobs ⇒ response time up to 5 seconds ! 

§  Tradeoff: response time vs. scheduling overhead 
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Batch-oriented scheduling 
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Batch scheduling: why bother? 
§  Mainframes are sooooo 1970! 
§  But:  

§  Most systems have batch-like background tasks 
§  Yes, even phones are beginning to. 
§  CPU bursts can be modeled as batch jobs 
§  Web services are request-based 
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Process	   Execu<on	  
<me	  

A	   24	  

B	   3	  

C	   3	  

First-come first-served 

§  Simplest algorithm! 

§  Example: 
§  Waiting times: 0, 24, 27 
§  Avg.  = (0+24+27)/3 

  = 17 

§  But.. 

B	   C	  A	  

0	   24	   27	   30	  
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§  Different arrival order 

§  Example: 
§  Waiting times: 6, 0, 3 
§  Avg.  = (0+3+6)/3 = 3 

§  Much better ☺ 
§  But unpredictable ! 

First-come first-served 

B	   C	   A	  

0	   3	   6	   30	  

Process	   Execu<on	  
<me	  

A	   24	  

B	   3	  

C	   3	  
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Convoy phenomenon 
§  Short processes back up behind long-running processes 

§  Well-known (and widely seen!) problem 
§  Famously identified in databases with disk I/O 
§  Simple form of self-synchronization 

§  Generally undesirable… 

§  FIFO used for, e.g. memcached 
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Shortest-Job First 

§  Always run process with 
the shortest execution time. 

§  Optimal: minimizes waiting 
time (and hence turnaround 
time) 

Process	   Execu<on	  
<me	  

A	   6	  

B	   8	  
C	   7	  
D	   3	  

D	   A	   C	   B	  
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Optimality 
§  Consider n jobs executed in sequence, each with processing 

time ti, 0 < i < n 

§  Mean turnaround time is: 

§  Minimized when shortest job is first 

§  E.g., for 4 jobs:  
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Execution time estimation 
§  Problem: what is the execution time? 

§  For mainframes, could punt to user 
§  And charge them more if they were wrong 

§  For non-batch workloads, use CPU burst times 
§  Keep exponential average of prior bursts 

§  cf., TCP RTT estimator 

§  Or just use application information 
§  Web pages: size of web page 
 

nnn t ταατ ⋅−+⋅=+ )1(1
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§  Problem: jobs arrive all the time 

§  “Shortest remaining time next” 
§  New, short jobs may preempt longer jobs already running 

§  Still not an ideal match for dynamic, unpredictable workloads 
§  In particular, interactive ones 

SJF & preemption 
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Scheduling interactive loads 
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§  Simplest interactive algorithm 
§  Run all runnable tasks for fixed quantum in turn 

§  Advantages: 
§  It’s easy to implement 
§  It’s easy to understand, and analyze 
§  Higher turnaround time than SJF, but better response 

§  Disadvantages: 
§  It’s rarely what you want 
§  Treats all tasks the same 

Round-robin 
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§  Very general class of scheduling algorithms 

§  Assign every task a priority 

§  Dispatch highest priority runnable task 

§  Priorities can be dynamically changed 

§  Schedule processes with same priority using  
§  Round Robin 
§  FCFS 
§  etc. 

Priority 
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Priority queues 

Priority 100 

Priority 4 

Priority 3 

Priority 2 

Priority 1 T 

T 

T T 

T T T 

T 

T 

Runnable tasks 

P
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…
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§  Can schedule different priority levels differently: 
§  Interactive, high-priority: round robin 
§  Batch, background, low priority: FCFS 

§  Ideally generalizes to hierarchical scheduling 

Multi-level queues 
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Starvation 
§  Strict priority schemes do not guarantee progress for all tasks 

§  Solution: Ageing 
§  Tasks which have waited a long time are gradually increased in priority 
§  Eventually, any starving task ends up with the highest priority 
§  Reset priority when quantum is used up 
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§  Idea: penalize CPU-bound tasks to benefit I/O bound tasks 
§  Reduce priority for processes which consume their entire quantum 
§  Eventually, re-promote process 
§  I/O bound tasks tend to block before using their quantum ⇒ remain at high 

priority 

§  Very general: any scheduling algorithm can reduce to this 
(problem is implementation) 

Multilevel Feedback Queues 
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Example: Linux o(1) scheduler 
§  140 level Multilevel Feedback Queue 

§  0-99 (high priority):  
static, fixed, “realtime” 
FCFS or RR 

§  100-139: User tasks, dynamic 
Round-robin within a priority level 
Priority ageing for interactive (I/O intensive) tasks 
 

§  Complexity of scheduling is independent of no. tasks 
§  Two arrays of queues: “runnable” & “waiting” 
§  When no more task in “runnable” array, swap arrays 
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Example: Linux “completely fair scheduler” 
•  Task’s priority = how little progress it has made 

–  Adjusted by fudge factors over time 

•  Implementation uses Red-Black tree 
–  Sorted list of tasks 
–  Operations now O(log n), but this is fast 

•  Essentially, this is the old idea of “fair queuing” from packet 
networks 
–  Also called “generalized processor scheduling” 
–  Ensures guaranteed service rate for all processes 
–  CFS does not, however, expose (or maintain) the guarantees 
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Problems with UNIX Scheduling 
§  UNIX conflates protection domain and resource principal 

§  Priorities and scheduling decisions are per-process 

§  However, may want to allocate resources across processes, or 
separate resource allocation within a process 
§  E.g., web server structure 

Multi-process 
Multi-threaded 
Event-driven 

§  If I run more compiler jobs than you, I get more CPU time 

§  In-kernel processing is accounted to nobody 
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Resource Containers  [Banga et al., 1999] 
New OS abstraction for explicit resource management, separate 

from process structure 
§  Operations to create/destroy, manage hierarchy, and associate 

threads or sockets with containers 
§  Independent of scheduling algorithms used 
§  All kernel operations and resource usage accounted to a 

resource container 

⇒  Explicit and fine-grained control over resource usage  
⇒  Protects against some forms of DoS attack 

§  Most obvious modern form: virtual machines 
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Real Time 
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Real-time scheduling 
§  Problem: giving real time-based guarantees to tasks 

§  Tasks can appear at any time 
§  Tasks can have deadlines 
§  Execution time is generally known 
§  Tasks can be periodic or aperiodic 

§  Must be possible to reject tasks which are unschedulable, or 
which would result in no feasible schedule 

45 

spcl.inf.ethz.ch 
@spcl_eth 

Example: multimedia scheduling  

46 

spcl.inf.ethz.ch 
@spcl_eth 

Rate-monotonic scheduling 
§  Schedule periodic tasks by always running task with shortest 

period first. 
§  Static (offline) scheduling algorithm 

§  Suppose: 
§  m tasks 
§  Ci is the execution time of i’th task 
§  Pi is the period of i’th task 

§  Then RMS will find a feasible schedule if: 

§  (Proof is beyond scope of this course) 
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Earliest Deadline First 
§  Schedule task with earliest deadline first (duh..) 

§  Dynamic, online.   
§  Tasks don’t actually have to be periodic… 
§  More complex - O(n) – for scheduling decisions 

§  EDF will find a feasible schedule if:  

§  Which is very handy.  Assuming zero context switch time… 
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Guaranteeing processor rate 
§  E.g. you can use EDF to guarantee a rate of progress for a long-

running task 
§  Break task into periodic jobs, period p and time s.  
§  A task arrives at start of a period 
§  Deadline is the end of the period 

§  Provides a reservation scheduler which: 
§  Ensures task gets s seconds of time every p seconds 
§  Approximates weighted fair queuing 

§  Algorithm is regularly rediscovered… 
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Multiprocessor Scheduling 
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Challenge 1: sequential programs on multiprocessors 

§  Queuing theory ⇒ straightforward, although: 
§  More complex than uniprocessor scheduling 
§  Harder to analyze 

Task queue 

Core 0 

Core 1 

Core 2 

Core 3 

But… 
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It’s much harder 
§  Overhead of locking and sharing queue 

§  Classic case of scaling bottleneck in OS design 

§  Solution: per-processor scheduling queues 

Core 0 

Core 1 

Core 2 

Core 3 

In practice, each 
is more complex 

e.g. MFQ 
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It’s much harder 
§  Threads allocated arbitrarily to cores 

⇒ tend to move between cores 
⇒ tend to move between caches 
⇒  really bad locality and hence performance 

§  Solution: affinity scheduling 
§  Keep each thread on a core most of the time 
§  Periodically rebalance across cores 
§  Note: this is non-work-conserving! 

§  Alternative: hierarchical scheduling (Linux) 
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Challenge 2: parallel applications 
§  Global barriers in parallel applications ⇒ 

One slow thread has huge effect on performance 
§  Corollary of Amdahl’s Law 

§  Multiple threads would benefit from cache sharing 

§  Different applications pollute each others’ caches 

§  Leads to concept of “co-scheduling” 
§  Try to schedule all threads of an application together 

§  Critically dependent on synchronization concepts 
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Multicore scheduling 
§  Multiprocessor scheduling is two-dimensional 

§  When to schedule a task? 
§  Where (which core) to schedule on? 

§  General problem is NP hard ! 

§  But it’s worse than that: 
§  Don’t want a process holding a lock to sleep 
⇒ Might be other running tasks spinning on it 

§  Not all cores are equal 

§  In general, this is a wide-open research problem 
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Little’s Law 
§  Assume, in a train station: 

§  100 people arrive per minute 
§  Each person spends 15 minutes in the station 
§  How big does the station have to be (house how many people) 

§  Little’s law: “The average number of active tasks in a system is 
equal to the average arrival rate multiplied by the average time a 
task spends in a system” 
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