
2/26/2014	

1	

spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 3: Scheduling

Source: slashdot, Feb. 2014

spcl.inf.ethz.ch
@spcl_eth

Last time
§  Process concepts and lifecycle
§  Context switching
§  Process creation
§  Kernel threads
§  Kernel architecture
§  System calls in more detail
§  User-space threads

2

spcl.inf.ethz.ch
@spcl_eth

Scheduling is…
Deciding how to allocate a single resource among multiple clients

§  In what order and for how long

§  Usually refers to CPU scheduling
§  Focus of this lecture – we will look at selected systems/research
§  OS also schedules other resources (e.g., disk and network IO)

§  CPU scheduling involves deciding:
§  Which task next on a given CPU?
§  For how long should a given task run?
§  On which CPU should a task run?

Task: process, thread, domain, dispatcher, …

3

spcl.inf.ethz.ch
@spcl_eth

Scheduling
•  What metric is to be optimized?

–  Fairness (but what does this mean?)
–  Policy (of some kind)
–  Balance/Utilization (keep everything being used)
–  Increasingly: Power (or Energy usage)

§  Usually these are in contradiction…

4

spcl.inf.ethz.ch
@spcl_eth

§  General:
§  Fairness
§  Enforcement of policy
§  Balance/Utilization

§  Others depend on workload, or architecture:
§  Batch jobs, Interactive, Realtime and multimedia
§  SMP, SMT, NUMA, multi-node

Objectives

5

spcl.inf.ethz.ch
@spcl_eth

Challenge: Complexity of scheduling algorithms
§  Scheduler needs CPU to decide what to schedule

§  Any time spent in scheduler is “wasted” time
§  Want to minimize overhead of decisions

To maximise utilization of CPU
§  But low overhead is no good if your scheduler picks the

“wrong” things to run!

⇒  Trade-off between:
scheduler complexity/overhead and
optimality of resulting schedule

6

2/26/2014	

2	

spcl.inf.ethz.ch
@spcl_eth

Challenge: Frequency of scheduling decisions
§  Increased scheduling frequency

⇒ increasing chance of running something different

Leads to higher context switching rates,
⇒ lower throughput
§  Flush pipeline, reload register state
§  Maybe flush TLB, caches
§  Reduces locality (e.g., in cache)

7

spcl.inf.ethz.ch
@spcl_eth

Batch workloads
•  “Run this job to completion and tell me when you’re done”

–  Typical mainframe or supercomputer use-case
–  Much used in old textbooks J
–  Making a comeback with large clusters…

•  Goals:
–  Throughput (jobs per hour)
–  Wait time (time to execution)
–  Turnaround time (submission to termination)
–  Utilization (don’t waste resources)

8

spcl.inf.ethz.ch
@spcl_eth

Interactive workloads
§  “Wait for external events, and react before the user gets

annoyed”
§  Word processing, browsing, fragging, etc.
§  Common for PCs, phones, etc.

§  Goals:
§  Response time: how quickly does something happen?
§  Proportionality: some things should be quicker

9

spcl.inf.ethz.ch
@spcl_eth

Soft Realtime workloads
•  “This task must complete in less than 50ms”, or
•  “This program must get 10ms CPU every 50ms”

–  Data acquisition, I/O processing
–  Multimedia applications (audio and video)

•  Goals:
–  Deadlines
–  Guarantees
–  Predictability (real time ≠ fast!)

10

spcl.inf.ethz.ch
@spcl_eth

Hard Realtime workloads
§  “Ensure the plane’s control surfaces move correctly in response

to the pilot’s actions”
§  “Fire the spark plugs in the car’s engine at the right time”

§  Mission-critical, extremely time-sensitive control applications

§  Not covered in this course: very different techniques required…

11

spcl.inf.ethz.ch
@spcl_eth

Scheduling assumptions and definitions

12

2/26/2014	

3	

spcl.inf.ethz.ch
@spcl_eth

CPU- and I/O-bound tasks

CPU-‐bound	 task:	

13

spcl.inf.ethz.ch
@spcl_eth

CPU- and I/O-bound tasks

CPU-‐bound	 task:	

I/O-‐bound	 task:	

14

spcl.inf.ethz.ch
@spcl_eth

CPU- and I/O-bound tasks

CPU	 burst	 Wai<ng	 for	 I/O	

CPU-‐bound	 task:	

I/O-‐bound	 task:	

15

spcl.inf.ethz.ch
@spcl_eth

Simplifying assumptions
§  Only one processor

§  We’ll relax this (much) later

§  Processor runs at fixed speed
§  Realtime == CPU time
§  Not true in reality for power reasons
§  DVFS: Dynamic Voltage and Frequency Scaling
§  In many cases, however, efficiency ⇒ run flat-out until idle.

16

spcl.inf.ethz.ch
@spcl_eth

Simplifying assumptions
§  We only consider work-conserving scheduling

§  No processor is idle if there is a runnable task
§  Question: is this always a reasonable assumption?

§  The system can always preempt a task
§  Rules out some very small embedded systems
§  And hard real-time systems…
§  And early PC/Mac OSes…

17

spcl.inf.ethz.ch
@spcl_eth

When to schedule?
When:

1.  A running process blocks

§  e.g., initiates blocking I/O or waits on a child

2.  A blocked process unblocks
§  I/O completes

3.  A running or waiting process terminates

4.  An interrupt occurs
§  I/O or timer

§  2 or 4 can involve preemption

18

2/26/2014	

4	

spcl.inf.ethz.ch
@spcl_eth

Preemption
•  Non-preemptive scheduling:

–  Require each process to explicitly give up the scheduler
•  Start I/O, executes a “yield()” call, etc.

–  Windows 3.1, older MacOS, some embedded systems

•  Preemptive scheduling:
–  Processes dispatched and descheduled without warning

•  Often on a timer interrupt, page fault, etc.
–  The most common case in most OSes
–  Soft-realtime systems are usually preemptive
–  Hard-realtime systems are often not!

19

spcl.inf.ethz.ch
@spcl_eth

Overhead
§  Dispatch latency:

§  Time taken to dispatch a runnable process

§  Scheduling cost
= 2 x (half context switch) + (scheduling time)

§  Time slice allocated to a process should be significantly more
than scheduling overhead!

20

spcl.inf.ethz.ch
@spcl_eth

Overhead example (from Tanenbaum)
§  Suppose process switch time is 1ms
§  Run each process for 4ms

§  What is the overhead?

21

spcl.inf.ethz.ch
@spcl_eth

Overhead example (from Tanenbaum)
§  Suppose process switch time is 1ms
§  Run each process for 4ms

⇒ 20% of system time spent in scheduler !
§  Run each process for 100ms

50 jobs ⇒ maximum response time?

22

spcl.inf.ethz.ch
@spcl_eth

Overhead example (from Tanenbaum)
§  Suppose process switch time is 1ms
§  Run each process for 4ms

⇒ 20% of system time spent in scheduler !
§  Run each process for 100ms

50 jobs ⇒ response time up to 5 seconds !

§  Tradeoff: response time vs. scheduling overhead

23

spcl.inf.ethz.ch
@spcl_eth

Batch-oriented scheduling

24

2/26/2014	

5	

spcl.inf.ethz.ch
@spcl_eth

Batch scheduling: why bother?
§  Mainframes are sooooo 1970!
§  But:

§  Most systems have batch-like background tasks
§  Yes, even phones are beginning to.
§  CPU bursts can be modeled as batch jobs
§  Web services are request-based

25

spcl.inf.ethz.ch
@spcl_eth

Process	 Execu<on	
<me	

A	 24	

B	 3	

C	 3	

First-come first-served

§  Simplest algorithm!

§  Example:
§  Waiting times: 0, 24, 27
§  Avg. = (0+24+27)/3

 = 17

§  But..

B	 C	 A	

0	 24	 27	 30	

26

spcl.inf.ethz.ch
@spcl_eth

§  Different arrival order

§  Example:
§  Waiting times: 6, 0, 3
§  Avg. = (0+3+6)/3 = 3

§  Much better ☺
§  But unpredictable !

First-come first-served

B	 C	 A	

0	 3	 6	 30	

Process	 Execu<on	
<me	

A	 24	

B	 3	

C	 3	

27

spcl.inf.ethz.ch
@spcl_eth

Convoy phenomenon
§  Short processes back up behind long-running processes

§  Well-known (and widely seen!) problem
§  Famously identified in databases with disk I/O
§  Simple form of self-synchronization

§  Generally undesirable…

§  FIFO used for, e.g. memcached

28

spcl.inf.ethz.ch
@spcl_eth

Shortest-Job First

§  Always run process with
the shortest execution time.

§  Optimal: minimizes waiting
time (and hence turnaround
time)

Process	 Execu<on	
<me	

A	 6	

B	 8	
C	 7	
D	 3	

D	 A	 C	 B	

29

spcl.inf.ethz.ch
@spcl_eth

Optimality
§  Consider n jobs executed in sequence, each with processing

time ti, 0 < i < n

§  Mean turnaround time is:

§  Minimized when shortest job is first

§  E.g., for 4 jobs:

∑
−

=

⋅−=
1

0
)(1.

n

i
itin

n
Avg

4
)234(3210 tttt +++

30

2/26/2014	

6	

spcl.inf.ethz.ch
@spcl_eth

Execution time estimation
§  Problem: what is the execution time?

§  For mainframes, could punt to user
§  And charge them more if they were wrong

§  For non-batch workloads, use CPU burst times
§  Keep exponential average of prior bursts

§  cf., TCP RTT estimator

§  Or just use application information
§  Web pages: size of web page

nnn t ταατ ⋅−+⋅=+)1(1

31

spcl.inf.ethz.ch
@spcl_eth

§  Problem: jobs arrive all the time

§  “Shortest remaining time next”
§  New, short jobs may preempt longer jobs already running

§  Still not an ideal match for dynamic, unpredictable workloads
§  In particular, interactive ones

SJF & preemption

32

spcl.inf.ethz.ch
@spcl_eth

Scheduling interactive loads

33

spcl.inf.ethz.ch
@spcl_eth

§  Simplest interactive algorithm
§  Run all runnable tasks for fixed quantum in turn

§  Advantages:
§  It’s easy to implement
§  It’s easy to understand, and analyze
§  Higher turnaround time than SJF, but better response

§  Disadvantages:
§  It’s rarely what you want
§  Treats all tasks the same

Round-robin

34

spcl.inf.ethz.ch
@spcl_eth

§  Very general class of scheduling algorithms

§  Assign every task a priority

§  Dispatch highest priority runnable task

§  Priorities can be dynamically changed

§  Schedule processes with same priority using
§  Round Robin
§  FCFS
§  etc.

Priority

35

spcl.inf.ethz.ch
@spcl_eth

Priority queues

Priority 100

Priority 4

Priority 3

Priority 2

Priority 1 T

T

T T

T T T

T

T

Runnable tasks

P
rio

rit
y

…

36

2/26/2014	

7	

spcl.inf.ethz.ch
@spcl_eth

§  Can schedule different priority levels differently:
§  Interactive, high-priority: round robin
§  Batch, background, low priority: FCFS

§  Ideally generalizes to hierarchical scheduling

Multi-level queues

37

spcl.inf.ethz.ch
@spcl_eth

Starvation
§  Strict priority schemes do not guarantee progress for all tasks

§  Solution: Ageing
§  Tasks which have waited a long time are gradually increased in priority
§  Eventually, any starving task ends up with the highest priority
§  Reset priority when quantum is used up

38

spcl.inf.ethz.ch
@spcl_eth

§  Idea: penalize CPU-bound tasks to benefit I/O bound tasks
§  Reduce priority for processes which consume their entire quantum
§  Eventually, re-promote process
§  I/O bound tasks tend to block before using their quantum ⇒ remain at high

priority

§  Very general: any scheduling algorithm can reduce to this
(problem is implementation)

Multilevel Feedback Queues

39

spcl.inf.ethz.ch
@spcl_eth

Example: Linux o(1) scheduler
§  140 level Multilevel Feedback Queue

§  0-99 (high priority):
static, fixed, “realtime”
FCFS or RR

§  100-139: User tasks, dynamic
Round-robin within a priority level
Priority ageing for interactive (I/O intensive) tasks

§  Complexity of scheduling is independent of no. tasks
§  Two arrays of queues: “runnable” & “waiting”
§  When no more task in “runnable” array, swap arrays

40

spcl.inf.ethz.ch
@spcl_eth

Example: Linux “completely fair scheduler”
•  Task’s priority = how little progress it has made

–  Adjusted by fudge factors over time

•  Implementation uses Red-Black tree
–  Sorted list of tasks
–  Operations now O(log n), but this is fast

•  Essentially, this is the old idea of “fair queuing” from packet
networks
–  Also called “generalized processor scheduling”
–  Ensures guaranteed service rate for all processes
–  CFS does not, however, expose (or maintain) the guarantees

41

spcl.inf.ethz.ch
@spcl_eth

Problems with UNIX Scheduling
§  UNIX conflates protection domain and resource principal

§  Priorities and scheduling decisions are per-process

§  However, may want to allocate resources across processes, or
separate resource allocation within a process
§  E.g., web server structure

Multi-process
Multi-threaded
Event-driven

§  If I run more compiler jobs than you, I get more CPU time

§  In-kernel processing is accounted to nobody

42

2/26/2014	

8	

spcl.inf.ethz.ch
@spcl_eth

Resource Containers [Banga et al., 1999]
New OS abstraction for explicit resource management, separate

from process structure
§  Operations to create/destroy, manage hierarchy, and associate

threads or sockets with containers
§  Independent of scheduling algorithms used
§  All kernel operations and resource usage accounted to a

resource container

⇒  Explicit and fine-grained control over resource usage
⇒  Protects against some forms of DoS attack

§  Most obvious modern form: virtual machines

43

spcl.inf.ethz.ch
@spcl_eth

Real Time

44

spcl.inf.ethz.ch
@spcl_eth

Real-time scheduling
§  Problem: giving real time-based guarantees to tasks

§  Tasks can appear at any time
§  Tasks can have deadlines
§  Execution time is generally known
§  Tasks can be periodic or aperiodic

§  Must be possible to reject tasks which are unschedulable, or
which would result in no feasible schedule

45

spcl.inf.ethz.ch
@spcl_eth

Example: multimedia scheduling

46

spcl.inf.ethz.ch
@spcl_eth

Rate-monotonic scheduling
§  Schedule periodic tasks by always running task with shortest

period first.
§  Static (offline) scheduling algorithm

§  Suppose:
§  m tasks
§  Ci is the execution time of i’th task
§  Pi is the period of i’th task

§  Then RMS will find a feasible schedule if:

§  (Proof is beyond scope of this course)

)12(
1

1
−≤∑

=

m
m

i i

i m
P
C

47

spcl.inf.ethz.ch
@spcl_eth

Earliest Deadline First
§  Schedule task with earliest deadline first (duh..)

§  Dynamic, online.
§  Tasks don’t actually have to be periodic…
§  More complex - O(n) – for scheduling decisions

§  EDF will find a feasible schedule if:

§  Which is very handy. Assuming zero context switch time…

1
1

≤∑
=

m

i i

i

P
C

48

2/26/2014	

9	

spcl.inf.ethz.ch
@spcl_eth

Guaranteeing processor rate
§  E.g. you can use EDF to guarantee a rate of progress for a long-

running task
§  Break task into periodic jobs, period p and time s.
§  A task arrives at start of a period
§  Deadline is the end of the period

§  Provides a reservation scheduler which:
§  Ensures task gets s seconds of time every p seconds
§  Approximates weighted fair queuing

§  Algorithm is regularly rediscovered…

49

spcl.inf.ethz.ch
@spcl_eth

Multiprocessor Scheduling

50

spcl.inf.ethz.ch
@spcl_eth

Challenge 1: sequential programs on multiprocessors

§  Queuing theory ⇒ straightforward, although:
§  More complex than uniprocessor scheduling
§  Harder to analyze

Task queue

Core 0

Core 1

Core 2

Core 3

But…

51

spcl.inf.ethz.ch
@spcl_eth

It’s much harder
§  Overhead of locking and sharing queue

§  Classic case of scaling bottleneck in OS design

§  Solution: per-processor scheduling queues

Core 0

Core 1

Core 2

Core 3

In practice, each
is more complex

e.g. MFQ

52

spcl.inf.ethz.ch
@spcl_eth

It’s much harder
§  Threads allocated arbitrarily to cores

⇒ tend to move between cores
⇒ tend to move between caches
⇒  really bad locality and hence performance

§  Solution: affinity scheduling
§  Keep each thread on a core most of the time
§  Periodically rebalance across cores
§  Note: this is non-work-conserving!

§  Alternative: hierarchical scheduling (Linux)

53

spcl.inf.ethz.ch
@spcl_eth

Challenge 2: parallel applications
§  Global barriers in parallel applications ⇒

One slow thread has huge effect on performance
§  Corollary of Amdahl’s Law

§  Multiple threads would benefit from cache sharing

§  Different applications pollute each others’ caches

§  Leads to concept of “co-scheduling”
§  Try to schedule all threads of an application together

§  Critically dependent on synchronization concepts

54

2/26/2014	

10	

spcl.inf.ethz.ch
@spcl_eth

Multicore scheduling
§  Multiprocessor scheduling is two-dimensional

§  When to schedule a task?
§  Where (which core) to schedule on?

§  General problem is NP hard !

§  But it’s worse than that:
§  Don’t want a process holding a lock to sleep
⇒ Might be other running tasks spinning on it

§  Not all cores are equal

§  In general, this is a wide-open research problem

55

spcl.inf.ethz.ch
@spcl_eth

Little’s Law
§  Assume, in a train station:

§  100 people arrive per minute
§  Each person spends 15 minutes in the station
§  How big does the station have to be (house how many people)

§  Little’s law: “The average number of active tasks in a system is
equal to the average arrival rate multiplied by the average time a
task spends in a system”

56

