ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00j
Chapter 2: Processes

F SOMEONE STEALS MY LAPTOP WHLE IM
LOGGED N, THEY CAN RERD M EHAIL, TRKE MY
MONEY AND IMPERSONATE. ME. TO MY FRENDS,
BUT AT LEAST THEY (ANT PSTALL.
DRIVERS WITHOUT MY PERMISSION.

© source: xkcd.com

2/20/2014

Last time: introduction

* Introduction: Why?

* Roles of the OS
* Referee
« lllusionist
* Glue

« Structure of an OS

A pstintathzch
Y N\r g @speLemn

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

Entering and exiting the kernel

When is the kernel entered?

= System Startup

= Exception: caused by user program

= Interrupt: caused by “something else”
= System calls

= Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)
Division by zero

Fork

Incoming network packet

Segmentation violation

Read

Keyboard input

A pstintathzch
Y Y A @spcleth

Recall: System Calls

= RPC to the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

User process }_>‘ Execute ‘ Process resumes
runs syscall
\ User mode

\ Privileged mode
Execute kernel
code

Systemcalls &

spintethz.ch
W @spol_eth

2/20/2014

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

= Passed in processor registers

= Stored in memory (address (pointer) in register)
= Pushed on the stack

= System library (libc) wraps as a C function
= Kernel code wraps handler as C call

YD Tan

When is the kernel exited?

= Creating a new process
= Including startup

= Resuming a process after a trap
= Exception, interrupt or system call

= User-level upcall
= Much like an interrupt, but to user-level

= Switching to another process

A, Spslinattich
Y Ax o @spcletn

Processes

I e
Process concept
“The execution of a program with restricted rights”

= Virtual machine, of sorts

= On older systems:
= Single dedicated processor
= Single address space
= System calls for OS functions

= In software:
computer system = (kernel + processes)

A, pslinattich
Y Y A @speleth

Process ingredients

= Virtual processor
= Address space
= Registers
= Instruction Pointer / Program Counter

= Program text (object code)
= Program data (static, heap, stack)
= OS “stuff”:

= Open files, sockets, CPU share,
= Security rights, etc.

YD Tan

Process address space

Should look
familiar ...

7FFFFFFF

Stack

(addresses are examples: some
machines used the top address
bit to indicate kernel mode)

BSS

Data

Text

00000000

2/20/2014

Process lifecycle

created
preemption

runnable
(ready)

/0
completes

operation

blocked

o0 terminated
(waiting)

4

Multiplexing

= OS time-division multipl pr
= Or space-division on multiprocessors

= Each process has a Process Control Block
= In-kernel data structure
= Holds all virtual processor state
Identifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, efc.

I G

A, Spslinattich
N T Nr o @spelotn

Process control block

@

o

5

o« Stack £

8 @

5 £

° ©

; @ g (other

8 =~ kernel

<4 data

a structures)
BSS

Process

Dala Control
Text Block

YD Tan

Process switching
Process A Kernel Process B
[Process A executes]

Save state to PCB(A)

[Kernel executes]

Time

Restore from PCB(B)

[Process B executes]

Save state to PCB(B)

[Kernel executes]

Restore from PCB(A)

U[I’T(:ess Aexecutes]

Process Creation

pA
Process Creation

= Bootstrapping problem. Need:
= Code to run
= Memory to runiitin
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

I G

A i

eth

A

2/20/2014

splintethzch
W @spol_eth

Process creation on Windows
Did it work?

BOOL CreateProcess (

Moral: the parameter space is large! ‘

in_opt LPCTSTR ApplicationName,
inout_opt LPTSTR CommandLine, :I' What to run?
in_opt LPSECURITY_ATTRIBUTES ProcessAttributes,
in_opt LPSECURITY_ATTRIBUTES ThreadAttributes, What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags,
in_opt LPVOID Environment,
in_opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS_INFORMATION ProcessInformation
)i
\ The result

Unix fork () and exec ()

Dramatically simplifies creating processes:
1. fork(): creates “child” copy of calling process

2. exec():replaces text of calling process with a new program

3. Thereis no “CreateProcess()”.

Unix is entirely constructed as a family tree of such processes.

20

I

4

splintethzch
W @spol_eth

NP RO ST WD S U T Come |
17 B Tabinfinit
1 437 43% 4367 -1 upstart-udev-bridge --daemon
PoE s B ES o
@ g 4 a7 S
& w n 90 a5 e
1 657 657 6577 -1 5s dd ‘proc/kmsg of =/var/run/rsyslog/k|
Dot o o B Teutiond o4
b o e e 1% ddaon —eusten ~fork
177 7 S i —danoncus Exercise:
mos o L atierioner REnili
T . o/ Libmal mald-addon- i1kl
853 1045 73 BL? _ Zusr/lib/hal/hal n-leds worl OUt ow
& 10 7 A2 i Lib/mal/hald-addon-geneic f
R i addon-storage; polling /oea/sd to do this on
G5 e i 70 2 bl st Listening on /.
& o oo 200 Jusr/Libmal/hald-adson coutres your
G5 wol 7 7o 000\ hald-addontoepi: Tistening on sopid .
o 70 Ti00 a Netuorihanzoer
740 1463 146 740 7 _ /sbin/dhclient -d -sf /usr/1ib/NetuorkM| favourlte
m O - a-binary i i
75 T P o/ stpple-slave ——display Unix or Linux
i 1107 o or R st/ 0 b —oerbose —aith 4 -
751 751 2 A usr/1ib/gdu/adu-session-uorker machine...
e 1w o 1 " aponessession
P 2 o e in/ssh-agent. /use/bin
144 146 7 s X2 A/ seanoreesgans
i 10 o \” i .
g o 1 N e vt peel, —
i3 1t 0 . o 1 e e feenfoin
1354 184 7 35 i N e oindanieu:
el 3% i p—
6 17 3% -ty
e im0 3% i -
e 3% i N oo N
e im0 B X7 Al ib/poticukitt-anonet
o L 37 bluctoothiappiat
e 1w BT " updbteotifier —startup-d|
i 3% o o 2 b Jusr bare7soseenes =
el B X2 R shianone-diskouti vy
263/ arch/s/103>

Fork in action

Return code from
fork() tells you
whether you're in the
parent or child
(c.f. setimp())

pid_t p = fork();
if (p<0) {
// Error..
exit(-1);
} else if (p ==0) {
// We’'re in the child
execlp (“/bin/1s”, “1s”, NULL);
} else {
// We’re a parent.
// p is the pid of the child
wait (NULL) ;
exit(0) ;

Child process can't
actually be cleaned
up until parent
“waits” for it.

22

WX; spel.inf. g;r;

z.ch
oth

I

splintethzch
W @spol_eth

Process state diagram for Unix

preemption

runnable -

(ready)

forked

/0

completes' pbperation

blocked

(waiting)
Dead

(and gone)

It really is
called a
Zombie

“undead”

parent
calls wait()

4

Kernel Threads

A

2/20/2014

splintethzch
W @spol_eth

How do threads fit in?

= |t depends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
* MuchasinaJVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

26

splintethzch
W @spol_eth

A, Spslinattich
N T Nr o @spelotn

Process switching

Process A Kernel

[Process A executes]

Save state to PCB(A)

What's
happening
here?

Time

Restore from PCB(B)

Process B

Athread?

[Process B execute:

Save state to PCB(B)

[Kernel executes]

Restore from PCB(A)

[Process A executes]

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design
= Q. On which thread does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!

= Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

28

A

splintethzch
W @spol_eth

Process switching revisited

Kernel stack A Kernel stack B
Kernel stack 0

Process A

Save to PCB(A)

Decide to
switch
process

For a kernel with
multiple kernel
stacks

Pick
process to run

With cleverness,
can sometimes
run scheduler on
current process’
kernel stack.

Process B

4

System Calls in more detail

= We can now say in more detail what happens during a system

call

. Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

30

2/20/2014

I G

4

Performing a system call System calls in the kernel
In user space:
1. Marshall the arguments somewhere safe - Kernel entered at fixed address
2. Saves registers . Privileged mode is set
3. Loads system call number . Need to call the right function and return, so:
4. Executes SYSCALL instruction 1. Save user stack pointer and return address
(or SYSENTER, or INT 0x80, or..) — Inthe Process Control Block
5. And? 2. Load SP for this process’ kernel stack
3. Create a C stack frame on the kernel stack
4. Look up the syscall number in a jump table
5. Call the function (e.g. read (), getpid (), open(), etc.)

W @spol_eth

T e I wEm2

Returning in the kernel

= When function returns:
1. Load the user space stack pointer
2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary
3. Execute “syscall return” instruction
- Result is execution back in user space, on user stack. User-space threads
. Alternatively, can do this to a different process...

I G

4

From now on assume: What are the options?
= Previous example was Unix 6" Edition: 1. Implement threads within a process
= Which had no threads per se, only processes 2 Multiple kernel threads in a process

= ie. P K | stack .
6. Frocess < Kernel stac 3. Some combination of the above

= From now on, we’ll assume:
= Multiple kernel threads per CPU . and other more unusual cases we won't talk about...
= Efficient kernel context switching

= How do we implement user-visible threads?

spintethz.ch
W @spol_eth

2/20/2014

splintethzch
W @spol_eth

Many-to-one threads

= Early “thread libraries”
= Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
= No kernel support required
= Also (confusingly) “Lightweight Processes”

Many-to-one threads

B ;/;j‘gig‘%; 3

Kernel

38

A, Spslinattich
Y Ax o @spcletn

splintethzch
W @spol_eth

Address space layout for user level threads

Thread 1 stack

L1

» T

/ Thread 3 stack
Thread 2 stack

Stack

Just
ESS allocate BSS
Data on the Data
heap
Text Text

One-to-one user threads

= Every user thread is/has a kernel thread.
= Equivalent to:

= multiple processes sharing an address space

= Except that “process” now refers to a group of threads
= Most modern OS threads packages:

= Linux, Solaris, Windows XP, MacOSX, etc.

40

splintethzch
W @spol_eth

A, pslinattich
Y Y A @speleth

One-to-one threads

;@‘@‘;;;

User

Kernel

One-to-one user threads

Thread 1 stack

1

Thread 2 stack
1l =8
» Thread 3 stack

Stack

L1
BSS BSS
Data Data
Text Text

42

spintethz.ch
W @spol_eth

2/20/2014

Comparison

User-level threads

= Cheap to create and
destroy

= Fast to context switch

= Can block entire process

= Not just on system calls

One-to-one threads

= Memory usage (kernel
stack)

= Slow to switch
= Easier to schedule
= Nicely handles blocking

Many-to-many threads

REIZIRES

Kernel

spintethz.ch
W @spol_eth

YD Tan

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Only way to go for a multiprocessor
= |.e. pretty much everything these days
= Can “pin” user thread to kernel thread for performance/
predictability

= Thread migration costs are “interesting”...

44

YD Tan

Next week

= Synchronisation:

= How to implement those useful primitives
= Interprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

46

