2/20/2014

spcl.inf.ethz.ch

ETHziirich > Y @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252 -0062-00j
Chapter 2: Processes

IF SOMEONE STEALS MY LAPTOP WHILE M 1: 4
(OGGED IN, THEY CAN RERD MY EMAIL, TRKE MY
MONEY, AND |MPERSONATE ME TO MY FRIENDS,
BUT AT LEAST THEY CAN'T INSTALL
DRIVERS WITHOUT MY PERMISSION.

© source: xkcd.com

spcl.inf.ethz.ch

ETHziirich > Y @spcl_eth

Last time: introduction

* Introduction: Why?

* Roles of the OS
* Referee
* lllusionist
* Glue

e Structure of an OS

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Entering and exiting the kernel

2/20/2014

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

When is the kernel entered?

= System Startup

= Exception: caused by user program

= Interrupt: caused by “something else”
= System calls

= Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)
= Division by zero
= Fork
* Incoming network packet
= Segmentation violation
= Read
= Keyboard input

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Recall: System Calls

= RPC to the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

Process resumes

/ User mode

Privileged mode
Execute kernel

code

User process Execute
B —
runs syscall

Systemcalls 6

2/20/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

Passed in processor registers
Stored in memory (address (pointer) in register)
Pushed on the stack

System library (libc) wraps as a C function
Kernel code wraps handler as C call

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

When is the kernel exited?

Creating a new process
= Including startup

Resuming a process after a trap
= Exception, interrupt or system call

User-level upcall
= Much like an interrupt, but to user-level

Switching to another process

2/20/2014

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Processes

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Process concept

“The execution of a program with restricted rights”
= Virtual machine, of sorts

= On older systems:
= Single dedicated processor
= Single address space
= System calls for OS functions

= |n software:
computer system = (kernel + processes)

2/20/2014

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Process ingredients

= Virtual processor
= Address space
= Registers
= [Instruction Pointer / Program Counter

= Program text (object code)
= Program data (static, heap, stack)
= OS “stuff”:

= Open files, sockets, CPU share,
= Security rights, etc.

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Process address space

7EEEFFFF Should look
familiar ...

Stack

(addresses are examples: some
machines used the top address
bit to indicate kernel mode)

BSS
Data

Text

00000000

2/20/2014

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Process lifecycle

created
preemption

runnable
(ready)

running

dispatch

blocked
(waiting)

I/0
completes

operation
terminated

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Multiplexing

= OS time-division multiplexes processes
= Or space-division on multiprocessors

= Each process has a Process Control Block
= In-kernel data structure
= Holds all virtual processor state
Identifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, etc.

2/20/2014

2/20/2014

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Process control block

(0]

o

2 >

o Stack g

a [0}

2 £

© —

e} (0]

; @ QE, (other

Q =~ kernel

o data

o structures)
BSS

Process

Data Control
Text Block

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Process switching

Process A Kernel Process B

[Process A executes]

N Save state to PCB(A) ‘

[Kernel executes]

v

‘ Restore from PCB(B) %

Time

[Process B executes]

| Save state to PCB(B) +—

[Kernel executes]
y

/ Restore from PCB(A) |

mss A executes]
v

2/20/2014

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Process Creation

. . s spcl.inf.ethz.ch
ETHziirich @z W @spcl_eth

Process Creation

= Bootstrapping problem. Need:
= Code to run
= Memory to run it in
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

2/20/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Process creation on Windows
/ Did it work?

BOOL CreateProcess (

in opt LPCTSTR ApplicationName,
in;ut_opt LPTSTR CommandLine, What to run?
in opt LPSECURITY_ ATTRIBUTES ProcessAttributes,
in opt LPSECURITY ATTRIBUTES ThreadAttributes, What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags,
in_opt LPVOID Environment,
in_opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS_INFORMATION ProcessInformation
)
\ The result

Moral: the parameter space is large!

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Unix fork () and exec ()

Dramatically simplifies creating processes:

1. fork(): creates “child” copy of calling process

2. exec():replaces text of calling process with a new program
3. Thereis no “CreateProcess ()”.

Unix is entirely constructed as a family tree of such processes.

20

10

ETHziirich
Unix as a process tree
PPID PID PGID SID TTY TPGID STAT ~ UID TIME COMMAND (Al
1 1 17? -1 8s 0 0:01 /sbin/init
1 437 436 436 ? -15 0 0:00 upstart-udev-bridge --daemon
1 439 433 433 7 -1 s 0 0:00 udevd --daemon
433 2095 433 439 ? -18¢< 0 0:00 N\ udevd --daemon
433 2096 433 439 ? -15< 0 0:00 N_ udevd --daemon
1 657 657 657 ? -1 Ss 0 0:00 dd bs=1 if=/proc/knsg of=/var/run/rsyslog/k
1 664 6539 653 7 -1 51 101 0:00 rsyslogd -c4
1 675 675 6757 -1 Ss 108 0:03 dbus-daemon --system --fork
729 745 745 745 ? -1 Ss 110 0300 M_ avahi-daemon: chroot helper . .
1073 73 7317 -15s 111 0:02 hald --daemon=yes Exercise:
731 853 731 73 ? 15§ 0 0:00 “_ hald-runner k h
853 1044 731 7317 -18 0 0:00 o Zusr/lib/hal/hald-addon-rfkill-kill
0953 1045 731 731 ? 18 0 0:00 Mo dusr/lib/hal shald-addon-leds wor OUt ow
853 10680 731 731 ? 18§ 0 0:00 M- fusr/lib/hal shald-addon-generic-bac, H
53 1074 73 73L? B 0 0:01 . hald-addon-storage: polling /dev/sd to do this on
853 1085 731 731 ? 15 0 0:00 _ hald-addon-input: Listening on /dev
853 1100 731 731 ? -15§ 0 0:00 S Ausr/lib/hal/hald-addon-cpufreq your
853 1101 731 731 ? 18§ 11 0:00 _ hald-addon-acpi: listening on acpid .
1 740 740 740 7 -1 8sl 0 0:02 NetworkManager favourlte
740 1463 1463 740 ? 18§ 0 0:00 N_ /sbin/dhelient -d -sf Zusr/1ib/NetworkM
1 751 751 7517 -1 8s 0 0:00 gdm-binary H H
750 885 751 7512 18 0 0300 _ /usr/lib/gdn/gdn-sinple-slave ~-display Unix or Linux
985 1102 1102 1102 tty? 1102 Rs+ 0 3:42 N Ausr/bin/i 10 -br -verbose -auth /v .
985 1346 751 751 ? -15 0 0:00 _ Zusr/1ib/gdn/gdn-session-uorker machlne. .
1346 1361 1361 1361 ? -1 Ssl 1000 0300 “_ gnome-session
1361 1413 1413 1413 ? -1 8s 1000 0:00 _ fusr/bin/ssh-agent Zusr/bin
1361 1446 1446 1446 7 -1 Ss 1000 0300 “_ Zusr/bin/seahorse-agent --e
1361 1783 1361 1361 ? 18§ 1000 0:00 _ /bindsh fusr/bin/compiz
1789 1904 1361 1361 ? -1R 1000 0:48 I N2 Ausr/bin/compiz,real --
1904 1984 1984 1984 ? -1 8s 1000 0:00 | M /bindsh —c Ausr/bin
1934 1985 1984 1984 ? -15 1000 0:11 | _ Zusr/bin/gtk-ui
1361 1905 1361 1361 ? 18 1000 0:16 _ ghome-panel
1361 1907 1361 1361 ? 18 1000 0:04 _ nautilus
1361 1912 1361 1361 ? 18 1000 0301 _ gnome-pouer-nanager
1361 1913 1361 1361 ? -1S1 1000 0:00 _ fusr/lib/evolution/2,28/evo
1361 1916 1361 1361 ? 18 1000 0:00 _ Ausr/lib/policykit-1-gnome/
1361 1917 1361 1361 7 18§ 1000 0300 _ bluetooth-applet
1361 1918 1361 1361 ? 15§ 1000 0301 _ update-notifier --startup-d—|
1361 1921 1361 1361 ? 15 1000 0300 S_ python Zusr/share/system E
1361 1931 1361 1361 7 18 1000 0:00 _ Ausr/lib/gnome-disk-utility| |
helene: ..ce-2,6,31/arch/x86/1a32> 29

ETHziirich

Fork in action

pid t p = fork();
if (p<0) {
// Error..
exit(-1);
} else if (p == 0) {
// We’'re in the child
execlp (“/bin/1s”, “1ls”,
} else {
// We're a parent.

wait (NULL) ;
exit(0) ;

NULL) ;

// p is the pid of the child

Return code from
fork() tells you
whether you're in the
parent or child
(c.f. setimp())

Child process can’t
actually be cleaned
up until parent
“waits” for it.

22

2/20/2014

11

2/20/2014

. ’ spcl.inf.ethz.ch
ETHziirich /@1 W @spcl_eth

Process state diagram for Unix

preemption

runnable -

It really is
called a
Zombie

forked

(ready)

110 110
completes Operation
blocked
Dead calls wait()
(and gone)

23

e ’ spclinf.ethz.ch
ETHziirich /@1 W @spcl_eth

Kernel Threads

24

12

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

How do threads fit in?

= |t depends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

25

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
= Much asina JVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

26

2/20/2014

13

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Process switching

Process A Kernel Process B

[Process A executes]

Save state to PCB(A) ‘

What's
happening
here?
Athread?

s]

Time

y

Restore from PCB(B) ‘;

[Process B executes

| Save state to PCB(B) +—

[Kernel executes]

/ Restore from PCB(A) |

mss A executes]
v

27

. T e spcl.inf.ethz.ch
ETHziirich ; /@1 W @spel_eth

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design
= Q. On which thread does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!

= Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

28

2/20/2014

14

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Process switching revisited

Process A Kernel stack A Kernel stack B| Process B
U\ Kernel stack 0
Save to PCB(A)
Decide to
switch
process
For a kernel with \ Pick
multiple kernel piocessiiojun S
witch to
stacks T~ woeh
stack B
, v
With cleverpess, Restore
can sometimes PCB(B)
run scheduler on —
current process’

kernel stack.

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

System Calls in more detail

" We can now say in more detail what happens during a system
call

" Precise details are very dependent on OS and hardware
= Linux has 3 different ways to do this for 32-bit x86 alone!

30

2/20/2014

15

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

Performing a system call

In user space:
1. Marshall the arguments somewhere safe
2. Saves registers
3. Loads system call number
4

Executes SYSCALL instruction
(or SYSENTER, or INT 0x80, or..)

5. And?

31

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

System calls in the kernel

= Kernel entered at fixed address
= Privileged mode is set
] Need to call the right function and return, so:
Save user stack pointer and return address
— In the Process Control Block
Load SP for this process’ kernel stack
Create a C stack frame on the kernel stack
Look up the syscall number in a jump table
Call the function (e.g. read (), getpid (), open (), etc.)

—_

ok wn

32

2/20/2014

16

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

Returning in the kernel

= When function returns:
1. Load the user space stack pointer
2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary
3. Execute “syscall return” instruction
] Result is execution back in user space, on user stack.

" Alternatively, can do this to a different process...

33

. s spcl.inf.ethz.ch
ETHziirich @z W @spel_eth

User-space threads

34

2/20/2014

17

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

From now on assume:

= Previous example was Unix 6t Edition:
= Which had no threads per se, only processes
= j.e. Process < Kernel stack

= From now on, we’ll assume:
= Multiple kernel threads per CPU

= Efficient kernel context switching

= How do we implement user-visible threads?

35

. Gl e spcl.inf.ethz.ch
ETHziirich /@1 W @spel_eth

What are the options?

1. Implement threads within a process
2. Multiple kernel threads in a process
3. Some combination of the above

] and other more unusual cases we won’t talk about...

36

2/20/2014

18

. ’ spcl.inf.ethz.ch
ETHziirich /@1 W @spcl_eth

Many-to-one threads

= Early “thread libraries”
= Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”

= No kernel support required
= Also (confusingly) “Lightweight Processes”

37

spcl.inf.ethz.ch

ETHziirich) Y @spcl_eth

Many-to-one threads

38

2/20/2014

19

ETHziirich

Address space layout for user level threads

spcl.inf.ethz.ch
¥ @spcl_eth

| Thread 1 stack

Stack =

» i)

Thread 3 stack

Thread 2 stack

Just
BSS allocate BSS
Data on the Data
heap
Text Text

39

ETHiirich s T

One-to-one user threads

= Every user thread is/has a kernel thread.
= Equivalent to:

= multiple processes sharing an address space

= Except that “process” now refers to a group of threads
= Most modern OS threads packages:

= Linux, Solaris, Windows XP, MacOSX, etc.

spcl.inf.ethz.ch

¥ @spcl_eth

40

2/20/2014

20

2/20/2014

e . spclinf.ethz.ch
ETHziirich pdﬁz W @spcl_eth

One-to-one threads

S S8 s

User

Kernel

41

e . spclinf.ethz.ch
ETHziirich)

¥ @spcl_eth

One-to-one user threads

| Thread 1 stack |
Stack =
| Thread 2 stack |

@ il
| Thread 3 stack |
1

T T

BSS BSS
Data Data
Text Text

42

21

2/20/2014

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Comparison

User-level threads One-to-one threads

= Cheap to create and = Memory usage (kernel
destroy stack)

= Fast to context switch = Slow to switch

= Can block entire process = Easier to schedule

= Not just on system calls = Nicely handles blocking

43

. S spcl.inf.ethz.ch
ETHziirich - /@1 W @spel_eth

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads

= Only way to go for a multiprocessor
= |.e. pretty much everything these days

= Can “pin” user thread to kernel thread for performance/
predictability

= Thread migration costs are “interesting”...

44

22

2/20/2014

. ’ spcl.inf.ethz.ch
ETHziirich) W @spcl_eth

Many-to-many threads

S8 S8 s

User

Kernel

45

e ’ spclinf.ethz.ch
ETHziirich) W @spcl_eth

Next week

= Synchronisation:

= How to implement those useful primitives
= Interprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

46

23

