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§  True or false (raise hand) 
§  Receiver side scaling randomizes on a per-packet basis 
§  Virtual machines can be used to improve application performance 
§  Virtual machines can be used to consolidate servers 
§  A hypervisor implements functions similar to a normal OS 
§  If a CPU is strictly virtualizable, then OS code execution causes nearly no 

overheads 
§  x86 is not strictly virtualizable because some instructions fail when 

executed in ring 1 
§  x86 can be virtualized by binary rewriting 
§  A virtualized host operating system can set the hardware PTBR 
§  Paravirtualization does not require changes to the guest OS 
§  A page fault with shadow page tables is faster than nested page tables 
§  A page fault with writeable page tables is faster than shadow page tables 
§  Shadow page tables are safer than writable page tables 
§  Shadow page tables require paravirtualization 

2 

Our Small Quiz 
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Memory allocation 
§  Guest OS is not expecting physical memory to change in size! 
§  Two problems:  

§  Hypervisor wants to overcommit RAM 
§  How to reallocate (machine) memory between VMs 

§  Phenomenon: Double Paging 
§  Hypervisor pages out memory 
§  GuestOS decides to page out physical frame 
§  (Unwittingly) faults it in via the Hypervisor, only to write it out again 
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Ballooning 
§  Technique to reclaim memory from a Guest 
§  Install a “balloon driver” in Guest kernel 

§  Can allocate and free kernel physical memory 
Just like any other part of the kernel 

§  Uses HyperCalls to return frames to the Hypervisor, and have them 
returned 
Guest OS is unware, simply allocates physical memory 
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Ballooning: taking RAM away from a VM 
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Guest physical address space 
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Returning RAM to a VM 

1.  VMM converts machine 
address into a physical 
address previously 
allocated by the balloon 
driver 

2.  VMM hands PFN to 
balloon driver 

3.  Balloon driver frees 
physical frame back to 
Guest OS kernel  
§  “deflates the balloon” Balloon 

Guest physical address space 

Balloon 
driver 
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Virtualizing Devices 
§  Familiar by now: trap-and-emulate 

§  I/O space traps 
§  Protect memory and trap 
§  “Device model”: software model of device in VMM 

§  Interrupts → upcalls to Guest OS 
§  Emulate interrupt controller (APIC) in Guest 
§  Emulate DMA with copy into Guest PAS 

§  Significant performance overhead! 
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Paravirtualized devices 
§  “Fake” device drivers which communicate efficiently with VMM 

via hypercalls 
§  Used for block devices like disk controllers 
§  Network interfaces 
§  “VMware tools” is mostly about these 

§  Dramatically better performance! 
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Networking 
§  Virtual network device in the Guest VM 
§  Hypervisor implements a “soft switch” 

§  Entire virtual IP/Ethernet network on a machine 
§  Many different addressing options 

§  Separate IP addresses 
§  Separate MAC addresses 
§  NAT 

§  Etc. 
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Where are the real drivers? 
1.  In the Hypervisor 

§  E.g. VMware ESX 
§  Problem: need to rewrite device drivers (new OS) 

2.  In the console OS 
§  Export virtual devices to other VMs 

3.  In “driver domains” 
§  Map hardware directly into a “trusted” VM  

Device Passthrough 
§  Run your favorite OS just for the device driver 
§  Use IOMMU hardware to protect other memory from driver VM 

4.  Use “self-virtualizing devices” 
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Xen 3.x Architecture 
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Remember this card? 
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SR-IOV 
§  Single-Root I/O Virtualization 
§  Key idea: dynamically create new “PCIe devices” 

§  Physical Function (PF): original device, full functionality 
§  Virtual Function (VF): extra “device”, limited funtionality 
§  VFs created/destroyed via PF registers 

§  For networking: 
§  Partitions a network card’s resources 
§  With direct assignment can implement passthrough 
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SR-IOV in action 
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Self-virtualizing devices 
§  Can dynamically create up to 2048  

distinct PCI devices on demand! 
§  Hypervisor can create a virtual NIC for each VM 
§  Softswitch driver programs “master” NIC to demux packets to each virtual 

NIC 
§  PCI bus is virtualized in each VM 
§  Each Guest OS appears to have “real” NIC, talks direct to the real 

hardware 
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Reliable Storage 
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Reliability and Availabilty 
A storage system is: 
§  Reliable if it continues to store data and can read and write it. 

⇒ Reliability: probability it will be reliable for some period of 
time 

§  Available if it responds to requests 
⇒ Availability: probability it is available at any given time 
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What goes wrong? 
1.  Operating interruption: Crash, power failure 

§  Approach: use transactions to ensure data is consistent 
§  Covered in the databases course 
§  See book for additional material 

2.  Loss of data: Media failure 
§  Approach: use redundancy to tolerate loss of media 
§  E.g. RAID storage 
§  Topic for today 
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File system transactions 
§  Not widely supported 
§  Only one atomic operation in POSIX:  

§  Rename 
§  Careful design of file system data structures 
§  Recovery using fsck 
§  Superceded by transactions 

§  Internal to the file system 
§  Exposed to applications 
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Media failures 1: Sector and page failures 
Disk keeps working, but a sector doesn’t 

§  Sector writes don’t work, reads are corrupted 
§  Page failure: the same for Flash memory 

 
Approaches: 
1.  Error correcting codes: 

§  Encode data with redundancy to recover from errors 
§  Internally in the drive 

2.  Remapping: identify bad sectors and avoid them 
§  Internally in the disk drive 
§  Externally in the OS / file system 
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Caveats 
§  Nonrecoverable error rates are significant 

§  And getting more so! 
§  Nonrecoverable error rates are not constant 

§  Affected by age, workload, etc. 
§  Failures are not independent 

§  Correlation in time and space 
§  Error rates are not uniform 

§  Different models of disk have different behavior over time 
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A well-respected disk available now from pcp.ch 
 
Seagate Barracuda 3TB,  
7200rpm, 64MB, 3TB, SATA-3 
 
Price this weekend: CHF 105.-  
                  (last year CHF 150,-) 
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Specifications  (from manufacturer’s website) 

Persistent 
errors that are 
not masked by 
coding inside 

the drive 
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Unrecoverable read errors 

Lots of assumptions: 
Independent errors, 

etc. 
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Media failures 2: Device failure 
§  Entire disk (or SSD) just stops working 

§  Note: always detected by the OS 
§  Explicit failure ⇒ less redundancy required 

§  Expressed as: 
§  Mean Time to Failure (MTTF) 

(expected time before disk fails) 
§  Annual Failure Rate = 1/MTTF 

(fraction of disks failing in a year) 
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Specifications  (from manufacturer’s website) 
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Caveats 
§  Advertised failure rates can be misleading 

§  Depend on conditions, tests, definitions of failure… 
§  Failures are not uncorrelated 

§  Disks of similar age, close together in a rack, etc. 
§  MTTF is not useful life! 

§  Annual failure rate only applies during design life! 
§  Failure rates are not constant 

§  Devices fail very quickly or last a long time 
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And Reality? 

(S.M.A.R.T – Self-Monitoring,  
Analysis, and Reporting Technology) 
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RAID 1: simple mirroring 

Disk 0 

Data block 0 
Data block 1 
Data block 2 
Data block 3 
Data block 4 
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Data block 9 
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Data block 0 
Data block 1 
Data block 2 
Data block 3 
Data block 4 
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Data block 8 
Data block 9 

Data block 10 
Data block 11 

… 

Writes go to 
both disks 

Reads from 
either disk 

(may be faster) 

Sector or whole 
disk failure ⇒ 

data can still be 
recovered 
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Parity disks and striping 

Disk 0 
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… 
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Parity disks 

High 
overhead for 
small writes 
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RAID5: Rotating parity 
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sequential access 
efficiency 
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Atomic update of data and parity 
What if system crashes in the middle? 
 
1.  Use non-volatile write buffer 
2.  Transactional update to blocks 
3.  Recovery scan 

§  And hope nothing goes wrong during the scan 
4.  Do nothing (seriously) 
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Recovery 
§  Unrecoverable read error on a sector: 

§  Remap bad sector 
§  Reconstruct contents from stripe and parity 

§  Whole disk failure: 
§  Replace disk 
§  Reconstruct data from the other disks 
§  Hope nothing else goes wrong… 
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Mean time to repair (MTTR) 
RAID-5 can lose data in three ways: 
1.  Two full disk failures 

(second while the first is recovering) 
2.  Full disk failure and sector failure on another disk 
3.  Overlapping sector failures on two disks 

§  MTTR: Mean time to repair 
§  Expected time from disk failure to when new disk is fully rewritten, often 

hours 
§  MTTDL: Mean time to data loss 

§  Expected time until 1, 2 or 3 happens 
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Analysis 
See the book for independent failures 
§  Key result: most likely scenario is #2. 
 
Solutions: 
1.  More redundant disks, erasure coding 
2.  Scrubbing 

§  Regularly read the whole disk to catch UREs early 
3.  Buy more expensive disks. 

§  I.e. disks with much lower error rates 
4.  Hot spares 

§  Reduce time to plug/unplug disk 
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The Future™ 
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What’s happening to hardware? 
§  Lots of cores (scaling, parallelism) 
§  Lots of different cores 
§  Complex memory hierarchies and interconnects 
§  Increasing diversity of machines 

§  Hardware is changing faster than system software can 
§  Faster devices (especially networks) 
§  … 
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Supercomputing 

Vectorization 

Multicore/SMP 

Heterogeneous Computing 

IEEE Floating Point 

Datacenter Networking/RDMA 

…. 
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Top 500 
§  A benchmark, solve Ax=b 

§  As fast as possible! à as big as possible J 
§  Reflects some applications, not all, not even many 
§  Very good historic data! 

§  Speed comparison for computing centers, states, countries, 
nations, continents ! 
§  Politicized (sometimes good, sometimes bad) 
§  Yet, fun to watch 
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www.top500.org 

IDC, 2009: “expects the  
HPC technical server  
market to  grow at a  
healthy 7% to 8% yearly  
rate to reach revenues  
of $13.4 billion by 2015.” 
 
“The non-HPC portion of  
the server market was  
actually down 20.5 per  
cent, to $34.6bn” 

The November 2013 List 
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How to communicate? 
§  Communication is  

key in problem  
solving ☺ 
§  Not just 

relationships! 
§  Also scientific 

computations 

Source: top500.org 
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§  Remember that guy? 
§  2x2x40 Gb/s  à ~20 GB/s 
§  Memory bandwidth: ~60 GB/s 
§  1.5 copies L 

§  Solution: 
§  RDMA, similar to DMA 
§  OS too expensive, bypass 
§  Communication offloading 

Remote Direct Memory Access 
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§  Components:  
§  Links/Channel adaptors 
§  Switches/Routers 

§  Routing is supported but rarely used, most IB networks are 
“LANs” 

§  Supports arbitrary topologies 
§  “Typical” topologies: fat tree, torus, islands 

§  Link speed (all 4x): 
§  Single data rate (SDR): 10 Gb/s 
§  Double data rate (DDR): 20 Gb/s 
§  Quad data rate (QDR): 40 Gb/s 
§  Fourteen data rate (FDR): 56 Gb/s 
§  Enhanced data rate (EDR): 102 Gb/s 

 
 

InfiniBand Overview 
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InfiniBand Network Structure 

Source: IBA Spec 
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§  No spanning tree protocol, allows parallel links&loops, 
initialization phases: 
§  Topology discovery: discovery MADs 
§  Path computation: MinHop, …, DFSSSP 
§  Path distribution phase: Configure routing tables 

§  Problem: how to generate paths? 
§  MinHop == OSPF 
§  Potentially bad bandwidth allocation! 
 

InfiniBand Subnet Routing 
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Interaction with IB HCAs 
§  Systems calls only for setup: 

§  Establish connection, register memory 
§  Communication (send/recv, put, get, atomics) 

all in user-level! 
§  Through “verbs” interface 

InfiniBand Device (HCA) 

Send Recv 
QP 

CQ 
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Open Fabrics Stack 
§  OFED offers a unified programming interface 

§  Cf. Sockets 
§  Originated in IB verbs 
§  Direct interaction with device 
§  Direct memory exposure  

Requires page pinning (avoid OS interference) 
§  Device offers 

§  User-level driver interface 
§  Memory-mapped registers 
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iWARP and RoCE 
§  iWARP: RDMA over TCP/IP 

§  Ups: 
Routable with existing infrastructure 
Easily portable  (filtering, etc.) 

§  Downs: 
Higher latency (complex TOE) 
Higher complexity in NIC 
TCP/IP is not designed for datacenter networks 

§  RoCE: RDMA over Converged Ethernet 
§  Data-center Ethernet! 
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Student Cluster Competition 

§  5 undergrads, 1 advisor, 1 cluster, 2x13 amps 
§  8 teams, 4 continents @SC13 
§  48 hours, five applications, non-stop! 
§  top-class conference 

§  Lots of fun 
§  Even more  

experience! 
§  A Swiss team 2015? 

§  Search for “Student  
Cluster Challenge” 

§  HPC-CH may help 
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Finito 
§  Thanks for being such fun to teach ☺ 

§  Comments (also anonymous) are always appreciated! 
§  If you are interested in parallel  

computing research, talk to me! 
§  Large-scale (datacenter) systems 
§  Parallel computing (SMP and MPI) 
§  GPUs (CUDA and stuff) 
§  … on twitter: @spcl_eth J 

Thanks to Timothy Roscoe for many slides! 


