
spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)‏
Chapter 12: Reliable Storage & The Future

spcl.inf.ethz.ch
@spcl_eth

§  True or false (raise hand)
§  Receiver side scaling randomizes on a per-packet basis
§  Virtual machines can be used to improve application performance
§  Virtual machines can be used to consolidate servers
§  A hypervisor implements functions similar to a normal OS
§  If a CPU is strictly virtualizable, then OS code execution causes nearly no

overheads
§  x86 is not strictly virtualizable because some instructions fail when

executed in ring 1
§  x86 can be virtualized by binary rewriting
§  A virtualized host operating system can set the hardware PTBR
§  Paravirtualization does not require changes to the guest OS
§  A page fault with shadow page tables is faster than nested page tables
§  A page fault with writeable page tables is faster than shadow page tables
§  Shadow page tables are safer than writable page tables
§  Shadow page tables require paravirtualization

2

Our Small Quiz

spcl.inf.ethz.ch
@spcl_eth

Memory allocation
§  Guest OS is not expecting physical memory to change in size!
§  Two problems:

§  Hypervisor wants to overcommit RAM
§  How to reallocate (machine) memory between VMs

§  Phenomenon: Double Paging
§  Hypervisor pages out memory
§  GuestOS decides to page out physical frame
§  (Unwittingly) faults it in via the Hypervisor, only to write it out again

spcl.inf.ethz.ch
@spcl_eth

Ballooning
§  Technique to reclaim memory from a Guest
§  Install a “balloon driver” in Guest kernel

§  Can allocate and free kernel physical memory
Just like any other part of the kernel

§  Uses HyperCalls to return frames to the Hypervisor, and have them
returned
Guest OS is unware, simply allocates physical memory

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.  VMM asks balloon driver
for memory

2.  Balloon driver asks
Guest OS kernel for more
frames
§  “inflates the balloon”

3.  Balloon driver sends
physical frame numbers
to VMM

4.  VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.  VMM asks balloon driver
for memory

2.  Balloon driver asks
Guest OS kernel for more
frames
§  “inflates the balloon”

3.  Balloon driver sends
physical frame numbers
to VMM

4.  VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.  VMM asks balloon driver
for memory

2.  Balloon driver asks
Guest OS kernel for more
frames
§  “inflates the balloon”

3.  Balloon driver sends
physical frame numbers
to VMM

4.  VMM translates into
machine address and
claims the frames

Balloon

Guest physical address space

Physical
memory

claimed by
balloon driver

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Ballooning: taking RAM away from a VM

1.  VMM asks balloon driver
for memory

2.  Balloon driver asks
Guest OS kernel for more
frames
§  “inflates the balloon”

3.  Balloon driver sends
physical frame numbers
to VMM

4.  VMM translates into
machine addresses and
claims the frames

Balloon

Guest physical address space

Physical
memory

claimed by
balloon driver

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Returning RAM to a VM

1.  VMM converts machine
address into a physical
address previously
allocated by the balloon
driver

2.  VMM hands PFN to
balloon driver

3.  Balloon driver frees
physical frame back to
Guest OS kernel
§  “deflates the balloon” Balloon

Guest physical address space

Balloon
driver

spcl.inf.ethz.ch
@spcl_eth

Virtualizing Devices
§  Familiar by now: trap-and-emulate

§  I/O space traps
§  Protect memory and trap
§  “Device model”: software model of device in VMM

§  Interrupts → upcalls to Guest OS
§  Emulate interrupt controller (APIC) in Guest
§  Emulate DMA with copy into Guest PAS

§  Significant performance overhead!

spcl.inf.ethz.ch
@spcl_eth

Paravirtualized devices
§  “Fake” device drivers which communicate efficiently with VMM

via hypercalls
§  Used for block devices like disk controllers
§  Network interfaces
§  “VMware tools” is mostly about these

§  Dramatically better performance!

spcl.inf.ethz.ch
@spcl_eth

Networking
§  Virtual network device in the Guest VM
§  Hypervisor implements a “soft switch”

§  Entire virtual IP/Ethernet network on a machine
§  Many different addressing options

§  Separate IP addresses
§  Separate MAC addresses
§  NAT

§  Etc.

spcl.inf.ethz.ch
@spcl_eth

Where are the real drivers?
1.  In the Hypervisor

§  E.g. VMware ESX
§  Problem: need to rewrite device drivers (new OS)

2.  In the console OS
§  Export virtual devices to other VMs

3.  In “driver domains”
§  Map hardware directly into a “trusted” VM

Device Passthrough
§  Run your favorite OS just for the device driver
§  Use IOMMU hardware to protect other memory from driver VM

4.  Use “self-virtualizing devices”

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch
@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor
Event Channel Virtual MMU Virtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device
Manager &
Control s/w

Native
Device
Drivers

VM0

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

SMP
GuestOS
(XenLinux)

Unmodified
User

Software

Front-End
Device Drivers

VM2

Unmodified
GuestOS
(WinXP)

Unmodified
User

Software

Front-End
Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End
Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch
@spcl_eth

Remember this card?

spcl.inf.ethz.ch
@spcl_eth

SR-IOV
§  Single-Root I/O Virtualization
§  Key idea: dynamically create new “PCIe devices”

§  Physical Function (PF): original device, full functionality
§  Virtual Function (VF): extra “device”, limited funtionality
§  VFs created/destroyed via PF registers

§  For networking:
§  Partitions a network card’s resources
§  With direct assignment can implement passthrough

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe
IOMMU

VMM

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe
IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function Physical function

PCIe
IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function Physical function

PCIe
IOMMU

VMM

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function

Virtual
function Physical function

PCIe
IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

SR-IOV in action

SR-IOV NIC
Virtual ethernet bridge/switch, packet classifier

LAN

Virtual
function

Virtual
function

Virtual
function Physical function

PCIe
IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch
@spcl_eth

Self-virtualizing devices
§  Can dynamically create up to 2048

distinct PCI devices on demand!
§  Hypervisor can create a virtual NIC for each VM
§  Softswitch driver programs “master” NIC to demux packets to each virtual

NIC
§  PCI bus is virtualized in each VM
§  Each Guest OS appears to have “real” NIC, talks direct to the real

hardware

spcl.inf.ethz.ch
@spcl_eth

Reliable Storage

spcl.inf.ethz.ch
@spcl_eth

Reliability and Availabilty
A storage system is:
§  Reliable if it continues to store data and can read and write it.

⇒ Reliability: probability it will be reliable for some period of
time

§  Available if it responds to requests
⇒ Availability: probability it is available at any given time

spcl.inf.ethz.ch
@spcl_eth

What goes wrong?
1.  Operating interruption: Crash, power failure

§  Approach: use transactions to ensure data is consistent
§  Covered in the databases course
§  See book for additional material

2.  Loss of data: Media failure
§  Approach: use redundancy to tolerate loss of media
§  E.g. RAID storage
§  Topic for today

spcl.inf.ethz.ch
@spcl_eth

File system transactions
§  Not widely supported
§  Only one atomic operation in POSIX:

§  Rename
§  Careful design of file system data structures
§  Recovery using fsck
§  Superceded by transactions

§  Internal to the file system
§  Exposed to applications

spcl.inf.ethz.ch
@spcl_eth

What goes wrong?
1.  Operating interruption: Crash, power failure

§  Approach: use transactions to ensure data is consistent
§  Covered in the databases course
§  See book for additional material

2.  Loss of data: Media failure
§  Approach: use redundancy to tolerate loss of media
§  E.g. RAID storage
§  Topic for today

spcl.inf.ethz.ch
@spcl_eth

Media failures 1: Sector and page failures
Disk keeps working, but a sector doesn’t

§  Sector writes don’t work, reads are corrupted
§  Page failure: the same for Flash memory

Approaches:
1.  Error correcting codes:

§  Encode data with redundancy to recover from errors
§  Internally in the drive

2.  Remapping: identify bad sectors and avoid them
§  Internally in the disk drive
§  Externally in the OS / file system

spcl.inf.ethz.ch
@spcl_eth

Caveats
§  Nonrecoverable error rates are significant

§  And getting more so!
§  Nonrecoverable error rates are not constant

§  Affected by age, workload, etc.
§  Failures are not independent

§  Correlation in time and space
§  Error rates are not uniform

§  Different models of disk have different behavior over time

spcl.inf.ethz.ch
@spcl_eth

A well-respected disk available now from pcp.ch

Seagate Barracuda 3TB,
7200rpm, 64MB, 3TB, SATA-3

Price this weekend: CHF 105.-
 (last year CHF 150,-)

spcl.inf.ethz.ch
@spcl_eth

Specifications (from manufacturer’s website)

Persistent
errors that are
not masked by
coding inside

the drive

spcl.inf.ethz.ch
@spcl_eth

Unrecoverable read errors

Lots of assumptions:
Independent errors,

etc.

spcl.inf.ethz.ch
@spcl_eth

Media failures 2: Device failure
§  Entire disk (or SSD) just stops working

§  Note: always detected by the OS
§  Explicit failure ⇒ less redundancy required

§  Expressed as:
§  Mean Time to Failure (MTTF)

(expected time before disk fails)
§  Annual Failure Rate = 1/MTTF

(fraction of disks failing in a year)

spcl.inf.ethz.ch
@spcl_eth

Specifications (from manufacturer’s website)

spcl.inf.ethz.ch
@spcl_eth

Caveats
§  Advertised failure rates can be misleading

§  Depend on conditions, tests, definitions of failure…
§  Failures are not uncorrelated

§  Disks of similar age, close together in a rack, etc.
§  MTTF is not useful life!

§  Annual failure rate only applies during design life!
§  Failure rates are not constant

§  Devices fail very quickly or last a long time

spcl.inf.ethz.ch
@spcl_eth

And Reality?

(S.M.A.R.T – Self-Monitoring,
Analysis, and Reporting Technology)

spcl.inf.ethz.ch
@spcl_eth

Bathtub curve

Time

Fa
ilu

re
 ra

te

Advertised failure rate

Infant
mortality

Disk
wears out

5 years

0.34%
per
year

spcl.inf.ethz.ch
@spcl_eth

RAID 1: simple mirroring

Disk 0

Data block 0
Data block 1
Data block 2
Data block 3
Data block 4
Data block 5
Data block 6
Data block 7
Data block 8
Data block 9

Data block 10
Data block 11

…

Disk 1

Data block 0
Data block 1
Data block 2
Data block 3
Data block 4
Data block 5
Data block 6
Data block 7
Data block 8
Data block 9

Data block 10
Data block 11

…

Writes go to
both disks

Reads from
either disk

(may be faster)

Sector or whole
disk failure ⇒

data can still be
recovered

spcl.inf.ethz.ch
@spcl_eth

Parity disks and striping

Disk 0

Block 0
Block 4
Block 8

Block 12
Block 16
Block 20
Block 24
Block 28
Block 32
Block 36
Block 40
Block 44

…

Disk 1

Block 1
Block 5
Block 9

Block 13
Block 17
Block 21
Block 25
Block 29
Block 33
Block 37
Block 41
Block 45

…

Disk 2

Block 2
Block 6

Block 10
Block 14
Block 18
Block 22
Block 26
Block 30
Block 34
Block 38
Block 42
Block 46

…

Disk 3

Block 3
Block 7
Block 11
Block 15
Block 19
Block 23
Block 27
Block 31
Block 35
Block 39
Block 43
Block 47

…

Disk 4

Parity(0-3)
Parity(4-7)
Parity(8-11)

Parity(12-15)
Parity(16-19)
Parity(20-23)
Parity(24-27)
Parity(28-31)
Parity(32-35)
Parity(36-39)
Parity(40-43)
Parity(44-47)

…

spcl.inf.ethz.ch
@spcl_eth

Parity disks

High
overhead for
small writes

spcl.inf.ethz.ch
@spcl_eth

RAID5: Rotating parity

Disk 0

…

Block 32
Block 33
Block 34
Block 35

Strip(0,2)

Block 16
Block 17
Block 18
Block 19

Strip(0,1)

Parity(0,0)
Parity(1,0)
Parity(2,0)
Parity(3,0)

Strip(0,0)

Disk 1

…

Block 36
Block 37
Block 38
Block 39

Strip(1,2)

Parity(0,1)
Parity(1,1)
Parity(2,1)
Parity(3,1)

Strip(1,1)

Block 0
Block 1
Block 2
Block 3

Strip(1,0)

Disk 2

…

Parity(0,2)
Parity(1,2)
Parity(2,2)
Parity(3,2)

Strip(2,2)

Block 20
Block 21
Block 22
Block 23

Strip(2,1)

Block 4
Block 5
Block 6
Block 7

Strip(2,0)

Disk 3

…

Block 40
Block 41
Block 42
Block 43

Strip(3,2)

Block 24
Block 25
Block 26
Block 27

Strip(3,1)

Block 8
Block 9

Block 10
Block 11

Strip(3,0)

Disk 4

…

Block 44
Block 45
Block 46
Block 47

Strip(4,2)

Block 28
Block 29
Block 30
Block 31

Strip(4,1)

Block 12
Block 13
Block 14
Block 15

Strip(4,0)

S
tri

pe
 0

S

tri
pe

 1

S
tri

pe
 2

A strip of sequential
block on each disk
⇒ balance
parallelism with
sequential access
efficiency

Parity strip rotates
around disks with
successive stripes

Can service
widely-spaced
requests in
parallel

spcl.inf.ethz.ch
@spcl_eth

Atomic update of data and parity
What if system crashes in the middle?

1.  Use non-volatile write buffer
2.  Transactional update to blocks
3.  Recovery scan

§  And hope nothing goes wrong during the scan
4.  Do nothing (seriously)

spcl.inf.ethz.ch
@spcl_eth

Recovery
§  Unrecoverable read error on a sector:

§  Remap bad sector
§  Reconstruct contents from stripe and parity

§  Whole disk failure:
§  Replace disk
§  Reconstruct data from the other disks
§  Hope nothing else goes wrong…

spcl.inf.ethz.ch
@spcl_eth

Mean time to repair (MTTR)
RAID-5 can lose data in three ways:
1.  Two full disk failures

(second while the first is recovering)
2.  Full disk failure and sector failure on another disk
3.  Overlapping sector failures on two disks

§  MTTR: Mean time to repair
§  Expected time from disk failure to when new disk is fully rewritten, often

hours
§  MTTDL: Mean time to data loss

§  Expected time until 1, 2 or 3 happens

spcl.inf.ethz.ch
@spcl_eth

Analysis
See the book for independent failures
§  Key result: most likely scenario is #2.

Solutions:
1.  More redundant disks, erasure coding
2.  Scrubbing

§  Regularly read the whole disk to catch UREs early
3.  Buy more expensive disks.

§  I.e. disks with much lower error rates
4.  Hot spares

§  Reduce time to plug/unplug disk

spcl.inf.ethz.ch
@spcl_eth

The Future™

spcl.inf.ethz.ch
@spcl_eth

What’s happening to hardware?
§  Lots of cores (scaling, parallelism)
§  Lots of different cores
§  Complex memory hierarchies and interconnects
§  Increasing diversity of machines

§  Hardware is changing faster than system software can
§  Faster devices (especially networks)
§  …

spcl.inf.ethz.ch
@spcl_eth

Supercomputing

Vectorization

Multicore/SMP

Heterogeneous Computing

IEEE Floating Point

Datacenter Networking/RDMA

….

spcl.inf.ethz.ch
@spcl_eth

Top 500
§  A benchmark, solve Ax=b

§  As fast as possible! à as big as possible J
§  Reflects some applications, not all, not even many
§  Very good historic data!

§  Speed comparison for computing centers, states, countries,
nations, continents !
§  Politicized (sometimes good, sometimes bad)
§  Yet, fun to watch

spcl.inf.ethz.ch
@spcl_eth

www.top500.org

IDC, 2009: “expects the
HPC technical server
market to grow at a
healthy 7% to 8% yearly
rate to reach revenues
of $13.4 billion by 2015.”

“The non-HPC portion of
the server market was
actually down 20.5 per
cent, to $34.6bn”

The November 2013 List

spcl.inf.ethz.ch
@spcl_eth

How to communicate?
§  Communication is

key in problem
solving ☺
§  Not just

relationships!
§  Also scientific

computations

Source: top500.org

spcl.inf.ethz.ch
@spcl_eth

§  Remember that guy?
§  2x2x40 Gb/s à ~20 GB/s
§  Memory bandwidth: ~60 GB/s
§  1.5 copies L

§  Solution:
§  RDMA, similar to DMA
§  OS too expensive, bypass
§  Communication offloading

Remote Direct Memory Access

spcl.inf.ethz.ch
@spcl_eth

§  Components:
§  Links/Channel adaptors
§  Switches/Routers

§  Routing is supported but rarely used, most IB networks are
“LANs”

§  Supports arbitrary topologies
§  “Typical” topologies: fat tree, torus, islands

§  Link speed (all 4x):
§  Single data rate (SDR): 10 Gb/s
§  Double data rate (DDR): 20 Gb/s
§  Quad data rate (QDR): 40 Gb/s
§  Fourteen data rate (FDR): 56 Gb/s
§  Enhanced data rate (EDR): 102 Gb/s

InfiniBand Overview

spcl.inf.ethz.ch
@spcl_eth

InfiniBand Network Structure

Source: IBA Spec

spcl.inf.ethz.ch
@spcl_eth

§  No spanning tree protocol, allows parallel links&loops,
initialization phases:
§  Topology discovery: discovery MADs
§  Path computation: MinHop, …, DFSSSP
§  Path distribution phase: Configure routing tables

§  Problem: how to generate paths?
§  MinHop == OSPF
§  Potentially bad bandwidth allocation!

InfiniBand Subnet Routing

spcl.inf.ethz.ch
@spcl_eth

Interaction with IB HCAs
§  Systems calls only for setup:

§  Establish connection, register memory
§  Communication (send/recv, put, get, atomics)

all in user-level!
§  Through “verbs” interface

InfiniBand Device (HCA)

Send Recv
QP

CQ

spcl.inf.ethz.ch
@spcl_eth

Open Fabrics Stack
§  OFED offers a unified programming interface

§  Cf. Sockets
§  Originated in IB verbs
§  Direct interaction with device
§  Direct memory exposure

Requires page pinning (avoid OS interference)
§  Device offers

§  User-level driver interface
§  Memory-mapped registers

spcl.inf.ethz.ch
@spcl_eth

iWARP and RoCE
§  iWARP: RDMA over TCP/IP

§  Ups:
Routable with existing infrastructure
Easily portable (filtering, etc.)

§  Downs:
Higher latency (complex TOE)
Higher complexity in NIC
TCP/IP is not designed for datacenter networks

§  RoCE: RDMA over Converged Ethernet
§  Data-center Ethernet!

spcl.inf.ethz.ch
@spcl_eth

Student Cluster Competition

§  5 undergrads, 1 advisor, 1 cluster, 2x13 amps
§  8 teams, 4 continents @SC13
§  48 hours, five applications, non-stop!
§  top-class conference

§  Lots of fun
§  Even more

experience!
§  A Swiss team 2015?

§  Search for “Student
Cluster Challenge”

§  HPC-CH may help

spcl.inf.ethz.ch
@spcl_eth

Finito
§  Thanks for being such fun to teach ☺

§  Comments (also anonymous) are always appreciated!
§  If you are interested in parallel

computing research, talk to me!
§  Large-scale (datacenter) systems
§  Parallel computing (SMP and MPI)
§  GPUs (CUDA and stuff)
§  … on twitter: @spcl_eth J

Thanks to Timothy Roscoe for many slides!

