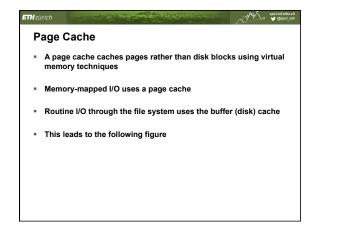
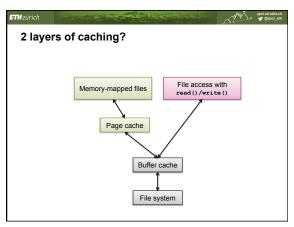
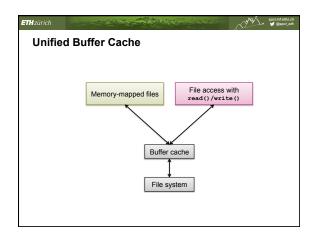


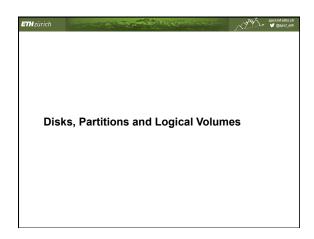
Hzürici spci.inf.ethz.ch y @spci_eth **Our Small Quiz** True or false (raise hand) Directories can never contain cycles Access control lists scale to large numbers of principals Capabilities are stored with the principals revocation can be complex POSIX (Unix) access control is scalable to large numbers of files Named pipes are special files in Unix Memory mapping improves sequential file access · Accessing different files on disk has different speeds The FAT filesystem enables fast random access FFS enables fast random access for small files The minimum storage for a file in FFS is 8kB (4kB inode + block) Block groups in FFS are used to simplify the implementation Multiple hard links in FFS are stored in the same inode · NTFS stores files that are contiguous on disk more efficiently than FFS The volume information in NTFS is a file in NTFS

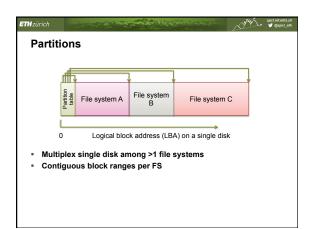


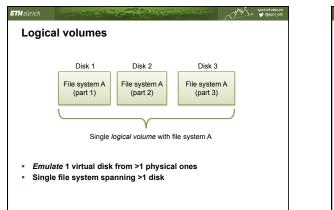


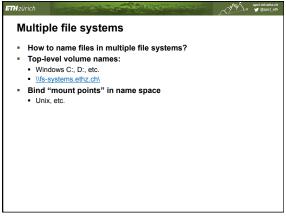

disk allocation and directory algorithms

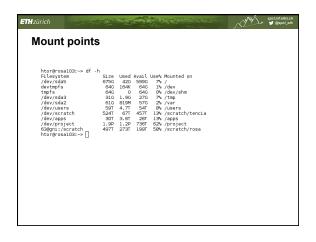
Efficiency dependent on:

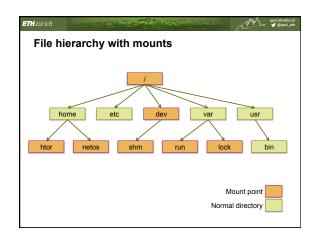

- types of data kept in file's directory entry
- Performance
 - disk cache separate section of main memory for frequently used blocks
 - free-behind and read-ahead techniques to optimize sequential access
- improve PC performance by dedicating section of memory as virtual disk, or RAM disk

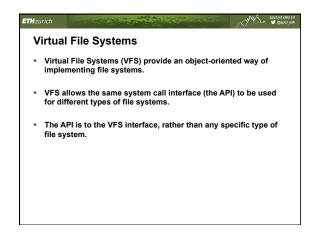


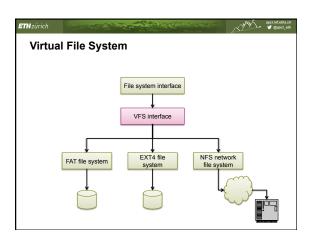


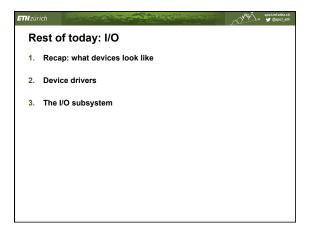


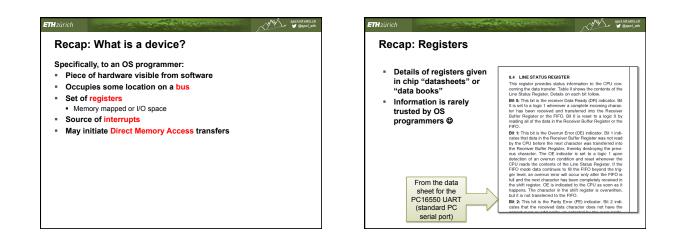

ETH zürich	and the second se	spci.int.ethz.ch y @spci_eth
Filesy	stem Recovery	
	istency checking – compares data in director data blocks on disk, and tries to fix inconsiste	
	system programs to back up data from disk to ge device (floppy disk, magnetic tape, other n al)	
Reco	ver lost file or disk by restoring data from bac	:kup

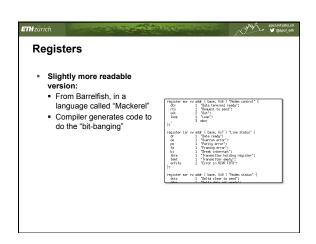


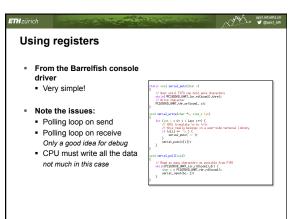






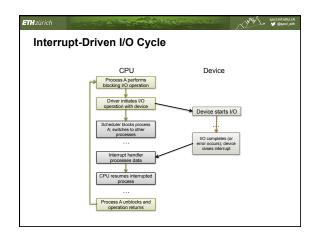






spci.inf.ethz.ch y @spci_eth

spcl.inf.ethz.ch y @spcl_eth


Very simple UART driver

- Actually, far too simple!
- But this is how the first version always looks...
 No initialization code, no error handling
- No initialization code, no error handling.
 Uses *Programmed I/O* (PIO)
- CPU explicitly reads and writes all values to and from registers
- All data must pass through CPU registers
- Uses polling

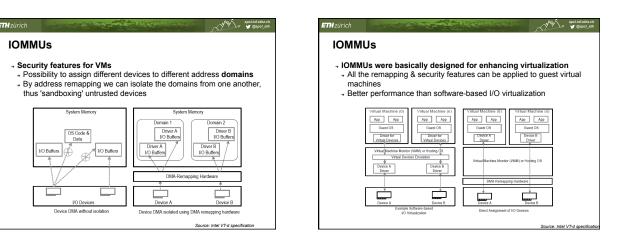
Hzürich

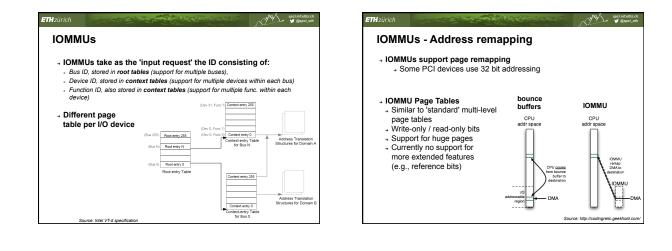
- CPU polls device register waiting before send/receive
 Tight loop!
- Can't do anything else in the meantime
- Although could be extended with threads and care...
- Without CPU polling, no I/O can occur

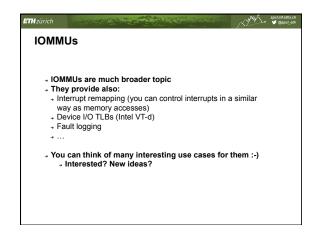
CPU Interrupts CPU Interrupt-request line triggered by I/O device Interrupt handler receives interrupts Maskable to ignore or delay some interrupts Interrupt vector to dispatch interrupt to correct handler Based on priority Some nonmaskable Interrupt mechanism also used for exceptions

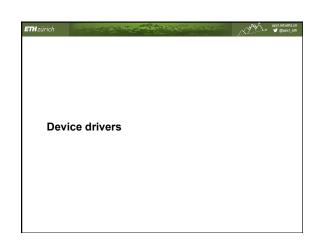
•	Avoid programmed I/O for lots of data
	 E.g. fast network or disk interfaces
•	Requires DMA controller
	 Generally built-in these days
	Bypasses CPU to transfer data directly between I/O device and memory
	 Doesn't take up CPU time
	 Can save memory bandwidth
	 Only one interrupt per transfer

Hzürich

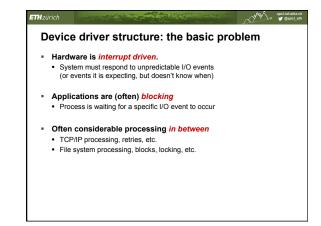

I/O Protection

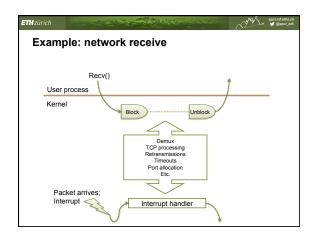

I/O operations can be dangerous to normal system operation!

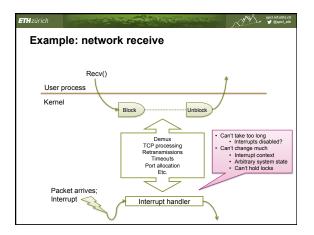

- Dedicated I/O instructions usually privileged
- I/O performed via system calls
- Register locations must be protected
- DMA transfers must be carefully checked
 - Bypass memory protection!
 - IOMMUs are beginning to appear...

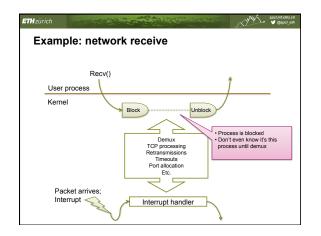

spci.int.ethz.ch IOMMUs IOMMU does the same for the I/O devices as MMU does for the CPU! → Translates device adresses (so called DVAs) into physical ones. Juses so called IOTLB (I/O TLB) → Works for DMA-capable devices :-) Main Memory → Examples: → Intel VT-d Physical add s 🕇 → AMD IOMMU IOMMU мми Virtual addre Device addresses → ...very similar in functionality Device CPU

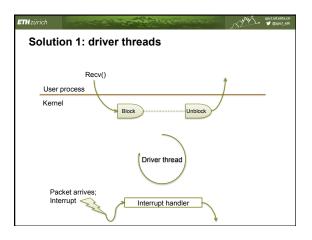
Source: Wikipedia

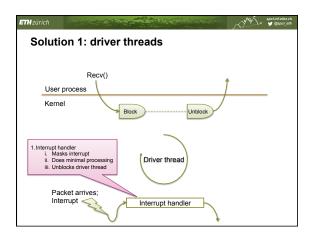


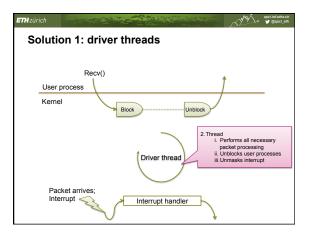

spci_inf.ethz.ch y @spci_eth

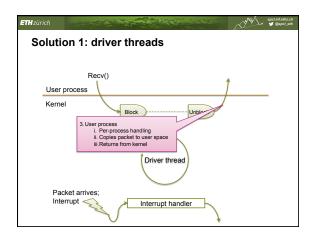

Device drivers

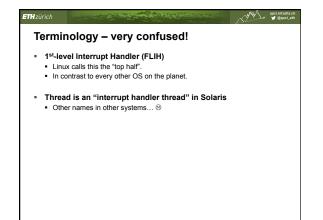

Hzürich

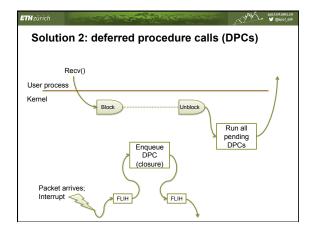

- Software object (module, object, process, hunk of code) which abstracts a device
- Sits between hardware and rest of OS
- Understands device registers, DMA, interrupts
 Presents uniform interface to rest of OS
- Presents uniform interface to rest of OS
- Device abstractions ("driver models") vary...
 Unix starts with "block" and "character" devices

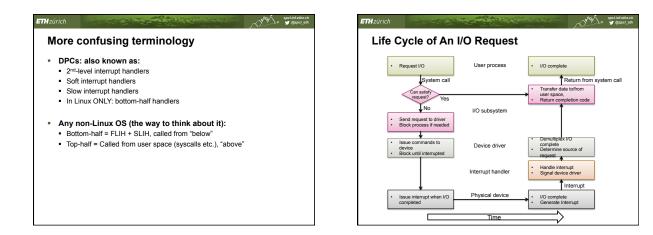


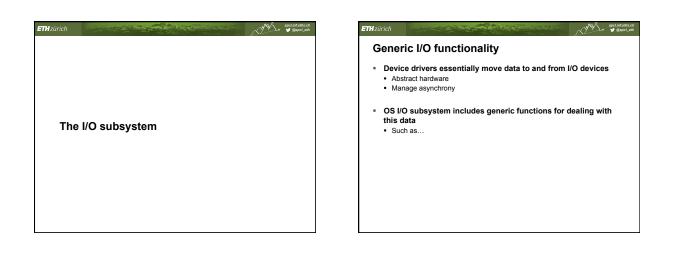












ETH zürich	and the second se	spci.int.ethz.ch ✓ @spci_eth
Defer	red Procedure Calls	
disp	ead of using a thread, execute on the <i>next</i> prod atched fore it leaves the kernel	cess to be
 Do Sa 	tion in most versions of Unix on't need kernel threads a context switch an't account processing time to the right process	
	solution: demux early, run in user space wered in Advanced OS Course!	

zürich		spcLint.ethz.ch y @spcL_eth
The I	/O Subsystem	
- Cac	hing - fast memory holding copy of data	
• A	lways just a copy	
• K	ey to performance	
 Spo 	ooling - hold output for a device	
	device can serve only one request at a time	
	.g., printing	

Entrainch Constraints Constraints

- To cope with device transfer size mismatch
- To maintain "copy semantics"

spci.inf.ethz.ch y @spci_eth

Constant Provide the server of the ser

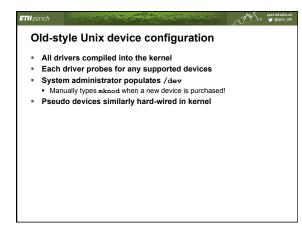
How to name devices outside the kernel?

Specific device within a class

Matching drivers to devices Matching drivers to devices • Devices have unique (model) identifiers • E.g. PCI vendor/device identifiers • Drivers recognize particular identifiers • Typically a list... Kernel offers a device to each driver in turn • Driver can "claim" a device it can handle • Creates driver instance for it.

ETHzürich Naming devices in the Unix kernel (Actually, naming device driver instances) Kernel creates identifiers for Block devices Character devices [Network devices – see later...] Major device number: Class of device (e.g. disk, CD-ROM, keyboard) Minor device number:

Unix Block Devices Used for "structured I/O" Deal in large "blocks" of data at a time Often look like files (seekable, mappable) Often use Unix' shared buffer cache Mountable: File systems implemented above block devices


THzürich

Character Devices • Used for "unstructured I/O" • Byte-stream interface – no block boundaries • Single character or short strings get/put • Buffering implemented by libraries • Examples: • Keyboards, serial lines, mice • Distinction with block devices somewhat arbitrary...

THZurich Naming devices outside the kernel Device files: special type of file Ende encodes <type, major num, minor num> Created with mknod () system call Devices are traditionally put in /dev /dev/sda - First SCSI/SATA/SAS disk /dev/sda5 - Fifth partition on the above /dev/ctrom0 - First DVD-ROM drive /dev/ttyS1 - Second UART

spci.int.ethz.ch y @spci_eth

TH zürich	spelintetnizet ₩ ¥ @spel eth
Pseud	do-devices in Unix
	ces with no hardware! have major/minor device numbers. Examples:
/de	v/stdin
/de	v/kmem
/der	v/random
/de	v/null
/der	v/loop0
etc.	

		1.11	
Linux	device configuration today		Next
 Phys 	sical hardware configuration readable from /s	sys	 Net
	ecial fake file system: sysfs iq events delivered by a special socket		 Net
		 But 	
	ers dynamically loaded as kernel modules		• Me
	ial list given at boot time er-space daemon can load more if required		
	populated dynamically by udev		
	er-space daemon which polls /sys		

and the second second

- Next time:
- Network stack implementation
- Network devices and network I/O
- Buffering
- Memory management in the I/O subsystem