
spcl.inf.ethz.ch
@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)‏
Chapter 9: I/O Subsystems

spcl.inf.ethz.ch
@spcl_eth

§  True or false (raise hand)
§  Directories can never contain cycles
§  Access control lists scale to large numbers of principals
§  Capabilities are stored with the principals revocation can be complex
§  POSIX (Unix) access control is scalable to large numbers of files
§  Named pipes are special files in Unix
§  Memory mapping improves sequential file access
§  Accessing different files on disk has different speeds
§  The FAT filesystem enables fast random access
§  FFS enables fast random access for small files
§  The minimum storage for a file in FFS is 8kB (4kB inode + block)
§  Block groups in FFS are used to simplify the implementation
§  Multiple hard links in FFS are stored in the same inode
§  NTFS stores files that are contiguous on disk more efficiently than FFS
§  The volume information in NTFS is a file in NTFS

2

Our Small Quiz

spcl.inf.ethz.ch
@spcl_eth

In-memory data structures

spcl.inf.ethz.ch
@spcl_eth

Opening a file

§  Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inode directory structure

User space Kernel Disk

spcl.inf.ethz.ch
@spcl_eth

Reading and writing

§  Per-process open file table → index into…
§  System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process
open file table

User space Kernel Disk

System
open file table

5

spcl.inf.ethz.ch
@spcl_eth

Efficiency and Performance
§  Efficiency dependent on:

§  disk allocation and directory algorithms
§  types of data kept in file’s directory entry

§  Performance

§  disk cache – separate section of main memory for frequently used blocks
§  free-behind and read-ahead – techniques to optimize sequential access
§  improve PC performance by dedicating section of memory as virtual disk,

or RAM disk

spcl.inf.ethz.ch
@spcl_eth

Page Cache
§  A page cache caches pages rather than disk blocks using virtual

memory techniques

§  Memory-mapped I/O uses a page cache

§  Routine I/O through the file system uses the buffer (disk) cache

§  This leads to the following figure

spcl.inf.ethz.ch
@spcl_eth

2 layers of caching?

Memory-mapped files File access with
read()/write()

Page cache

Buffer cache

File system

spcl.inf.ethz.ch
@spcl_eth

Unified Buffer Cache

Memory-mapped files File access with
read()/write()

Buffer cache

File system

spcl.inf.ethz.ch
@spcl_eth

Filesystem Recovery
§  Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

§  Use system programs to back up data from disk to another
storage device (floppy disk, magnetic tape, other magnetic disk,
optical)

§  Recover lost file or disk by restoring data from backup

spcl.inf.ethz.ch
@spcl_eth

Disks, Partitions and Logical Volumes

spcl.inf.ethz.ch
@spcl_eth

Partitions

§  Multiplex single disk among >1 file systems
§  Contiguous block ranges per FS

File system C File system
B File system A

P
ar

tit
io

n
ta

bl
e

Logical block address (LBA) on a single disk 0

spcl.inf.ethz.ch
@spcl_eth

Logical volumes

§  Emulate 1 virtual disk from >1 physical ones
§  Single file system spanning >1 disk

File system A
(part 1)

File system A
(part 2)

File system A
(part 3)

Disk 1 Disk 2 Disk 3

Single logical volume with file system A

spcl.inf.ethz.ch
@spcl_eth

Multiple file systems
§  How to name files in multiple file systems?
§  Top-level volume names:

§  Windows C:, D:, etc.
§  \\fs-systems.ethz.ch\

§  Bind “mount points” in name space
§  Unix, etc.

spcl.inf.ethz.ch
@spcl_eth

Mount points

spcl.inf.ethz.ch
@spcl_eth

File hierarchy with mounts

/

home etc dev var usr

htor netos shm run lock bin

Mount point

Normal directory

spcl.inf.ethz.ch
@spcl_eth

§  Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

§  VFS allows the same system call interface (the API) to be used
for different types of file systems.

§  The API is to the VFS interface, rather than any specific type of
file system.

Virtual File Systems

spcl.inf.ethz.ch
@spcl_eth

Virtual File System

File system interface

VFS interface

FAT file system EXT4 file
system

NFS network
file system

spcl.inf.ethz.ch
@spcl_eth

Rest of today: I/O
1.  Recap: what devices look like

2.  Device drivers

3.  The I/O subsystem

spcl.inf.ethz.ch
@spcl_eth

Recap from CASP:
What does a device look like?

spcl.inf.ethz.ch
@spcl_eth

Recap: What is a device?
Specifically, to an OS programmer:
§  Piece of hardware visible from software
§  Occupies some location on a bus
§  Set of registers

§  Memory mapped or I/O space
§  Source of interrupts
§  May initiate Direct Memory Access transfers

spcl.inf.ethz.ch
@spcl_eth

Recap: Registers

§  Details of registers given
in chip “datasheets” or
“data books”

§  Information is rarely
trusted by OS
programmers ☺

From the data
sheet for the

PC16550 UART
(standard PC

serial port)

spcl.inf.ethz.ch
@spcl_eth

Registers

§  Slightly more readable
version:
§  From Barrelfish, in a

language called “Mackerel”
§  Compiler generates code to

do the “bit-banging”

spcl.inf.ethz.ch
@spcl_eth

Using registers

§  From the Barrelfish console
driver
§  Very simple!

§  Note the issues:
§  Polling loop on send
§  Polling loop on receive

Only a good idea for debug
§  CPU must write all the data

not much in this case

spcl.inf.ethz.ch
@spcl_eth

Very simple UART driver
§  Actually, far too simple!

§  But this is how the first version always looks…
§  No initialization code, no error handling.
§  Uses Programmed I/O (PIO)

§  CPU explicitly reads and writes all values to and from registers
§  All data must pass through CPU registers

§  Uses polling
§  CPU polls device register waiting before send/receive

Tight loop!
§  Can’t do anything else in the meantime

Although could be extended with threads and care…
§  Without CPU polling, no I/O can occur

spcl.inf.ethz.ch
@spcl_eth

Recap: Interrupts
§  CPU Interrupt-request line triggered by I/O device

§  Interrupt handler receives interrupts

§  Maskable to ignore or delay some interrupts

§  Interrupt vector to dispatch interrupt to correct handler

§  Based on priority
§  Some nonmaskable

§  Interrupt mechanism also used for exceptions

spcl.inf.ethz.ch
@spcl_eth

Interrupt-Driven I/O Cycle

Process A performs
blocking I/O operation

Scheduler blocks process
A; switches to other

processes

Interrupt handler
processes data

CPU resumes interrupted
process

Driver initiates I/O
operation with device

Process A unblocks and
operation returns

…

…

Device starts I/O

I/O completes (or
error occurs); device

raises interrupt

…

CPU Device

spcl.inf.ethz.ch
@spcl_eth

Recap: Direct Memory Access
§  Avoid programmed I/O for lots of data

§  E.g. fast network or disk interfaces
§  Requires DMA controller

§  Generally built-in these days
§  Bypasses CPU to transfer data directly between I/O device and

memory
§  Doesn’t take up CPU time
§  Can save memory bandwidth
§  Only one interrupt per transfer

spcl.inf.ethz.ch
@spcl_eth

I/O Protection
I/O operations can be dangerous to normal system operation!

§  Dedicated I/O instructions usually privileged
§  I/O performed via system calls

§  Register locations must be protected
§  DMA transfers must be carefully checked

§  Bypass memory protection!
§  IOMMUs are beginning to appear…

spcl.inf.ethz.ch
@spcl_eth

IOMMU does the same for the I/O devices as MMU does for the CPU!
➔  Translates device adresses (so called DVAs) into physical

ones,
➔  Uses so called IOTLB (I/O TLB)
➔  Works for DMA-capable

devices :-)

➔  Examples:
➔  Intel VT-d
➔  AMD IOMMU

➔  ...very similar in functionality

Source: Wikipedia

IOMMUs

spcl.inf.ethz.ch
@spcl_eth

➔  Security features for VMs
➔  Possibility to assign different devices to different address domains
➔  By address remapping we can isolate the domains from one another,

thus 'sandboxing' untrusted devices

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch
@spcl_eth

➔  IOMMUs were basically designed for enhancing virtualization
➔  All the remapping & security features can be applied to guest virtual

machines
➔  Better performance than software-based I/O virtualization

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch
@spcl_eth

Source: Intel VT-d specification

➔  IOMMUs take as the 'input request' the ID consisting of:
➔  Bus ID, stored in root tables (support for multiple buses),
➔  Device ID, stored in context tables (support for multiple devices within each bus)
➔  Function ID, also stored in context tables (support for multiple func. within each

device)

➔  Different page
table per I/O device

IOMMUs

spcl.inf.ethz.ch
@spcl_eth

Source: http://codingrelic.geekhold.com/

➔  IOMMUs support page remapping
➔  Some PCI devices use 32 bit addressing

➔  IOMMU Page Tables

➔  Similar to 'standard' multi-level
page tables

➔  Write-only / read-only bits
➔  Support for huge pages
➔  Currently no support for

more extended features
(e.g., reference bits)

bounce
buffers IOMMU

IOMMUs - Address remapping

spcl.inf.ethz.ch
@spcl_eth

➔  IOMMUs are much broader topic
➔  They provide also:

➔  Interrupt remapping (you can control interrupts in a similar
way as memory accesses)

➔  Device I/O TLBs (Intel VT-d)
➔  Fault logging
➔  …

➔  You can think of many interesting use cases for them :-)
➔  Interested? New ideas?

IOMMUs

spcl.inf.ethz.ch
@spcl_eth

Device drivers

spcl.inf.ethz.ch
@spcl_eth

Device drivers
§  Software object (module, object, process, hunk of code) which

abstracts a device
§  Sits between hardware and rest of OS
§  Understands device registers, DMA, interrupts
§  Presents uniform interface to rest of OS

§  Device abstractions (“driver models”) vary…
§  Unix starts with “block” and “character” devices

spcl.inf.ethz.ch
@spcl_eth

Device driver structure: the basic problem
§  Hardware is interrupt driven.

§  System must respond to unpredictable I/O events
(or events it is expecting, but doesn’t know when)

§  Applications are (often) blocking
§  Process is waiting for a specific I/O event to occur

§  Often considerable processing in between
§  TCP/IP processing, retries, etc.
§  File system processing, blocks, locking, etc.

spcl.inf.ethz.ch
@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

spcl.inf.ethz.ch
@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

•  Can’t take too long
•  Interrupts disabled?

•  Can’t change much
•  Interrupt context
•  Arbitrary system state
•  Can’t hold locks

spcl.inf.ethz.ch
@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

• Process is blocked
• Don’t even know it’s this

process until demux

spcl.inf.ethz.ch
@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

spcl.inf.ethz.ch
@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

1. Interrupt handler
i.  Masks interrupt
ii.  Does minimal processing
iii.  Unblocks driver thread

spcl.inf.ethz.ch
@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

2. Thread
i.  Performs all necessary

packet processing
ii. Unblocks user processes
iii. Unmasks interrupt

spcl.inf.ethz.ch
@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

3. User process
i.  Per-process handling
ii. Copies packet to user space
iii. Returns from kernel

spcl.inf.ethz.ch
@spcl_eth

Terminology – very confused!
§  1st-level Interrupt Handler (FLIH)

§  Linux calls this the “top half”.
§  In contrast to every other OS on the planet.

§  Thread is an “interrupt handler thread” in Solaris
§  Other names in other systems… L

spcl.inf.ethz.ch
@spcl_eth

Solution 2: deferred procedure calls (DPCs)

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt

Enqueue
DPC

(closure)

Run all
pending
DPCs

FLIH FLIH

spcl.inf.ethz.ch
@spcl_eth

Deferred Procedure Calls
§  Instead of using a thread, execute on the next process to be

dispatched
§  Before it leaves the kernel

§  Solution in most versions of Unix
§  Don’t need kernel threads
§  Saves a context switch
§  Can’t account processing time to the right process

§  ∃ 3rd solution: demux early, run in user space
§  Covered in Advanced OS Course!

spcl.inf.ethz.ch
@spcl_eth

More confusing terminology
§  DPCs: also known as:

§  2nd-level interrupt handlers
§  Soft interrupt handlers
§  Slow interrupt handlers
§  In Linux ONLY: bottom-half handlers

§  Any non-Linux OS (the way to think about it):
§  Bottom-half = FLIH + SLIH, called from “below”
§  Top-half = Called from user space (syscalls etc.), “above”

spcl.inf.ethz.ch
@spcl_eth

Life Cycle of An I/O Request

•  Send request to driver
•  Block process if needed

•  Request I/O

•  Issue commands to
device

•  Block until interrupted

•  Issue interrupt when I/O
completed

Time

•  I/O complete

•  Transfer data to/from
user space,

•  Return completion code

•  Demultiplex I/O
complete

•  Determine source of
request

•  Handle interrupt
•  Signal device driver

•  I/O complete
•  Generate Interrupt

Can satisfy
request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system call System call

Yes

No

spcl.inf.ethz.ch
@spcl_eth

The I/O subsystem

spcl.inf.ethz.ch
@spcl_eth

Generic I/O functionality
§  Device drivers essentially move data to and from I/O devices

§  Abstract hardware
§  Manage asynchrony

§  OS I/O subsystem includes generic functions for dealing with
this data
§  Such as…

spcl.inf.ethz.ch
@spcl_eth

The I/O Subsystem
§  Caching - fast memory holding copy of data

§  Always just a copy
§  Key to performance

§  Spooling - hold output for a device

§  If device can serve only one request at a time
§  E.g., printing

spcl.inf.ethz.ch
@spcl_eth

The I/O Subsystem
§  Scheduling

§  Some I/O request ordering via per-device queue
§  Some OSs try fairness

§  Buffering - store data in memory while transferring between

devices or memory
§  To cope with device speed mismatch
§  To cope with device transfer size mismatch
§  To maintain “copy semantics”

spcl.inf.ethz.ch
@spcl_eth

Naming and Discovery
§  What are the devices the OS needs to manage?

§  Discovery (bus enumeration)
§  Hotplug / unplug events
§  Resource allocation (e.g. PCI BAR programming)

§  How to match driver code to devices?
§  Driver instance ≠ driver module
§  One driver typically manages many models of device

§  How to name devices inside the kernel?

§  How to name devices outside the kernel?

spcl.inf.ethz.ch
@spcl_eth

Matching drivers to devices

§  Devices have unique (model) identifiers
§  E.g. PCI vendor/device identifiers

§  Drivers recognize particular identifiers
§  Typically a list…

§  Kernel offers a device to each driver in turn
§  Driver can “claim” a device it can handle
§  Creates driver instance for it.

spcl.inf.ethz.ch
@spcl_eth

Naming devices in the Unix kernel
(Actually, naming device driver instances)

§  Kernel creates identifiers for
§  Block devices
§  Character devices
§  [Network devices – see later…]

§  Major device number:
§  Class of device (e.g. disk, CD-ROM, keyboard)

§  Minor device number:
§  Specific device within a class

spcl.inf.ethz.ch
@spcl_eth

Unix Block Devices
§  Used for “structured I/O”

§  Deal in large “blocks” of data at a time

§  Often look like files (seekable, mappable)
§  Often use Unix’ shared buffer cache

§  Mountable:
§  File systems implemented above block devices

spcl.inf.ethz.ch
@spcl_eth

Character Devices
§  Used for “unstructured I/O”

§  Byte-stream interface – no block boundaries
§  Single character or short strings get/put
§  Buffering implemented by libraries

§  Examples:
§  Keyboards, serial lines, mice

§  Distinction with block devices somewhat arbitrary…

spcl.inf.ethz.ch
@spcl_eth

Naming devices outside the kernel
§  Device files: special type of file

§  Inode encodes <type, major num, minor num>
§  Created with mknod() system call

§  Devices are traditionally put in /dev
§  /dev/sda – First SCSI/SATA/SAS disk
§  /dev/sda5 – Fifth partition on the above
§  /dev/cdrom0 – First DVD-ROM drive
§  /dev/ttyS1 – Second UART

spcl.inf.ethz.ch
@spcl_eth

Pseudo-devices in Unix
§  Devices with no hardware!
§  Still have major/minor device numbers. Examples:

/dev/stdin
/dev/kmem
/dev/random
/dev/null
/dev/loop0

etc.

spcl.inf.ethz.ch
@spcl_eth

Old-style Unix device configuration
§  All drivers compiled into the kernel
§  Each driver probes for any supported devices
§  System administrator populates /dev

§  Manually types mknod when a new device is purchased!
§  Pseudo devices similarly hard-wired in kernel

spcl.inf.ethz.ch
@spcl_eth

Linux device configuration today
§  Physical hardware configuration readable from /sys

§  Special fake file system: sysfs
§  Plug events delivered by a special socket

§  Drivers dynamically loaded as kernel modules
§  Initial list given at boot time
§  User-space daemon can load more if required

§  /dev populated dynamically by udev
§  User-space daemon which polls /sys

spcl.inf.ethz.ch
@spcl_eth

Next time:
§  Network stack implementation
§  Network devices and network I/O
§  Buffering
§  Memory management in the I/O subsystem

