
Spring Term 2014

Operating Systems and Networks

Assignment 2

Assigned on: 27th February 2014
Due by: 6th March 2014

1 Scheduling

The following table describes tasks to be scheduled. The table contains the entry times of the tasks,
their duration/execution times and their deadlines. All time values are given in ms.

Task Number Entry Execution Time Deadline

1 0 30 70
2 0 20 90
3 20 20 50
4 30 10 40
5 50 30 120

Scheduling decisions are performed every 10ms. You can assume that scheduling decisions take
about no time. The deadline values are absolute.

1.1 Creating schedules

In the following you are asked to create different types of schedules. Please visualize your schedule
(like in the lecture) and also answer the questions below.

Types of schedules:

a) RR (Round Robin)

b) EDF (Earliest Deadline first)

c) SRTF (Shortest Remaining Time First)

Please answer the following questions for each of the schedules:

a) How big is the wait time per task?

b) How big is the average wait time?

c) How big is the turnaround time per task?

d) How is the response time computed for this scheduler? If possible, calculate the response
time per task.

Answer: Definitions of the terms “turnaround time”, “waiting time” and “response time” ac-
cording to the Silberschatz book:

• The Turnaround time is the time between the submission or arrival of a job until it completes
execution.

• Waiting time is the time the job spends runnable but not executing. This is the sum of all
periods the jobs spends in the runqueue, but it is not actually running.

• Response time is the time it takes from the point where a job becomes runnable to the point
where output appears. In general this applies to interactive tasks. For example, how long
does it take from the user pressing a key to the character being displayed on the screen?

a) RR (Round Robin) We assume, that a task which enters the system can be immediately
scheduled and it is at the beginning of the scheduling ring. This leads to the following
schedule:

Task 00 10 20 30 40 50 60 70 80 90 100

1
2
3
4
5

(a) How big is the wait time per task?

1: 60ms, 2: 50ms, 3: 40ms, 4: 0ms, 5: 30ms

(b) How big is the average wait time?

(60ms + 50ms + 40ms + 0ms + 30ms) / 5 = 36ms

(c) How big is the turnaround time per task?

1: 90ms, 2: 70ms, 3: 60ms, 4: 10ms, 5: 60ms

(d) The response time

In the worst case the task just lost its timeslice (is being preempted by the scheduler)
when the user pressed a key. If the task is very fast, it can produce output immediately
when it becomes running again. So with 5 jobs we have to wait for 4 jobs which are
running in the meantime.

1: 5 jobs scheduled in RR with a timequanta of (5 - 1) * 10ms = 40ms

b) EDF (Earliest deadline first) The deadlines are absolute if the tasks are non-periodic. If
two tasks have the same deadline, we assume that the first found task is going to run. This
leads to the following schedule:

Task 00 10 20 30 40 50 60 70 80 90 100 110

1
2
3
4
5

2

(a) How big is the wait time per task?

1: 30ms, 2: 60ms, 3: 10ms, 4: 0ms, 5: 30ms

(b) How big is the average wait time?

(30ms + 60ms + 10ms + 0ms + 30ms) / 5 = 26ms

(c) How big is the turnaround time per task?

1: 60ms, 2: 80ms, 3: 30ms, 4: 10ms, 5: 60ms

(d) The response time
This is less obvious than in RR scheduling. Since the task are scheduled by their dead-
line we can say, that if a schedule is feasible, the response time is at most (deadline -
entry time - execution time). This leads to:

1: 40ms, 2: 70ms, 3: 10ms, 4: 0ms, 5: 40ms

c) SRTF (Shortest remaining time first) The job with the shortest execution time is always
chosen to be executed. This scheduling might lead to starvation as long jobs might never be
scheduled due to short running ones. SRTF can lead to the following schedule:

Task 00 10 20 30 40 50 60 70 80 90 100 110

1
2
3
4
5

(a) How big is the wait time per task?

1: 50ms, 2: 0ms, 3: 0ms, 4: 10ms, 5: 30ms

(b) How big is the average wait time?

(50ms + 0ms + 0ms + 10ms + 30ms) / 5 = 18ms

(c) How big is the turnaround time per task?

1: 80ms, 2: 20ms, 3: 20ms, 4: 20ms, 5: 60ms

(d) The response time
There is no formalism that can be developed for SRTF for computing the response time.
As SRTF can lead to starvation, it might happen that some jobs are never scheduled.
As such, the response time can not be estimated.

1.2 General Questions

a) What is the problem with shortest job first (SJF) scheduling policy?

Answer: Long jobs are potentially never scheduled, if short jobs are entering the system
continuously and if there is no preemption.

b) What is the advantage of SJF?

Answer: It minimizes the waiting time and the turnaround time.

c) What is the benefit of round robin?

Answer: It is easy to implement, understand and analyze. It has a good response time.

3

d) What is the big conceptual difference between EDF and RR?

Answer: EDF is a realtime-based scheduling strategy. Therefore tasks have priorities. RR
treats all tasks the same. This is not a realtime scheduling strategy and there is no notion
of priorities.

e) Why do hard realtime systems often not have dynamic scheduling?

Answer: In a dynamic setup it is not possible to guarantee the feasibility of a correct
schedule. That means, if new tasks enter the system and the system allows that, it cannot
be guaranteed that every task still meets the deadline. The other approach is to first compute
whether there is enough time to allow a new task. If not, creation of a new task will fail.
This guarantees that the already running task will always meet the deadlines, however it is
possible that an important task cannot be created.

1.3 Realtime Scheduling

You are designing an HD-TV. To keep the production costs low, it has only one CPU which must
perform the following tasks:

• Decode video chunks (takes 50 ms, has to be done every 200ms)

• Update Screen (takes 30 ms, has to be done every 200 ms)

• Handle user input (takes 10 ms, has to be done every 250 ms)

a) Show that it is possible to schedule all tasks in such a way that all deadlines are met, using
Rate Monotonic Scheduling. Do not present a working schedule.

Answer: It can be shown that N periodic tasks with the computation times Ci and periods
Pi can be scheduled by ordering the tasks according to their periods if

U =

N∑
i=1

Ci

Pi
≤ N(2

1
N − 1)

For the given values we get: 0.44 ≤ 0.78 (cf. last question).

b) Show that, when the number of tasks approaches infinity, all tasks can be scheduled without
violating deadlines if the utilization is below 69.3%. Explain how one can arrive at this
result.

Answer: limN→∞(N(2
1
N − 1)) = ln(2) ≈ 0.693

c) Now assume your boss wants you to add DRM to your TV. This requires an extra task with
a period of 300 ms and a execution time of 100 ms.

(a) What is the utilization of the system now?

(b) What is the upper bound according to the theorem used in b)?

(c) If you try to build a working schedule by hand, you will see that it is still possible to
create one. How can this be explained?

Answer:
Task i Execution Time Ci Period Pi Ci/Pi Utilization Upper Bound
1 30 200 0.15 0.15 1.00
2 50 200 0.40 0.40 0.82
3 10 250 0.44 0.44 0.78
4 100 300 0.77 0.77 0.75

The upper bound given above states that if utilization U , for a set of tasks, is below N(2
1
N −1)

then it is always possible to schedule those tasks - however, it is not a tight upper bound,
i.e., there are many cases where feasible schedules can be found even though the utilization
reaches 1.

4

2 Processes Revisited

Creating new processes in the Unix/Linux world is done using fork(). The fork() function clones
an existing process and adds it to the runqueue, rather then really creating a new one. Since fork
clones a process, they both execute the line after the fork() call. Now they need to distinguish
whether they are parent or child process. This can be done by checking the return value of fork():
to the parent process, fork() returns the PID of the child process, to the child process, fork() returns
0

2.1 Call fork() multiple times in a row

Write a program which calls fork() multiple times in a row, e.g. three times. Each forked process
shall print his level in the process tree and next wait for all child processes using the waitpid()

method. Note that you can use ps f in order to verify if your program output matches the actual
process tree.

What process tree do you expect?

Answer: Calling fork() multiple times in a row creates an imbalanced tree. While the root
process forks n child processes, the first child will fork n-1 child process, the second child n-2 child
processes and so on.

2.2 Executing ls -l from your program

Write a simple program (main function) which executes the ls program. Look up the manual page
for the exec family (man 3 exec). After the exec call in your main function, have a printf which
says that you have called exec now.

What do you notice?

Answer: The line after exec() of your program will not be executed. exec() replaces the
currently executed program by a new one. It does not automatically fork a new process to execute
ls -l.

How can you fix that?

Answer: If you want your program to continue to run, first fork and execute exec() in the
child. If you want your program to wait until the child process terminated, you can call one of
the wait() functions (see man 2 wait).

2.3 Reading the ls output from a pipe

Create a simple application which opens a pipe, executes ls and reads its output via the pipe. Your
application should write a sentence and the output of ls to the console (example: “Output from ls:
<ls output>”).

3 Implement a User-Level Cooperative Thread-Scheduler

Answer: You can download an example implementation from the web page.

3.1 Threads-package

In this section you should implement a user-level cooperative thread-scheduler. To keep it simple,
you can implement a round-robin-based scheduler.

5

You will need to implement at least the following functions:

• thread create

• thread add runqueue

• thread yield

• thread exit

• schedule

• dispatch

• thread start threading

Each thread should be represented by a TCB (a struct thread in the skeleton) which contains
at least a function pointer to the thread’s function and an argument of type void *. The thread’s
function should take this void * as argument whenever it is executed. This struct should also
contain a pointer to the threads stack and two fields which store the current stack pointer and
base pointer when it calls yield.

thread create() should take a function pointer and a void *arg as parameters. It allocates
a TCB, allocates a new stack for this thread and sets default values. It is important that the
initial stack pointer (set by this function) is at an address divisible by 8. The function returns the
initialized structure.

thread add runqueue() adds an initialized TCB to the runqueue. Since we implement a round
robin scheduler, it is easiest if you maintain a ring of those structures. You can do that by having
a next field which always points to the next to be executed thread.

The static variable current thread() always points to the currently executed thread.

thread yield() suspends the current thread by saving its context to the TCB and calling the
scheduler and the dispatcher. If the thread is resumed later, thread yield() returns to the calling
place in the function.

thread exit() removes the calling thread from the ring, frees its stack and the TCB, sets the
current thread variable to the next to be executed thread and calls dispatch(). It is important to
dispatch the next thread right here before returning, because we just removed the current thread.

schedule() decides which thread to run next. This is actually trivial, because it is a round robin
scheduler. You can just follow the next field of the current thread. For convenience (for example
for the dispatcher), it might be helpful to have another static variable which points to the last
executed thread.

dispatch() actually executes a thread (the thread to run as decided by the scheduler). It has to
save the stack pointer and the base pointer of the last thread to its TCB and it has to restore the
stack pointer and base pointer of the new thread. This involves some assembly code (see recitation
session). In case the thread has never run before, it may have to do some initializations, rather
than just returning to the threads context. In case the thread’s function just returns, the thread
has to be removed from the ring and the next one has to be dispatched. The easiest thing to do
here is calling thread exit(), since this function does that already.

thread start threading() initializes the threading by calling schedule() and dispatch(). This
function should be called by your main function (after having added the first thread to the run-
queue). It should never return (at least as long as there are threads in your system).

So in summary, to create and run a thread, you should follow the steps below:

static void thread_function(void *arg)

{

6

// ...

// may create threads here and add to the runqueue;

// ...

while(some condition, maybe forever) {

do_work();

thread_yield();

if (exit-condition) {

thread_exit();

}

}

}

int main(int argc, char **argv)

{

struct thread *t1 = thread_create(f1, NULL);

thread_add_runqueue(t1);

// ...

// may create more threads and add to runqueue here;

// ...

thread_start_threading();

printf("\nexited\n");

return 0;

}

3.2 Test your threads-package

As a second step, implement a main function which creates a couple of threads which perform
some operations so that we can see on the console that the threads are really running interleaved.
Note: Since this is cooperative threading, your threads have to call thread yield() from time to
time.

Two simple functions might have a counter, one counting from 0-9 and another one counting from
1000-1009.

You may download main.c and a skeleton of threads.h from the courses website. The skeleton
provides you the prototypes assumed by main.c (you don’t need to follow this, you can have your
own prototypes and can have an own main.c). The skeleton does not define the contents of TCB.

7

