
Design of Parallel and High-Performance
Computing
Fall 2014
Lecture: Locks and Lock-Free continued

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider, Arnamoy Bhattacharyya

Administrivia

 Intermediate (very short) presentation: Thursday 11/27 during recitation

 Should have first results and a real plan!

 Time to get very brief feedback

 Focus on:

What tools/programming language/parallelization scheme do you use?

Which architecture? (we only offer access to Xeon Phi, you may use different)

How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)

(Somewhat) realistic use-cases and input sets?

What are the key concepts employed?

What are the main obstacles?

 Final project presentation: Monday 12/15 during last lecture

 Report will be due in January!

Still, starting to write early is very helpful --- write – rewrite – rewrite …

 2

Review of last lecture

 Hardware operations for concurrency control

 More on locks (using advanced operations)

 Spin locks

 Various optimized locks

 Stopped right before queue locks (the best ones )

3

DPHPC Overview

4

Goals of this lecture

 Even more on locks (issues and extended concepts)

 Queue locks

 Deadlocks, priority inversion, competitive spinning, semaphores

 Case studies

 Barrier

 Locks in practice: a set structure

 5

Improvements?

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive
atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry
to CR)

 What would be a fix for that?

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness

6

Array Queue Lock

 Array to implement
queue

 Tail-pointer shows next free
queue position

 Each thread spins on own
location

CL padding!

 index[] array can be put in TLS

 So are we done now?

 What’s wrong?

 Synchronizing M objects
requires Θ(NM) storage

 What do we do now?

7

volatile int array*n+ = ,1,0,…,0-;
volatile int index*n+ = ,0,0,…,0-;
volatile int tail = 0;

void lock() {
 index[tid] = GetAndInc(tail) % n;
 while (!array[index[tid]]); // wait to receive lock
}

void unlock() {
 array[index[tid]] = 0; // I release my lock
 array[(index[tid] + 1) % n] = 1; // next one
}

CLH Lock (1993)

 List-based (same queue
principle)

 Discovered twice by Craig,
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!

8

typedef struct qnode {
 struct qnode *prev;
 int succ_blocked;
} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
 qn->succ_blocked = 1;
 qn->prev = FetchAndSet(lck, qn);
 while (qn->prev->succ_blocked);
}

void unlock(qnode **qn) {
 qnode *pred = (*qn)->prev;
 (*qn)->succ_blocked = 0;
 *qn = pred;
}

CLH Lock (1993)

 Qnode objects represent
thread state!

 succ_blocked == 1 if waiting
or acquired lock

 succ_blocked == 0 if released
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?

9

typedef struct qnode {
 struct qnode *prev;
 int succ_blocked;
} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
 qn->succ_blocked = 1;
 qn->prev = FetchAndSet(lck, qn);
 while (qn->prev->succ_blocked);
}

void unlock(qnode **qn) {
 qnode *pred = (*qn)->prev;
 (*qn)->succ_blocked = 0;
 *qn = pred;
}

MCS Lock (1991)

 Make queue explicit

 Acquire lock by
appending to queue

 Spin on own node
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

10

typedef struct qnode {
 struct qnode *next;
 int succ_blocked;
} qnode;

qnode *lck = NULL;

void lock(qnode *lck, qnode *qn) {
 qn->next = NULL;
 qnode *pred = FetchAndSet(lck, qn);
 if(pred != NULL) {
 qn->locked = 1;
 pred->next = qn;
 while(qn->locked);
} }

void unlock(qnode * lck, qnode *qn) {
 if(qn->next == NULL) , // if we’re the last waiter
 if(CAS(lck, qn, NULL)) return;
 while(qn->next == NULL); // wait for pred arrival
 }
 qn->next->locked = 0; // free next waiter
 qn->next = NULL;
}

Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!

11

Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal (try to proof a lower bound!)

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

12

More Practical Optimizations

 Let’s step back to “data race”

 (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither AB nor BA

 So we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

 Let’s say you implement a web-based encyclopedia

 Consider the “average two accesses” – do they conflict?

13

Reader-Writer Locks

 Allows multiple concurrent reads

 Multiple reader locks concurrently in CR

 Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

 Syntax:

 read_(un)lock()

 write_(un)lock()

14

A Simple RW Lock

 Seems efficient!?

 Is it? What’s wrong?

 Polling CAS!

 Is it fair?

 Readers are preferred!

 Can always delay
writers (again and
again and again)

15

const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
 AtomicAdd(lock, R);
 while(lock & W);
}

void write_lock(lock_t lock) {
 while(!CAS(lock, 0, W));
}

void read_unlock(lock_t lock) {
 AtomicAdd(lock, -R);
}

void write_unlock(lock_t lock) {
 AtomicAdd(lock, -W);
}

Fixing those Issues?

 Polling issue:

 Combine with MCS lock idea of queue polling

 Fairness:

 Count readers and writers

16

The final algorithm (Alg. 4)
has a flaw that was
corrected in 2003!

(1991)

Deadlocks

 Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

17

What are necessary

conditions for deadlock?

Deadlocks

 Necessary conditions:

 Mutual Exclusion

 Hold one resource, request another

 No preemption

 Circular wait in dependency graph

 One condition missing will prevent deadlocks!

 Different avoidance strategies (which?)

18

Issues with Spinlocks

 Spin-locking is very wasteful

 The spinning thread occupies resources

 Potentially the PE where the waiting thread wants to run  requires
context switch!

 Context switches due to

 Expiration of time-slices (forced)

 Yielding the CPU

19

What is this?

20

Why is the 1997 Mars Rover in our lecture?

 It landed, received program, and worked … until it spuriously
rebooted!

  watchdog

 Scenario (vxWorks RT OS):

 Single CPU

 Two threads A,B sharing common bus, using locks

 (independent) thread C wrote data to flash

 Priority: ACB (A highest, B lowest)

 Thread C would run into a lifelock (infinite loop)

 Thread B was preempted by C while holding lock

 Thread A got stuck at lock 

21 [http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

 If busy-waiting thread has higher priority than thread holding lock ⇒
no progress!

 Can be fixed with the help of the OS

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

22

Condition Variables

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

23

Condition Variable Semantics

 Hoare-style:

 Signaler passes lock to waiter, signaler suspended

 Waiter runs immediately

 Waiter passes lock back to signaler if it leaves critical section or if it waits
again

 Mesa-style (most used):

 Signaler keeps lock

 Waiter simply put on run queue

 Needs to acquire lock, may wait again

24

When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

25

When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the
competitiveness?

26

Competitive Spinning

 If T is the overhead to process a wait, then a locking algorithm that
spins for time T before it blocks is 2-competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized
Algorithms for Non-Uniform Problems”, SODA 1989

 If randomized algorithms are used, then
e/(e-1)-competitiveness (~1.58) can be achieved

27

Generalized Locks: Semaphores

 Controlling access to more than one resource

 Described by Dijkstra 1965

 Internal state is an atomic counter C

 Two operations:

 P() – block until C>0; decrement C (atomically)

 V() – signal and increment C

 Binary or 0/1 semaphore equivalent to lock

 C is always 0 or 1, i.e., V() will not increase it further

 Trivia:

 If you’re lucky (aehem, speak Dutch), mnemonics:

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce)

28

Semaphore Implementation

 Can be implemented with mutual exclusion!

 And can be used to implement mutual exclusion 

 … or with test and set and many others!

 Also has fairness concepts:

 Order of granting access to waiting (queued) threads

 strictly fair (starvation impossible, e.g., FIFO)

 weakly fair (starvation possible, e.g., random)

29

Case Study 1: Barrier

 Barrier semantics:

 No process proceeds before all processes reached barrier

 Similar to mutual exclusion but not exclusive, rather “synchronized”

 Often needed in parallel high-performance programming

 Especially in SPMD programming style

 Parallel programming “frameworks” offer barrier semantics (pthread,
OpenMP, MPI)

 MPI_Barrier() (process-based)

 pthread_barrier

 #pragma omp barrier

 lock xadd + spin

Problem: when to re-use the counter?

Cannot just set it to 0 

Trick: “lock xadd -1” when done 

30

[cf. http://www.spiral.net/software/barrier.html]

Barrier Performance

31

Case Study 2: Reasoning about Semantics

32

CACM

Volume 9 Issue 1, Jan. 1966

bool want[2];
bool turn;
byte cnt;

proctype P(bool i)
{
 want[i] = 1;
 do
 :: (turn != i) ->
 (!want[1-i]);
 turn = i
 :: (turn == i) ->
 break
 od;
 skip; /* critical section */
 cnt = cnt+1;
 assert(cnt == 1);
 cnt = cnt-1;
 want[i] = 0
}

init { run P(0); run P(1) }

Case Study 2: Reasoning about Semantics

 Is the proposed algorithm correct?

 We may proof it manually

Using tools from the last lecture

→ reason about the state space of H

 Or use automated proofs (model checking)

E.g., SPIN (Promela syntax)

33

Case Study 2: Reasoning about Semantics

 Spin tells us quickly that it
found a problem

 A sequentially consistent
order that violates mutual
exclusion!

 It’s not always that easy

 This example comes from the SPIN
tutorial

 More than two threads make it much
more demanding!

 More in the recitation!

34

Locks in Practice

 Running example: List-based set of integers

 S.insert(v) – return true if v was inserted

 S.remove(v) – return true if v was removed

 S.contains(v) – return true iff v in S

 Simple ordered linked list

 Do not use this at home (poor performance)

 Good to demonstrate locking techniques

E.g., skip list would be faster but more complex

35

Set Structure in Memory

 This and many of the following illustrations are provided by Maurice
Herlihy in conjunction with the book “The Art of Multiprocessor
Programming”

36

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Sequential Set

37

boolean add(S, x) {
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x)
 return false;
 else {
 node n = new node();
 n.key = x;
 n.next = curr;
 pred.next = n;
 }
 return true;
}

boolean remove(S, x) {
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x) {
 pred.next = curr.next;
 free(curr);
 return true;
 }
 return false;
}

boolean contains(S, x) {
 int *curr = S.head;
 while(curr.key < x)
 curr = curr.next;
 if(curr.key == x)
 return true;
 return false;
}

typedef struct {
 int key;
 node *next;
} node;

Sequential Operations

38

a c d

b

a b c

add()

remove()

Concurrent Sets

 What can happen if multiple threads call set operations at the “same
time”?

 Operations can conflict!

 Which operations conflict?

 (add, remove), (add, add), (remove, remove), (remove, contains) will
conflict

 (add, contains) may miss update (which is fine)

 (contains, contains) does not conflict

 How can we fix it?

39

Coarse-grained Locking

40

boolean add(S, x) {
 lock(S);
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x)
 unlock(S);
 return false;
 else {
 node node = malloc();
 node.key = x;
 node.next = curr;
 pred.next = node;
 }
 unlock(S);
 return true;
}

boolean remove(S, x) {
 lock(S);
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x) {
 pred.next = curr.next;
 unlock(S);
 free(curr);
 return true;
 }
 unlock(S);
 return false;
}

boolean contains(S, x) {
 lock(S);
 int *curr = S.head;
 while(curr.key < x)
 curr = curr.next;
 if(curr.key == x) {
 unlock(S);
 return true;
 }
 unlock(S);
 return false;
}

Coarse-grained Locking

 Correctness proof?

 Assume sequential version is correct

Alternative: define set of invariants and proof that initial condition as
well as all transformations adhere (pre- and post conditions)

 Proof that all accesses to shared data are in CRs

This may prevent some optimizations

 Is the algorithm deadlock-free? Why?

 Locks are acquired in the same order (only one lock)

 Is the algorithm starvation-free and/or fair? Why?

 It depends on the properties of the used locks!

41

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

42

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%. A good programmer will not be lulled
into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified” — Donald Knuth
(in Structured Programming with Goto Statements)

43

How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex

44

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

45

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

46

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

47

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

48

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

49

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

50

typedef struct {
 int key;
 node *next;
 lock_t lock;
} node;

Hand-over-Hand (fine-grained) locking

51

a b c

Hand-over-Hand (fine-grained) locking

52

a b c

Hand-over-Hand (fine-grained) locking

53

a b c

Hand-over-Hand (fine-grained) locking

54

a b c

Hand-over-Hand (fine-grained) locking

55

a b c

Removing a Node

56

a b c d

remove(b)

Removing a Node

57

a b c d

remove(b)

Removing a Node

58

a b c d

remove(b)

Removing a Node

59

a b c d

remove(b)

Removing a Node

60

a b c d

remove(b)

Removing a Node

61

a c d

remove(b)
Why lock target node?

Concurrent Removes

62

a b c d

remove(c)
remove(b)

Concurrent Removes

63

a b c d

remove(b)
remove(c)

Concurrent Removes

64

a b c d

remove(b)
remove(c)

Concurrent Removes

65

a b c d

remove(b)
remove(c)

Concurrent Removes

66

a b c d

remove(b)
remove(c)

Concurrent Removes

67

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 68

Concurrent Removes

68

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 69

Concurrent Removes

69

a b c d

remove(b)
remove(c)

Uh, Oh

70

a c d

remove(b)
remove(c)

Uh, Oh

71

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking

72

Hand-Over-Hand Again

73

a b c d

remove(b)

Hand-Over-Hand Again

74

a b c d

remove(b)

Hand-Over-Hand Again

75

a b c d

remove(b)

Hand-Over-Hand Again

76

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

77

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

78

a c d

remove(b)

Removing a Node

79

a b c d

remove(b)
remove(c)

Removing a Node

80

a b c d

remove(b)
remove(c)

Removing a Node

81

a b c d

remove(b)
remove(c)

Removing a Node

82

a b c d

remove(b)
remove(c)

Removing a Node

83

a b c d

remove(b)
remove(c)

Removing a Node

84

a b c d

remove(b)
remove(c)

Removing a Node

85

a b c d

remove(b)
remove(c)

Removing a Node

86

a b c d

remove(b)
remove(c)

Removing a Node

87

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

88

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

89

a b c d

Wait!
remove(c)

Removing a Node

90

a b d

Proceed

to

remove(b)

Removing a Node

91

a b d

remove(b)

Removing a Node

92

a b d

remove(b)

Removing a Node

93

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

94

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

95

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

96

Optimistic: Traverse without Locking

97

b d e a

add(c) Aha!

Optimistic: Lock and Load

98

b d e a

add(c)

Optimistic: Lock and Load

99

b d e a

add(c)

c

What could go wrong?

100

b d e a

add(c) Aha!

What could go wrong?

101

b d e a

add(c)

What could go wrong?

102

b d e a

remove(b)

What could go wrong?

103

b d e a

remove(b)

What could go wrong?

104

b d e a

add(c)

What could go wrong?

105

b d e a

add(c)

c

What could go wrong?

106

d e a

add(c) Uh-oh

Validate – Part 1

107

b d e a

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

108

b d e a

add(c) Aha!

What Else Could Go Wrong?

109

b d e a

add(c)

add(b’)

What Else Could Go Wrong?

110

b d e a

add(c)

add(b’) b’

What Else Could Go Wrong?

111

b d e a

add(c)
b’

What Else Could Go Wrong?

112

b d e a

add(c)

c

Validate Part 2
(while holding locks)

113

b d e a

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!

114

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

115

typedef struct {
 int key;
 node *next;
 lock_t lock;
 boolean valid;
} node;

Lazy Removal

116

a a b c d

c

Lazy Removal

117

a a b d

Present in list

c

Lazy Removal

118

a a b d

Logically deleted

Lazy Removal

119

a a b c d

Physically deleted

Lazy Removal

120

a a b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

121

Business as Usual

122

a b c

Business as Usual

123

a b c

Business as Usual

124

a b c

Business as Usual

125

a b c

remove(b)

Business as Usual

126

a b c

a not

marked

Business as Usual

127

a b c

a still

points

to b

Business as Usual

128

a b c

Logical

delete

Business as Usual

129

a b c

physical

delete

Business as Usual

130

a b c

Summary: Wait-free Contains

131

a 0 0 0 a b c 0 e 1 d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

132

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

133

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

134

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

135

Problem…

136

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(3) Physical

Removal 0 d

(2) Node

added

The Solution: Combine Mark and Pointer

137

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0 d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

138

Removing a Node

139

a b d

remove

b

remove

c

c

Removing a Node

140

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

141

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

142

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

143

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

144

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

145

