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Administrivia 

 Intermediate (very short) presentation: Thursday 11/27 during recitation 

 Should have first results and a real plan! 

 Time to get very brief feedback 

 Focus on: 

What tools/programming language/parallelization scheme do you use? 

Which architecture? (we only offer access to Xeon Phi, you may use different) 

How to verify correctness of the parallelization? 

How to argue about performance (bounds, what to compare to?) 

(Somewhat) realistic use-cases and input sets? 

What are the key concepts employed? 

What are the main obstacles? 

 Final project presentation: Monday 12/15 during last lecture 

 Report will be due in January! 

Still, starting to write early is very helpful --- write – rewrite – rewrite … 
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Review of last lecture 

 Hardware operations for concurrency control 

 More on locks (using advanced operations) 

 Spin locks 

 Various optimized locks 

 Stopped right before queue locks (the best ones ) 
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DPHPC Overview 
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Goals of this lecture 

 Even more on locks (issues and extended concepts) 

 Queue locks 

 Deadlocks, priority inversion, competitive spinning, semaphores 

 Case studies 

 Barrier 

 Locks in practice: a set structure 
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Improvements? 

 Are TAS locks perfect? 

 What are the two biggest issues? 

 Cache coherency traffic (contending on same location with expensive 
atomics) 

-- or -- 

 Critical section underutilization (waiting for backoff times will delay entry 
to CR) 

 What would be a fix for that?  

 How is this solved at airports and shops (often at least)? 

 Queue locks -- Threads enqueue 

 Learn from predecessor if it’s their turn 

 Each threads spins at a different location 

 FIFO fairness 

 

6 



Array Queue Lock 

 Array to implement  
queue 

 Tail-pointer shows next free  
queue position 

 Each thread spins on own  
location 

CL padding! 

 index[] array can be put in TLS 

 So are we done  now? 

 What’s wrong? 

 Synchronizing M objects  
requires Θ(NM) storage 

 What do we do now? 
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volatile int array*n+ = ,1,0,…,0-; 
volatile int index*n+ = ,0,0,…,0-; 
volatile int tail = 0; 
 
void lock() { 
  index[tid] = GetAndInc(tail) % n; 
  while (!array[index[tid]]); // wait to receive lock 
} 
 
void unlock() { 
  array[index[tid]] = 0; // I release my lock 
  array[(index[tid] + 1) % n] = 1; // next one 
} 



CLH Lock (1993) 

 List-based (same queue  
principle) 

 Discovered twice by Craig,  
Landin, Hagersten 1993/94 

 2N+3M words 

 N threads, M locks 

 Requires thread-local qnode  
pointer 

 Can be hidden! 
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typedef struct qnode { 
  struct qnode *prev; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = new qnode; // node owned by lock 
 
void lock(qnode *lck, qnode *qn) { 
  qn->succ_blocked = 1; 
  qn->prev = FetchAndSet(lck, qn); 
  while (qn->prev->succ_blocked); 
} 
 
void unlock(qnode **qn) { 
  qnode *pred = (*qn)->prev; 
  (*qn)->succ_blocked = 0; 
  *qn = pred; 
} 



CLH Lock (1993) 

 Qnode objects represent  
thread state! 

 succ_blocked == 1 if waiting  
or acquired lock 

 succ_blocked == 0 if released  
lock  

 List is implicit! 

 One node per thread 

 Spin location changes 

NUMA issues (cacheless) 

 Can we do better? 
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typedef struct qnode { 
  struct qnode *prev; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = new qnode; // node owned by lock 
 
void lock(qnode *lck, qnode *qn) { 
  qn->succ_blocked = 1; 
  qn->prev = FetchAndSet(lck, qn); 
  while (qn->prev->succ_blocked); 
} 
 
void unlock(qnode **qn) { 
  qnode *pred = (*qn)->prev; 
  (*qn)->succ_blocked = 0; 
  *qn = pred; 
} 



MCS Lock (1991) 

 Make queue explicit 

 Acquire lock by  
appending to queue 

 Spin on own node  
until locked is reset 

 Similar advantages 
as CLH but 

 Only 2N + M words 

 Spinning position is fixed! 

Benefits cache-less NUMA 

 What are the issues? 

 Releasing lock spins 

 More atomics! 
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typedef struct qnode { 
  struct qnode *next; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = NULL;  
 
void lock(qnode *lck, qnode *qn) { 
  qn->next = NULL; 
  qnode *pred = FetchAndSet(lck, qn); 
  if(pred != NULL) { 
    qn->locked = 1; 
    pred->next = qn; 
    while(qn->locked); 
} } 
 
void unlock(qnode * lck, qnode *qn) { 
  if(qn->next == NULL) , // if we’re the last waiter 
    if(CAS(lck, qn, NULL)) return; 
    while(qn->next == NULL); // wait for pred arrival 
  } 
  qn->next->locked = 0; // free next waiter 
  qn->next = NULL; 
} 



Lessons Learned! 

 Key Lesson: 

 Reducing memory (coherency) traffic is most important! 

 Not always straight-forward (need to reason about CL states) 

 

 MCS: 2006 Dijkstra Prize in distributed computing 

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade” 

 “probably the most influential practical mutual exclusion algorithm ever” 

 “vastly superior to all previous mutual exclusion algorithms” 

 fast, fair, scalable  widely used, always compared against! 
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Time to Declare Victory? 

 Down to memory complexity of 2N+M 

 Probably close to optimal (try to proof a lower bound!) 

 Only local spinning 

 Several variants with low expected contention 

 But: we assumed sequential consistency  

 Reality causes trouble sometimes 

 Sprinkling memory fences may harm performance 

 Open research on minimally-synching algorithms! 

Come and talk to me if you’re interested 
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More Practical Optimizations 

 Let’s step back to “data race” 

 (recap) two operations A and B on the same memory cause a data race if 
one of them is a write (“conflicting access”) and neither AB nor BA  

 So we put conflicting accesses into a CR and lock it! 

This also guarantees memory consistency in C++/Java! 

 

 Let’s say you implement a web-based encyclopedia  

 Consider the “average two accesses” – do they conflict? 
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Reader-Writer Locks 

 Allows multiple concurrent reads 

 Multiple reader locks concurrently in CR 

 Guarantees mutual exclusion between writer and writer locks and reader 
and writer locks 

 

 Syntax: 

 read_(un)lock() 

 write_(un)lock() 

14 



A Simple RW Lock 

 Seems efficient!? 

 Is it? What’s wrong? 

 Polling CAS! 

 

 Is it fair? 

 Readers are preferred! 

 Can always delay  
writers (again and  
again and again)   
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const W = 1; 
const R = 2; 
volatile int lock=0; // LSB is writer flag! 
 
void read_lock(lock_t lock) { 
  AtomicAdd(lock, R); 
  while(lock & W);   
} 
 
void write_lock(lock_t lock) { 
  while(!CAS(lock, 0, W));   
} 
 
void read_unlock(lock_t lock) { 
  AtomicAdd(lock, -R); 
} 
 
void write_unlock(lock_t lock) { 
  AtomicAdd(lock, -W); 
} 



Fixing those Issues? 

 Polling issue: 

 Combine with MCS lock idea of queue polling 

 Fairness: 

 Count readers and writers 
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The final algorithm (Alg. 4) 
has a flaw that was 
corrected in 2003! 

(1991) 



Deadlocks 

 Kansas state legislature: “When two trains approach each other at a 
crossing, both shall come to a full stop and neither shall start up again 
until the other has gone.” 

[according to Botkin, Harlow  "A Treasury of Railroad Folklore" (pp. 381)] 
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What are necessary  

conditions for deadlock? 



Deadlocks 

 Necessary conditions: 

 Mutual Exclusion 

 Hold one resource, request another 

 No preemption 

 Circular wait in dependency graph 

 One condition missing will prevent deadlocks! 

 Different avoidance strategies (which?) 
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Issues with Spinlocks 

 Spin-locking is very wasteful 

 The spinning thread occupies resources 

 Potentially the PE where the waiting thread wants to run  requires 
context switch! 

 Context switches due to 

 Expiration of time-slices (forced) 

 Yielding the CPU 
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What is this? 
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Why is the 1997 Mars Rover in our lecture? 

 It landed, received program, and worked … until it spuriously 
rebooted! 

  watchdog 

 Scenario (vxWorks RT OS): 

 Single CPU 

 Two threads A,B sharing common bus, using locks 

 (independent) thread C wrote data to flash 

 Priority: ACB (A highest, B lowest) 

 Thread C would run into a lifelock (infinite loop) 

 Thread B was preempted by C while holding lock 

 Thread A got stuck at lock  

 

 

 

21 [http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html] 



Priority Inversion 

 If busy-waiting thread has higher priority than thread holding lock ⇒ 
no progress! 

 Can be fixed with the help of the OS 

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to 
highest priority among waiting tasks) 
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Condition Variables 

 Allow threads to yield CPU and leave the OS run queue 

 Other threads can get them back on the queue! 

 cond_wait(cond, lock) – yield and go to sleep 

 cond_signal(cond) – wake up sleeping threads 

 Wait and signal are OS calls 

 Often expensive, which one is more expensive? 

Wait, because it has to perform a full context switch 
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Condition Variable Semantics 

 Hoare-style: 

 Signaler passes lock to waiter, signaler suspended 

 Waiter runs immediately 

 Waiter passes lock back to signaler if it leaves critical section or if it waits 
again 

 Mesa-style (most used): 

 Signaler keeps lock 

 Waiter simply put on run queue 

 Needs to acquire lock, may wait again 
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When to Spin and When to Block? 

 Spinning consumes CPU cycles but is cheap 

 “Steals” CPU from other threads 

 Blocking has high one-time cost and is then free 

 Often hundreds of cycles (trap, save TCB …) 

 Wakeup is also expensive (latency) 

Also cache-pollution 

 Strategy: 

 Poll for a while and then block 
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When to Spin and When to Block? 

 What is a “while”? 

 Optimal time depends on the future 

 When will the active thread leave the CR? 

 Can compute optimal offline schedule 

 Actual problem is an online problem 

 Competitive algorithms 

 An algorithm is c-competitive if for a sequence of actions x and a constant 
a holds: 

C(x) ≤ c*Copt(x) + a 

 What would a good spinning algorithm look like and what is the 
competitiveness? 
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Competitive Spinning 

 If T is the overhead to process a wait, then a locking algorithm that 
spins for time T before it blocks is 2-competitive! 

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized 
Algorithms for Non-Uniform Problems”, SODA 1989  

 If randomized algorithms are used, then  
e/(e-1)-competitiveness (~1.58) can be achieved 
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Generalized Locks: Semaphores 

 Controlling access to more than one resource 

 Described by Dijkstra 1965 

 Internal state is an atomic counter C 

 Two operations:  

 P() – block until C>0; decrement C (atomically) 

 V() – signal and increment C 

 Binary or 0/1 semaphore equivalent to lock 

 C is always 0 or 1, i.e., V() will not increase it further 

 Trivia: 

 If you’re lucky (aehem, speak Dutch), mnemonics: 

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce) 
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Semaphore Implementation 

 Can be implemented with mutual exclusion! 

 And can be used to implement mutual exclusion  

 … or with test and set and many others! 

 Also has fairness concepts: 

 Order of granting access to waiting (queued) threads 

 strictly fair (starvation impossible, e.g., FIFO) 

 weakly fair (starvation possible, e.g., random) 
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Case Study 1: Barrier 

 Barrier semantics: 

 No process proceeds before all processes reached barrier 

 Similar to mutual exclusion but not exclusive, rather “synchronized” 

 Often needed in parallel high-performance programming 

 Especially in SPMD programming style 

 Parallel programming “frameworks” offer barrier semantics (pthread, 
OpenMP, MPI) 

 MPI_Barrier() (process-based) 

 pthread_barrier 

 #pragma omp barrier 

 lock xadd + spin 

Problem: when to re-use the counter? 

Cannot just set it to 0  

Trick: “lock xadd -1” when done  
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[cf. http://www.spiral.net/software/barrier.html] 



Barrier Performance 
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Case Study 2: Reasoning about Semantics 
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CACM  

Volume 9 Issue 1, Jan. 1966  



bool want[2]; 
bool turn; 
byte cnt; 
 
proctype P(bool i) 
{ 
  want[i] = 1; 
  do 
  :: (turn != i) -> 
      (!want[1-i]); 
      turn = i 
  :: (turn == i) -> 
      break 
  od; 
  skip; /* critical section */ 
  cnt = cnt+1; 
  assert(cnt == 1); 
  cnt = cnt-1; 
  want[i] = 0 
} 
 
init { run P(0); run P(1) } 

Case Study 2: Reasoning about Semantics 

 Is the proposed algorithm correct? 

 We may proof it manually  

Using tools from the last lecture 

→ reason about the state space of H 

 Or use automated proofs (model checking) 

E.g., SPIN (Promela syntax) 
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Case Study 2: Reasoning about Semantics 

 Spin tells us quickly that it  
found a problem 

 A sequentially consistent 
order that violates mutual 
exclusion! 

 It’s not always that easy 

 This example comes from the SPIN 
tutorial 

 More than two threads make it much  
more demanding! 

 More in the recitation! 
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Locks in Practice 

 Running example: List-based set of integers 

 S.insert(v) – return true if v was inserted 

 S.remove(v) – return true if v was removed 

 S.contains(v) – return true iff v in S 

 Simple ordered linked list 

 Do not use this at home (poor performance) 

 Good to demonstrate locking techniques 

E.g., skip list would be faster but more complex 
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Set Structure in Memory 

 This and many of the following illustrations are provided by Maurice 
Herlihy in conjunction with the book “The Art of Multiprocessor 
Programming” 
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a b c 

Sorted with Sentinel nodes 

(min & max possible keys) 

-∞ 

+∞ 



Sequential Set 

37 

 

 

 

boolean add(S, x) { 
  node *pred = S.head; 
  node *curr = pred.next; 
  while(curr.key < x) { 
    pred = curr; 
    curr = pred.next; 
  } 
  if(curr.key == x)  
    return false; 
  else { 
    node n = new node(); 
    n.key = x; 
    n.next = curr; 
    pred.next = n; 
  }   
  return true; 
} 

boolean remove(S, x) { 
  node *pred = S.head; 
  node *curr = pred.next; 
  while(curr.key < x) { 
    pred = curr; 
    curr = pred.next; 
  } 
  if(curr.key == x) { 
    pred.next = curr.next; 
    free(curr); 
    return true; 
  }  
  return false; 
}   

boolean contains(S, x) { 
  int *curr = S.head; 
  while(curr.key < x)  
    curr = curr.next; 
  if(curr.key == x)  
    return true; 
  return false; 
} 

typedef struct { 
  int key; 
  node *next; 
} node; 



Sequential Operations 
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a c d 

b 

a b c 

add()  

remove()  



Concurrent Sets 

 What can happen if multiple threads call set operations at the “same 
time”? 

 Operations can conflict! 

 Which operations conflict? 

 (add, remove), (add, add), (remove, remove), (remove, contains) will 
conflict 

 (add, contains) may miss update (which is fine) 

 (contains, contains) does not conflict 

 How can we fix it? 
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Coarse-grained Locking 

40 

 

 

 

boolean add(S, x) { 
  lock(S); 
  node *pred = S.head; 
  node *curr = pred.next; 
  while(curr.key < x) { 
    pred = curr; 
    curr = pred.next; 
  } 
  if(curr.key == x)  
    unlock(S); 
    return false; 
  else { 
    node node = malloc(); 
    node.key = x; 
    node.next = curr; 
    pred.next = node; 
  }   
  unlock(S); 
  return true; 
} 

boolean remove(S, x) { 
  lock(S); 
  node *pred = S.head; 
  node *curr = pred.next; 
  while(curr.key < x) { 
    pred = curr; 
    curr = pred.next; 
  } 
  if(curr.key == x) { 
    pred.next = curr.next; 
    unlock(S); 
    free(curr); 
    return true; 
  }  
  unlock(S); 
  return false; 
}   

boolean contains(S, x) { 
  lock(S); 
  int *curr = S.head; 
  while(curr.key < x)  
    curr = curr.next; 
  if(curr.key == x)  { 
    unlock(S); 
    return true; 
  } 
  unlock(S); 
  return false; 
} 



Coarse-grained Locking 

 Correctness proof? 

 Assume sequential version is correct 

Alternative: define set of invariants and proof that initial condition as 
well as all transformations adhere (pre- and post conditions) 

 Proof that all accesses to shared data are in CRs 

This may prevent some optimizations 

 Is the algorithm deadlock-free? Why? 

 Locks are acquired in the same order (only one lock) 

 Is the algorithm starvation-free and/or fair? Why? 

 It depends on the properties of the used locks! 
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Coarse-grained Locking 

 Is the algorithm performing well with many concurrent threads 
accessing it? 
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honk! 

a b d 

c 

Simple but hotspot + bottleneck  

honk! 

 



Coarse-grained Locking 

 Is the algorithm performing well with many concurrent threads 
accessing it? 

 No, access to the whole list is serialized 

 BUT: it’s easy to implement and proof correct 

 Those benefits should never be underestimated 

 May be just good enough 

 “We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil. Yet we should not pass up 
our opportunities in that critical 3%. A good programmer will not be lulled 
into complacency by such reasoning, he will be wise to look carefully at the 
critical code; but only after that code has been identified” — Donald Knuth 
(in Structured Programming with Goto Statements) 
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How to Improve? 

 Will present some “tricks” 

 Apply to the list example 

 But often generalize to other algorithms 

 Remember the trick, not the example! 

 See them as “concurrent programming patterns” (not literally) 

 Good toolbox for development of concurrent programs 

 They become successively more complex  
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Tricks Overview 

1. Fine-grained locking 

 Split object into “lockable components” 

 Guarantee mutual exclusion for conflicting accesses to same component 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

 Multiple readers hold lock (traversal) 

 contains() only needs read lock 

 Locks may be upgraded during operation 

Must ensure starvation-freedom for writer locks! 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

 Traverse without locking 

Need to make sure that this is correct! 

 Acquire lock if update necessary 

May need re-start from beginning, tricky 

4. Lazy locking 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

 Postpone hard work to idle periods 

 Mark node deleted 

Delete it physically later 

5. Lock-free 
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Tricks Overview 

1. Fine-grained locking 

2. Reader/writer locking 

3. Optimistic synchronization 

4. Lazy locking 

5. Lock-free 

 Completely avoid locks 

 Enables wait-freedom 

 Will need atomics (see later why!) 

 Often very complex, sometimes higher overhead 
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Trick 1: Fine-grained Locking 

 Each element can be locked 

 High memory overhead 

 Threads can traverse list 
concurrently like a pipeline 

 Tricky to prove correctness 

 And deadlock-freedom 

 Two-phase locking (acquire, release) often helps 

 Hand-over-hand (coupled locking) 

 Not safe to release x’s lock before acquiring x.next’s lock  

will see why in a minute 

 Important to acquire locks in the same order 
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typedef struct { 
  int key; 
  node *next; 
  lock_t lock; 
} node; 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Hand-over-Hand (fine-grained) locking 
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a b c 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 



Removing a Node 
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a c d 

remove(b) 
Why lock target node? 



Concurrent Removes 
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a b c d 

remove(c) 
remove(b) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Art of Multiprocessor Programming 68 

Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Art of Multiprocessor Programming 69 

Concurrent Removes 
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a b c d 

remove(b) 
remove(c) 



Uh, Oh 
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a c d 

remove(b) 
remove(c) 



Uh, Oh 
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a c d 

Bad news, c not removed 

remove(b) 
remove(c) 



Insight 

 If a node x is locked 

 Successor of x cannot be deleted! 

 Thus, safe locking is 

 Lock node to be deleted 

 And its predecessor! 

  hand-over-hand locking 

 

72 



Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 
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a b c d 

remove(b) 



Hand-Over-Hand Again 
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a b c d 

remove(b) 
Found 

it! 



Hand-Over-Hand Again 
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a b c d 

remove(b) 
Found 

it! 



Hand-Over-Hand Again 
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a c d 

remove(b) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

remove(b) 
remove(c) 



Removing a Node 
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a b c d 

Must 

acquire  

Lock for 

b 

remove(c) 



Removing a Node 
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a b c d 

Waiting to 

acquire 

lock for b 

remove(c) 



Removing a Node 
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a b c d 

Wait! 
remove(c) 



Removing a Node 
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a b d 

Proceed 

to 

remove(b) 



Removing a Node 
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a b d 

remove(b) 



Removing a Node 
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a b d 

remove(b) 



Removing a Node 
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a d 

remove(b) 



What are the Issues? 

 We have fine-grained locking, will there be contention? 

 Yes, the list can only be traversed sequentially, a remove of the 3rd item 
will block all other threads! 

 This is essentially still serialized if the list is short (since threads can only 
pipeline on list elements) 

 Other problems, ignoring contention? 

 Must acquire O(|S|) locks  
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Trick 2: Reader/Writer Locking 

 Same hand-over-hand locking 

 Traversal uses reader locks 

 Once add finds position or remove finds target node, upgrade both locks 
to writer locks 

 Need to guarantee deadlock and starvation freedom! 

 Allows truly concurrent traversals 

 Still blocks behind writing threads 

 Still O(|S|) lock/unlock operations 
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Trick 3: Optimistic synchronization 

 Similar to reader/writer locking but traverse list without locks 

 Dangerous! Requires additional checks. 

 Harder to proof correct 
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Optimistic: Traverse without Locking 
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b d e a 

add(c) Aha! 



Optimistic: Lock and Load 
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b d e a 

add(c) 



Optimistic: Lock and Load 
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b d e a 

add(c) 

c 



What could go wrong? 
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b d e a 

add(c) Aha! 



What could go wrong? 
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b d e a 

add(c) 



What could go wrong? 
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b d e a 

remove(b) 



What could go wrong? 
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b d e a 

remove(b) 



What could go wrong? 
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b d e a 

add(c) 



What could go wrong? 

105 

b d e a 

add(c) 

c 



What could go wrong? 
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d e a 

add(c) Uh-oh 



Validate – Part 1 
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b d e a 

add(c) Yes, b still 

reachable 

from head 



What Else Could Go Wrong? 
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b d e a 

add(c) Aha! 



What Else Could Go Wrong? 
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b d e a 

add(c) 

add(b’) 



What Else Could Go Wrong? 
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b d e a 

add(c) 

add(b’) b’ 



What Else Could Go Wrong? 
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b d e a 

add(c) 
b’ 



What Else Could Go Wrong? 
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b d e a 

add(c) 

c 



Validate Part 2 
(while holding locks) 
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b d e a 

add(c) Yes, b still 

points to d 



Optimistic synchronization 

 One MUST validate AFTER locking 

1. Check if the path how we got there is still valid! 

2. Check if locked nodes are still connected 

 If any of those checks fail? 

Start over from the beginning (hopefully rare) 

 Not starvation-free 

 A thread may need to abort forever if nodes are added/removed 

 Should be rare in practice! 

 Other disadvantages? 

 All operations requires two traversals of the list! 

 Even contains() needs to check if node is still in the list! 
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Trick 4: Lazy synchronization 

 We really want one list traversal 

 Also, contains() should be wait-free 

 Is probably the most-used operation 

 Lazy locking is similar to optimistic 

 Key insight: removing is problematic 

 Perform it “lazily” 

 Add a new “valid” field 

 Indicates if node is still in the set 

 Can remove it without changing list structure! 

 Scan once, contains() never locks! 
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typedef struct { 
  int key; 
  node *next; 
  lock_t lock; 
  boolean valid; 
} node; 



Lazy Removal 
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a a b c d 



c 

Lazy Removal 
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a a b d 

Present in list 



c 

Lazy Removal 
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a a b d 

Logically deleted 



Lazy Removal 
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a a b c d 

Physically deleted 



Lazy Removal 

120 

a a b d 

Physically deleted 



How does it work? 

 Eliminates need to re-scan list for reachability 

 Maintains invariant that every unmarked node is reachable! 

 Contains can now simply traverse the list 

 Just check marks, not reachability, no locks 

 Remove/Add 

 Scan through locked and marked nodes 

 Removing does not delay others 

 Must only lock when list structure is updated 

Check if neither pred nor curr are marked, pred.next == curr 
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Business as Usual 
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a b c 



Business as Usual 
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a b c 



Business as Usual 
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a b c 



Business as Usual 
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a b c 

remove(b) 



Business as Usual 

126 

a b c 

a not 

marked 



Business as Usual 
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a b c 

a still 

points 

to b 



Business as Usual 
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a b c 

Logical 

delete 



Business as Usual 
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a b c 

physical 

delete 



Business as Usual 
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a b c 



Summary: Wait-free Contains 
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a 0 0 0 a b c 0 e 1 d 

Use Mark bit + list ordering  
1. Not marked  in the set 
2. Marked or missing  not in the set  

Lazy add() and remove() + Wait-free contains() 



Problems with Locks 

 What are the fundamental problems with locks? 

 Blocking 

 Threads wait, fault tolerance 

 Especially when things like page faults occur in CR 

 Overheads 

 Even when not contended 

 Also memory/state overhead 

 Synchronization is tricky 

 Deadlock, other effects are hard to debug 

 Not easily composable 
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Lock-free Methods 

 No matter what: 

 Guarantee minimal progress 

I.e., some thread will advance 

 Threads may halt at bad times (no CRs! No exclusion!) 

I.e., cannot use locks! 

 Needs other forms of synchronization 

E.g., atomics (discussed before for the implementation of locks) 

Techniques are astonishingly similar to guaranteeing mutual exclusion 
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Trick 5: No Locking 

 Make list lock-free 

 Logical succession 

 We have wait-free contains 

 Make add() and remove() lock-free! 

Keep logical vs. physical removal 

 Simple idea: 

 Use CAS to verify that pointer is correct before moving it 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

(2) Physical 

Removal 
Use CAS to verify pointer  

is correct  

Not enough! Why?  

Lock-free Lists 
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Problem… 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

(3) Physical 

Removal 0 d 

(2) Node 

added 



The Solution: Combine Mark and Pointer 
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a 0 0 0 a b c 0 e 1 c 

(1) Logical Removal 

= 

Set Mark Bit 

(3) Physical 

Removal CAS 
0 d 

Mark-Bit and Pointer 

are CASed together! 

(2) Fail CAS: Node not  

added after logical 

Removal 



Practical Solution(s) 

 Option 1: 
 Introduce “atomic markable reference” type 

 “Steal” a bit from a pointer 

 Rather complex and OS specific  

 Option 2: 
 Use Double CAS (or CAS2)  

CAS of two noncontiguous locations 

 Well, not many machines support it  

Any still alive? 

 Option 3: 
 Our favorite ISA (x86) offers double-width CAS 

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems) 

 Option 4: 
 TM! 

E.g., Intel’s TSX (essentially a cmpxchg64b  (operates on a cache line)) 
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Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 



Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 

failed 

CAS CAS 



Removing a Node 
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a b d 

remove 

b 

remove 

c 

c 



Uh oh – node marked but not removed! 
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a d 

remove 

b 

remove 

c 

Zombie node! 



Dealing With Zombie Nodes 

 Add() and remove() “help to clean up” 

 Physically remove any marked nodes on their path 

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and 
remove curr 

If CAS fails, restart from beginning!  

 “Helping” is often needed in wait-free algs 

 This fixes all the issues and makes the algorithm correct! 
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Comments 

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost 

 If CAS fails, routine needs to re-traverse list 

 Necessary cleanup may lead to unnecessary contention at marked nodes 

 More complex data structures and correctness proofs than for locked 
versions 

 But guarantees progress, fault-tolerant and maybe even faster (that really 
depends) 
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More Comments 

 Correctness proof techniques 

 Establish invariants for initial state and transformations 

E.g., head and tail are never removed, every node in the set has to be 
reachable from head, … 

 Proofs are similar to those we discussed for locks 

Very much the same techniques (just trickier) 

Using sequential consistency (or consistency model of your choice ) 

Lock-free gets somewhat tricky 

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor 
Programming” 

 

145 


