Design of Parallel and High-Performance

Computing
Fall 2013
Lecture: Locks and Lock-Free

Instructor: Torsten Hoefler & Markus Puschel
TA: Timo Schneider, Arnamoy Bhattacharyya

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Administrivia

= Intermediate (very short) presentation: Thursday 11/27 during recitation

® Should have first results and a real plan!

" Time to get very quick feedback

" Focus on:
What tools/programming language/parallelization scheme do you use?
Which architecture? (we only offer access to Xeon Phi, you may use different)
How to verify correctness of the parallelization?
How to argue about performance (bounds, what to compare to?)
(Somewhat) realistic use-cases and input sets?
What are the key concepts employed?
What are the main obstacles?

m Final project presentation: Monday 12/15 during last lecture

= Report will be due in January!
Still, starting to write early is very helpful --- write — rewrite — rewrite ...

Review of last lecture

m Language memory models
= History
= Java/C++ overview

m Locks
= Two-thread
" Peterson
® Many different locks, strengths and weaknesses
® Lock options and parameters

m Formal proof methods

= Correctness (mutual exclusion as condition)
" Progress

DPHPC Overview

DPHPC\
2 IocTIity Bgralle\lism
s | - \
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
Qe : cache coherency ,
o | |
P memory | distributed |
o models ' algorithms '
&)
= locks group commu-
O lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law ,

| |
2 : memory o PRAM - LogP :
@) | | I |
2 o F

I/O complexity

balance principles | balance principles Il
Little's Law scheduling

Goals of this lecture

N-thread locks!

" Hardware operations for concurrency control

More on locks (using advanced operations)
= Spin locks
= Various optimized locks

Even more on locks (issues and extended concepts)

= Deadlocks, priority inversion, competitive spinning,
semaphores

Case studies
" Barrier, reasoning about semantics

Locks in practice: a set structure

Peterson in Practice ... on x86

m Implement and run our little counter on x86

m 100000 iterations

1.6 - 10°% errors

What is the
problem?

volatile int flag[2];
volatile int victim;

void lock() {

intj=1-tid;

flag[tid] =1; //I'm interested

victim =tid; // other goes first

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = 0; // I’'m not interested
}

Peterson in Practice ... on x86

m Implement and run our little counter on x86

m 100000 iterations
" 1.6-10%% errors

= What s the
problem?

No sequential
consistency
for W(v) and

R(flaglj])

volatile int flag[2];
volatile int victim;

void lock() {

intj=1-tid;

flag[tid] =1; //I'm interested

victim =tid; // other goes first

asm (“mfence”);

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = 0; // I’'m not interested

}

Peterson in Practice ... on x86

m Implement and run our little counter on x86

m 100000 iterations
" 1.6-10%% errors

= What s the
problem?

No sequential
consistency
for W(v) and

R(flaglj])
= Still 1.3 - 10%%
Why?

volatile int flag[2];
volatile int victim;

void lock() {

intj=1-tid;

flag[tid] =1; //I'm interested

victim =tid; // other goes first

asm (“mfence”);

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = 0; // I’'m not interested

}

Peterson in Practice ... on x86

m Implement and run our little counter on x86

m 100000 iterations
" 1.6-10%% errors

= Whatis the
problem?

No sequential
consistency
for W(v) and

R(flag[j])
= Still 1.3 - 10%%
Why?
Reads may slip into CR!

volatile int flag[2];
volatile int victim;

void lock() {
intj=1-tid;
flag[tid] =1; //I'm interested
victim =tid; // other goes first

asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
asm (“mfence”);
flag[tid] = 0; // I’'m not interested

}

Correct Peterson Lock on x86

m Unoptimized (naive sprinkling of mfences)

m Performance:

= No mfence
375ns

" mfence in lock
379ns

= mfence in unlock
404ns

= Two mfence
427ns (+14%)

volatile int flag[2];
volatile int victim;

void lock() {

intj=1-tid;

flag[tid]=1; //I'minterested

victim =tid; // other goes first

asm (“mfence”);

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
asm (“mfence”);
flag[tid] = 0; // I’'m not interested

}

Locking for N threads

m Simple generalization of Peterson’s lock, assume n levels | = 0...n-1
® |sit correct?

volatile int level[n] = {0,0,...,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
for (inti=1;i<n;i++) {//attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((3k != tid) (level[k] >= i && victim[i] == tid)) {};
}
}

void unlock() {
level[tid] = O;
}

Filter Lock - Correctness

m Lemma: For 0<j<n-1, there are at most n-j threads at level j!

m Intuition:
® Recursive proof (induction on j)
® By contradiction, assume n-j+1 threads at level j-1 and j
= Assume last thread to write victim
= Any other thread writes level before victim
® |ast thread will stop at spin due to other thread’s write

m j=n-1is critical region

Locking for N threads

m Simple generalization of Peterson’s lock, assume n levels | = 0...n-1

® |s it starvation-free?

volatile int level[n] = {0,0,...,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
for (inti=1;i<n;i++) {//attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((3k != tid) (level[k] >= i && victim[i] == tid)) {};
}
}

void unlock() {
level[tid] = O;
}

Filter Lock Starvation Freedom

m Intuition:

" |nductive argument over j (levels)

® Base-case: level n-1 has one thread (not stuck)

® Level j: assume thread is stuck
Eventually, higher levels will drain (induction)
Last entering thread is victim, it will wait
Thus, only one thread can be stuck at each level
Victim can only have one value 2 older threads will advance!

Filter Lock

m What are the disadvantages of this lock?

volatile int level[n] = {0,0,...,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
for (inti=1;i<n;i++) {// attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((3k != tid) (level[k] >= i && victim[i] == tid)) {};
}
}

void unlock() {
level[tid] = O;
}

Lock Fairness

m Starvation freedom provides no guarantee on how long a thread
waits or if it is “passed”!

m To reason about fairness, we define two sections of each lock
algorithm:

= Doorway D (bounded # of steps) void lock() {
= Waiting W (unbounded # of steps) intj=1-tid;
flag[tid] = true; // I'm interested
victim =tid; // other goes first
while (flag[j] && victim == tid) {};
}
m FIFO locks:

= |f T, finishes its doorway before T, the CR, = CR;
= |mplies fairness

16

Lamport’s Bakery Algorithm (1974)

m Is a FIFO lock (and thus fair)

m Each thread takes number in doorway and threads enter in the order
of their number!

volatile int flag[n] = {0,0,...,0};
volatile int label[n] = {0,0,....,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((Ik != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
public void unlock() {
flag[tid] = O;
}

Lamport’s Bakery Algorithm

m Advantages:
® Elegant and correct solution
m Starvation free, even FIFO fairness

m Not used in practice!
= Why?
" Needs to read/write N memory locations for synchronizing N threads
= Can we do better?
Using only atomic registers/memory

A Lower Bound to Memory Complexity

m Theorem 5.1in[1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

m So we’re doomed! Optimal locks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171-184, December
1993

Hardware Support?

m Hardware atomic operations:
" Test&Set
Write const to memory while returning the old value
= Atomic swap
Atomically exchange memory and register
= Fetch&Op
Get value and apply operation to memory location
= Compare&Swap
Compare two values and swap memory with register if equal
" | oad-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed = mini-TM

= |ntel TSX (transactional synchronization extensions)
Hardware-TM (roll your own atomic operations)

Relative Power of Synchronization

m Design-Problem I: Multi-core Processor
® Which atomic operations are useful?

m Design-Problem Il: Complex Application
= What atomic should | use?

m Concept of “consensus number” C if a primitive can be used to solve the
“consensus problem” in a finite number of steps (even if a threads stop)
® atomic registers have C=1 (thus locks have C=1!)
m TAS, Swap, Fetch&Op have C=2
= CAS, LL/SC, TM have C=o°

Test-and-Set Locks

m Test-and-Set semantics

" Memoize old value
err.l 'z vald bool test_and_set (bool *flag) {
= Set fixed value TASval (true) bool old = *flag;

= Return old value *flag = true;

return old;

m After execution: }// all atomic!

= Post-condition is a fixed (constant) value!

Test-and-Set Locks

m Assume TASval indicates “locked”
m Write something else to indicate “unlocked”

m TAS until return value is != TASval

m When will the lock be volatile int lock = O;

granted?
m Does this work well in VOid_'OCk() {
: while (TestAndSet(&lock) == 1);
practice? \

void unlock() {
lock = 0;
}

Contention

m On x86, the XCHG instruction is used to implement TAS

" For experts: x86 LOCK is superfluous!
movl S1, %eax

m Cacheline is read and written xchg %eax, (%ebx)
" Ends up in exclusive state, invalidates other copies
® Cacheline is “thrown” around uselessly
" High load on memory subsystem
x86 bus lock is essentially a full memory barrier &

Test-and-Test-and-Set (TATAS) Locks

m Spinning in TAS is not a good idea

m Spin on cache line in shared state
= All threads at the same time, no cache coherency/memory traffic

m Danger!
" Efficient but use with great \5iatile int lock = 0;
care!
" Generalizations are void lock() {
dangerous do {

while (lock == 1);
} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;
}

Warning: Even Experts

m Example: Double-Checked Locking

get it wrong!

1997

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

Douglas C. Schmidt
schmidt@cs.wustl.edu
Dept. of Computer Science
Wash. U., St. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

This paper shows how the canonical implementation [1] of

the Singleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism. To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (Le., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent software.

Double-Checked Locking

Tim Harrison
harrison @ cs.wustlLedu
Dept. of Computer Science
Wash. U, St. Louis

context of concurrency. To illustrate this, consider b
canonical implementation [1] of the Singleton pattd
haves in multi-threaded environments.

The Singleton pattern ensures a class has only onei
and provides a global point of access to that instance |
namically allocating Singletons in C++ programs is
since the order of initialization of global static objects
programs is not well-defined and is therefore non-p
Moreover, dynamic allocation avoids the cost of initi
a Singleton if it is never used.

Defining a Singleton is straightforward:

class Singleton

return instance_;

double-checked locking

Double-checked locking - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Double-checked_locking

In software engineering, double-checked locking (also known as "double-checked
locking optimization") is a software design pattern used to reduce the ...

Usage in Java - Usage in Microsoft Visual C++ - Usage in Microsoft .MET ...

The "Double-Checked Locking is Broken" Declaration
www.cs.umd.edu/~pughfjava/.. /DoubleCheckedLocking.html

Details on the reasons - some very subtle - why double-checked locking cannot be
relied upon to be safe. Signed by a number of experts, including Sun ...

Double-checked locking and the Singleton pattern
www.ibm.com/developerworks/javallibrany/j-dclfindex html

1 May 2002 — Double-checked locking is one such idiom in the Java programming
language that should never be used. In this article, Peter Haggar ...

Double-checked locking: Clever, but broken - Javaworld

www javaworld.com » Java Development Tools

9 Feb 2001 — Many Java programmers are familiar with the double-checked locking
idiom, which allows you to perform lazy initialization with reduced ...

[FoF) Double-Checked Locking An Optimization Pattern for Efficiently ...

sunsite.icm.edu.pl/packages/ace/ACE/PDF/DC-Locking .pdf

mat: PDF/Adohe Acrobat - Quick View

schmidt - Cited by 14 - Related articles

solve this problem, we present the Double-Checked Lock- ing optimization ...

Double-Checked Locking illustrates how changes in under- lying forces (ji.e. ...

Problem: Memory ordering leads to race-conditions!

26

Contention?

m Do TATAS locks still have contention?

m When lock is released, k threads fight for
cache line ownership
" One gets the lock, all get the CL exclusively (serially!)

= What would be a good
solution? (think “collision
avoidance”)

volatile int lock = O;

void lock() {
do {
while (lock == 1);
} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;
}

TAS Lock with Exponential Backoff

m Exponential backoff eliminates contention statistically

" |ocks granted in

unpredictable —
P volatile int lock = O;

order
® Starvation possible void lock() {
but unlikely while (TestAndSet(&lock) == 1) {
How can we make wait(time);
it even less likely? time *= 2; // double waiting time

}
}

void unlock() {
lock = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

TAS Lock with Exponential Backoff

m Exponential backoff eliminates contention statistically

" |ocks granted in

unpredictable volatile int lock = 0O;
order const int maxtime=1000;
® Starvation possible '
but unlikely void lock() {
Maximum waiting while (TestAndSet(&lock) == 1) {
time makes it less \yalt(tlme?); o, ,
likely time = min(time * 2, maxtime);
}
}
void unlock() {
lock = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

Comparison of TAS Locks

—— TAS
_ TATAS 5
S5 <« | — TAS+Backoff g
_ o -
B ° /
E- o a g—0©
W ™ yd _o0—20
3 S g7) i XG.’«'O!D,OFG ?
2 / _ 07 0—"°
_§ o
o .
S © | /] _o—o0
5 DED"’
E o 7 o—"%/
= / 0
2
o | o
e | | | |
0 5 10 15

Number of Threads

30

Improvements?

m Are TAS locks perfect?
= What are the two biggest issues?

® Cache coherency traffic (contending on same location with expensive
atomics)

- Or -

= (Critical section underutilization (waiting for backoff times will delay entry
to CR)

m What would be a fix for that?
" How is this solved at airports and shops (often at least)?

m Queue locks -- Threads enqueue
® Learn from predecessor if it’s their turn
® Each threads spins at a different location
= FIFO fairness

Array Queue Lock

m Array to implement

queue

volatile int array[n] = {1,0,...,0};
volatile int index[n] = {0,0,...,0};
volatile int tail = O;

" Tail-pointer shows next free
gueue position

® Each thread spins on own
location

' void lock() {
CL padding! index[tid] = GetAndInc(tail) % n;
® index[] array can be putin TLS while (!array[index[tid]]); // wait to receive lock
m Soare we done now? }
" What’s wrong? void unlock() {
= Synchronizing M objects array[index([tid]] = 0; // | release my lock
requires ©(NM) storage array[(index[tid] + 1) % n] = 1; // next one

= What do we do now? }

CLH Lock (1993)

m List-based (same queue
principle)

m Discovered twice by Craig,
Landin, Hagersten 1993/94

m 2N+3M words
= N threads, M locks

m Requires thread-local gnode
pointer

® Can be hidden!

typedef struct gnode {
struct gnode *prev;
int succ_blocked;

} qnode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *gn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(Ick, qn);
while (gn->prev->succ_blocked);

}

void unlock(gnode **qgn) {
gnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

CLH Lock (1993)

m Qnode objects represent
thread state!

® succ_blocked == 1 if waiting
or acquired lock

" succ_blocked == 0 if released
lock

m Listis implicit!
" One node per thread

= Spin location changes
NUMA issues (cacheless)

m Can we do better?

typedef struct gnode {
struct gnode *prev;
int succ_blocked;

} qnode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *gn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(Ick, qn);
while (gn->prev->succ_blocked);

}

void unlock(gnode **qgn) {
gnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

MCS Lock (1991)

m Make queue explicit

= Acquire lock by
appending to queue

= Spin on own node
until locked is reset

m Similar advantages
as CLH but

= Only 2N + M words
= Spinning position is fixed!
Benefits cache-less NUMA

m What are the issues?
= Releasing lock spins
" More atomics!

typedef struct gnode {
struct gnode *next;
int succ_blocked;

} gqnode;

gnode *Ick = NULL;

void lock(gnode *Ick, gnode *qgn) {
gn->next = NULL;
gnode *pred = FetchAndSet(Ick, gn);
if(pred !'= NULL) {
gn->locked = 1;
pred->next = qn;
while(gn->locked);

b}

void unlock(gnode * Ick, gnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter
if(CAS(Ick, gn, NULL)) return;
while(gn->next == NULL); // wait for pred arrival
}
gn->next->locked = 0; // free next waiter
gn->next = NULL;
}

Lessons Learned!

m Key Lesson:
® Reducing memory (coherency) traffic is most important!
® Not always straight-forward (need to reason about CL states)

m MCS: 2006 Dijkstra Prize in distributed computing

= “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

= “probably the most influential practical mutual exclusion algorithm ever”
= “vastly superior to all previous mutual exclusion algorithms”
= fast, fair, scalable 2 widely used, always compared against!

Time to Declare Victory?

m Down to memory complexity of 2N+M
" Probably close to optimal

m Only local spinning

m Several variants with low expected contention

m But: we assumed sequential consistency ®
m Reality causes trouble sometimes
= Sprinkling memory fences may harm performance
= Open research on minimally-synching algorithms!
Come and talk to me if you’re interested

More Practical Optimizations

m Let’s step back to “data race”

" (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither A>B nor B>A

= So we put conflicting accesses into a CR and lock it!
This also guarantees memory consistency in C++/Java!

m Let’s say you implement a web-based encyclopedia
= Consider the “average two accesses” — do they conflict?

Reader-Writer Locks

m Allows multiple concurrent reads
" Multiple reader locks concurrently in CR

® Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

m Syntax:
= read_(un)lock()

= write_(un)lock()

A Simple RW Lock const W = 1;

const R =2;
volatile int lock=0; // LSB is writer flag!

m Seems efficient!?

" |sit? What's wrong? void read_lock(lock_t lock) {

AtomicAdd(lock, R);

" Polling CASI while(lock & W);
}
m s it fair? void write_lock(lock_t lock) {
= Readers are preferred! while(!CAS(lock, 0, W));

}

= Can always delay
writers (again and

again and again) void read_unlock(lock_t lock) {

AtomicAdd(lock, -R);
!

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}

Fixing those Issues?

m Polling issue:

" Combine with MCS lock idea of queue polling

m Fairness:

® Count readers and writers

(1991)

John M. Mellor-Crummey*
(johnmc@rice.edu)
Center for Research on Parallel Computation
Rice University, P.O. Box 1892
Houston, TX 77251-1892

Abstract

Reader-writer synchronization relaxes the constraints of mu-
tual exclusion to permit more than one process to inspect a
shared object concurrently, as long as none of them changes
its value. On uniprocessors, mutual exclusion and reader-
writer locks are typically designed to de-schedule blocked
processes; however, on shared-memory multiprocessors it
is often advantageous to have processes busy wait. Un-
fortunately, implementations of busy-wait locks on shared-
memory multiprocessors typically cause memory and net-
work contention that degrades performance. Several re-
searchers have shown how to implement scalable mutual
exclusion locks that exploit locality in the memory hier-
archies of shared-memory multiprocessors to eliminate con-
tention for memory and for the processor-memory intercon-
nect, In this paper we present reader-writer locks that sim-
ilarly exploit locality to achieve scalability, with variants
for reader preference, writer preference, and reader-writer
fairness. Performance results on a BBN TC2000 multipro-
cessor demonstrate that our algorithms provide low latency
and excellent scalability.

Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors

Michael L. Scott!
(scott@cs.rochester.edu)
Computer Science Department
University of Rochester
Rochester, NY 14627

communication bandwidth, introducing performance bottle-
necks that become markedly more pronounced in larger ma-
chines and applications. When many processors busy-wait
on a single synchronization variable, they create a hot spot
that gets a disproportionate share of the processor-memory
bandwidth. Several studies [1, 4, 10] have identified synchro-
nization hot spots as a major obstacle to high performance
on machines with both bus-based and multi-stage intercon-
nection networks.

Recent papers, ours among them [9], have addressed the
construction of scalable, contention-free busy-wait locks for
mutual exclusion., These locks employ atomic fetch.and.®
instructions' to comstruct queues of waiting processors,
each of which spins only on locally-accessible flag variables,
thereby inducing no contention. In the locks of Anderson [2]
and Graunke and Thakkar [5), which achieve local spinning
only on cache-coherent machines, each blocking processor
chooses a unique location on which to spin, and this loca-
tion b ident in the p ’s cache. Our MCS
mutual exclusion lock (algorithm 1) exhibits the dual ad-
vantages of (1) spinning on locally-accessible locations even
on distributed shared-memory multiprocessors without co-
herent caches, and (2) requiring only O(P + N) space for N
locks and P processors. rather than O(N P).

The final algorithm (Alg. 4)
has a flaw that was

corrected in 2003!

41

Deadlocks

m Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

CAN'T, You GO
CAN'T, Yov Go

What are necessary
conditions for deadlock?

42

Deadlocks

m Necessary conditions:
® Mutual Exclusion
" Hold one resource, request another
= No preemption
® Circular wait in dependency graph

m One condition missing will prevent deadlocks!

= > Different avoidance strategies (which?)

Issues with Spinlocks

m Spin-locking is very wasteful
" The spinning thread occupies resources

= Potentially the PE where the waiting thread wants to run = requires
context switch!

m Context switches due to

m Expiration of time-slices (forced)
" Yielding the CPU

What is this?

45

Why is the 1997 Mars Rover in our lecture?

m It landed, received program, and worked ... until it spuriously
rebooted!

=" - watchdog

m Scenario (vxWorks RT OS):
= Single CPU
" Two threads A,B sharing common bus, using locks
= (independent) thread C wrote data to flash
" Priority: A>C—>B (A highest, B lowest)
" Thread C would run into a lifelock (infinite loop)
= Thread B was preempted by C while holding lock
" Thread A got stuck at lock ®

[http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

m If busy-waiting thread has higher priority than thread holding lock =
no progress!

m Can be fixed with the help of the OS

= E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

Condition Variables

m Allow threads to yield CPU and leave the OS run queue
® Qther threads can get them back on the queue!

m cond_wait(cond, lock) — yield and go to sleep
m cond_signal(cond) — wake up sleeping threads

m Wait and signal are OS calls
= Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

Condition Variable Semantics

m Hoare-style:
= Signaler passes lock to waiter, signaler suspended
= Waiter runs immediately

= Waiter passes lock back to signaler if it leaves critical section or if it waits
again

m Mesa-style (most used):
= Signaler keeps lock

= Waiter simply put on run queue
= Needs to acquire lock, may wait again

