
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Languages and Locks

Instructor: Torsten Hoefler & Markus Püschel

TAs: Timo Schneider, Arnamoy Bhattacharyya

Administrivia

 You should have a project partner by now

 Think about a project

 Initial project presentations: Thursday 10/30 during 2nd part of recitation

 … may continue the following Monday in lecture (order will be randomized)

 Send slides (ppt or pdf) by 10/29 11:59pm to Timo/Arnamoy!

 7 minutes per team (hard limit)

 Prepare! This is your first impression, gather feedback from us!

 Rough guidelines:

Present your plan

Related work (what exists, literature review!)

Preliminary results (not necessarily)

Main goal is to gather feedback, so present some details

Pick one presenter (make sure to switch for other presentations!)

 Intermediate (very short) presentation: Thursday 11/27 during recitation

 Final project presentation: Monday 12/15 during last lecture

2

Review of last lecture

 Locked Queue

 Correctness

 Lock-free two-thread queue

 Linearizability

 Combine object pre- and postconditions with serializability

 Additional (semantic) constraints!

 Histories

 Analyze given histories

Projections, Sequential/Concurrent, Completeness, Equivalence, Well
formed, Linearizability (formal)

3

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 4 minutes

 We then select a random student (team) to answer the question

 How can histories be used to proof a parallel program correct?

 How do histories relate to the source code?

 Can proofing be automated?

 What are the practical limits of linearizability?

 Can it always be applied?

 Is there a performance tradeoff? Always? Sometimes? Never?

4

DPHPC Overview

5

Goals of this lecture

 Languages and Memory Models

 Java/C++ definition

 Recap serial consistency

 Races (now in practice)

 Mutual exclusion

 Locks

 Two-thread

 Peterson

 N-thread

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Problems and outline to next class

6

Map linearizability to sequential consistency

 Variables with read and write operations

 Sequential consistency (enforces sequential visibility order)

 Objects with a type and methods

 Linearizability (stronger than SC, considers invocation and response)

 Map sequential consistency ↔ linearizability

 Reduce data types to variables with read and write operations

 Model variables as data types with read() and write() methods

 Remember: Sequential consistency

 A history H is sequential if it can be extended to H’ and H’ is equivalent to
some sequential history S (i.e., program order is maintained)

 Note: Precedence order (<H ⊆ <S) does not need to be maintained

7

Example

time

8

Example

time

q.enq(x)

9

Example

time

q.enq(x) q.deq(y)

10

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Linearizable?

11

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

12

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

13

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

14

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

15

Properties of sequential consistency

 Theorem: Sequential consistency is not compositional

H=

Compositional would mean:
“If H|p and H|q are sequentially consistent,
 then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

16

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

time

17

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

18

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

History H

time

19

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

20

H|q Sequentially Consistent

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

21

Ordering imposed by p

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

22

Ordering imposed by q

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

23

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

24

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

25

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|p

H=

A: p.enq(x)
A: p:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y

H|p=

A: p.enq(x)
A: p:void
A: p.deq()
A: p:y

B: p.enq(y)
B: p:void

(H|p)|A= (H|p)|B=

H|p is sequentially consistent!

26

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|q

H= H|q= (H|q)|A= (H|q)|B=

H|q is sequentially consistent!

B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)
A: q:void

B: q.enq(y)
B: q:void
B: q.deq()
B: q:x

27

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

H= H|A= H|B=

H is not sequentially consistent!

A: p.enq(x)
A: p:void
A: q.enq(x)
A: q:void
A: p.deq()
A: p:y

B: q.enq(y)
B: q:void
B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

28

Correctness: Linearizability

 Sequential Consistency

 Not composable

 Harder to work with

 Good way to think about hardware models

 We will use linearizability in the remainder of this course

unless stated otherwise

Consider routine entry and exit

29

Study Goals (Homework)

 Define linearizability with your own words!

 Describe the properties of linearizability!

 Explain the differences between sequential consistency and
linearizability!

 Given a history H

 Identify linearization points

 Find an equivalent sequential history S

 Decide and explain whether H is linearizable

 Decide and explain whether H is sequentially consistent

 Give values for the response events such that the execution is linearizable

30

Language Memory Models

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed
concurrently

 A memory model is a contract

 Between platform and programmer

31

History of Memory Models

 Java’s original memory model was broken

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition)

 C/C++ didn’t even have a memory model until recently

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, more conservative

32

Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

33

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

34

Communication between Threads: Intuition

 Not guaranteed unless by:

 Synchronization

 Volatile/atomic variables

 Specialized functions/classes (e.g., java.util.concurrent, …)

x = 10
y = 5
flag = true

if(flag)
 print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable
(atomic in C++, volatile in Java),

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

35

 Abstract relation between threads and memory

 Local thread view!

 Does not talk about classes, objects, methods, …

 Linearizability is a higher-level concept!

Memory Model: Intuition

Main Memory

Working

memory

T1

Working

memory

T1

Working

memory

T1

When are values transferred?

abstraction
of caches and
registers

36

Lock Synchronization

 Java

 Synchronized methods as
syntactic sugar

 C++

 Many flexible variants

synchronized (lock) {
 // critical region
}

{
 unique_lock<mutex> l(lock);
 // critical region
}

 Semantics:
 mutual exclusion
 at most one thread may own a lock
 a thread B trying to acquire a lock held by thread A blocks until thread A

 releases lock
 note: threads may wait forever (no progress guarantee!)

37

Memory semantics

 Similar to synchronization variables

 All memory accesses before an unlock …

 are ordered before and are visible to …

 any memory access after a matching lock!

x = 10
…
y = 5
…
unlock(m)

lock(m)
 print(x+y)

Thread 1

Thread 2

38

Synchronization Variables

 Variables can be declared volatile (Java) or atomic (C++)

 Reads and writes to synchronization variables

 Are totally ordered with respect to all threads

 Must not be reordered with normal reads and writes

 Compiler

 Must not allocate synchronization variables in registers

 Must not swap variables with synchronization variables

 May need to issue memory fences/barriers

 …

39

Synchronization Variables

 Write to a synchronization variable

 Similar memory semantics as unlock (no process synchronization!)

 Read from a synchronization variable

 Similar memory semantics as lock (no process synchronization!)

class example {
 int x = 0;
 atomic<bool> v = false

 public void writer() {
 x = 42;
 v = true;
 }

 public void reader() {
 if(v) {
 print(x)
 }
 }

Thread 1

Thread 2

Without volatile, a
platform may reorder
these accesses!

40

Memory Model Rules

 Java/C++: Correctly synchronized programs will execute sequentially
consistent

 Correctly synchronized = data-race free

 iff all sequentially consistent executions are free of data races

 Two accesses to a shared memory location form a data race in the
execution of a program if

 The two accesses are from different threads

 At least one access is a write and

 The accesses are not synchronized

int x = 10

T1 T2 T3

read read
write

41

Case Study: Locks - Lecture Goals

 Among the simplest concurrency constructs

 Yet, complex enough to illustrate many optimization principles

 Goal 1: You understand locks in detail

 Requirements / guarantees

 Correctness / validation

 Performance / scalability

 Goal 2: Acquire the ability to design your own locks

 Understand techniques and weaknesses/traps

 Extend to other concurrent algorithms

Issues are very much the same

 Goal 3: Feel the complexity of shared memory!

42

Preliminary Comments

 All code examples are in C/C++ style

 Neither C nor C++ <11 have a clear memory model

 C++ is one of the languages of choice in HPC

 Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most of the examples are incorrect in anything but
sequential consistency!

In fact, you’ll most likely not need those algorithms, but the principles
will be useful!

 x86 is really only used because it’s common

 This does not mean that we consider the ISA or memory model elegant!

 We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

 Number of threads/processes is p, tid is the thread id

43

Recap Concurrent Updates

 Multi-threaded execution!

 Value of a for p=1?

 Value of a for p>1?

Why? Isn’t it a single instruction?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
 a++;

gcc -O3

 movl $1000, %eax // i=n=1000
.L2:
 movl (%rdx), %ecx // ecx = *a
 addl $1, %ecx // ecx++
 subl $1, %eax // i—
 movl %ecx, (%rdx) // *a = ecx
 jne .L2 // loop if i>0

44

 movl $1000, %eax // i=n=1000
 movl $0, -24(%rsp) // a = 0
 mfence // a is visible!
.L2:
 lock addl $1 , -24(%rsp) // (*a)++
 subl $1, %eax // i—
 jne .L2 // loop if i>0

const int n=1000;
std::<atomic> int a;
a=0;
for (int i=0; i<n; ++i)
 a++;

g++ -O3

Some Statistics

 Nondeterministic execution

 Result depends on timing (probably not desired)

 What do you think are the most significant results?

 Running two threads on Core i5 dual core

 a=1000? 2000? 1500? 1223? 1999?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
 a++;

45

Some Statistics

46

Conflicting Accesses

 (recap) two memory accesses conflict if they can happen at the same time
(in happens-before) and one of them is a write (store)

 Such a code is said to have a “race condition”

 Also data-race

 Trivia around races:

The Therac-25 killed three people
due to a race

A data-race lead to a large blackout
in 2003, leaving 55 million people
without power causing $1bn damage

 Can be avoided by critical regions

 Mutually exclusive access to a set of operations

47

Mutual Exclusion

 Control access to a critical region

 Memory accesses of all processes happen in program order (a partial
order, many interleavings)

An execution history defines a total order of memory accesses

 Some subsets of memory accesses (issued by the same process) need to
happen atomically (thread a’s memory accesses may not be interleaved
with other thread’s accesses)

To achieve linearizability!

We need to restrict the valid executions

 Requires synchronization of some sort

 Many possible techniques (e.g., TM, CAS, T&S, …)

 We discuss locks which have wait semantics

 movl $1000, %eax // i=1000
.L2:
 movl (%rdx), %ecx // ecx = *a
 addl $1, %ecx // ecx++
 subl $1, %eax // i—
 movl %ecx, (%rdx) // *a = ecx
 jne .L2 // loop if i>0
 [sub sets ZF]

48

Fixing it with locks

 What must the functions

lock and unlock guarantee?

 #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

 #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

const int n=1000;
volatile int a=0;
omp_lock_t lck;
for (int i=0; i<n; ++i) {
 omp_set_lock(&lck);
 a++;
 omp_unset_lock(&lck);
}

gcc -O3

 movl $1000, %ebx // i=1000
.L2:
 movq 0(%rbp), %rdi // (SystemV CC)
 call omp_set_lock // get lock
 movq 0(%rbp), %rdi // (SystemV CC)
 movl (%rax), %edx // edx = *a
 addl $1, %edx // edx++
 movl %edx, (%rax) // *a = edx
 call omp_unset_lock // release lock
 subl $1, %ebx // i—
 jne .L2 // repeat if i>0

49

Lock Overview

 Lock/unlock or acquire/release

 Lock/acquire: before entering CR

 Unlock/release: after leaving CR

 Semantics:

 Lock/unlock pairs have to match

 Between lock/unlock, a thread holds the lock

50

?

Lock Properties

 Mutual exclusion
 Only one thread is on the critical region

 Consistency
 Memory operations are visible when critical region is left

 Progress
 If any thread a is not in the critical region, it cannot prevent another thread b from

entering

 Starvation-freedom (implies deadlock-freedom)
 If a thread is requesting access to a critical region, then it will eventually be

granted access

 Fairness
 A thread a requested access to a critical region before thread b. Did is also granted

access to this region before b?

 Performance
 Scaling to large numbers of contending threads

51

Simplified Notation (cf. Histories)

 Time defined by precedence (a total order on events)

 Events are instantaneous (linearizable)

 Threads produce sequences of events a0,a1,a2,…

 Program statements may be repeated, denote i-th instance of a as ai

 Event a occurs before event b: a → b

 An interval (a,b) is the duration between events a → b

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

 Critical regions

 A critical region CR is an interval a → b, where a is the first operation in
the CR and b the last

 Mutual exclusion

 Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA for all instances!

 Assume atomic registers (for now)

52

Simple Two-Thread Locks

 A first simple spinlock

Why does this not guarantee
mutual exclusion?

volatile int flag=0;

void lock(lock) {
 while(flag);
 flag = 1;
}

void unlock(lock) {
 flag = 0;
}

Busy-wait to acquire lock
(spinning)

Is this lock correct?

53

Proof Intuition

 Construct a sequentially consistent history that permits both
processes to enter the CR

54

Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
 int j = 1 - tid;
 flag[tid] = true;
 while (flag[j]) {} // wait
}

void unlock() {
 flag[tid] = false;
}

When and why does this
guarantee mutual exclusion?

55

Correctness Proof

 In sequential consistency!

 Intuitions:

 Situation: both threads are ready to enter

 Show that situation that allows both to enter leads to a schedule violating
sequential consistency

Using transitivity of program and synchronization orders

56

Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
 int j = 1 - tid;
 flag[tid] = true;
 while (flag[j]) {} // wait
}

void unlock() {
 flag[tid] = false;
}

When and why does this
guarantee mutual exclusion?

Does it work in practice?

57

Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
 victim = tid; // grant access
 while (victim == tid) {} // wait
}

void unlock() {}

Does this guarantee
mutual exclusion?

58

Correctness Proof

 Intuition:

 Victim is only written once per lock()

 A can only enter after B wrote

 B cannot enter in any sequentially consistent schedule

59

Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
 victim = tid; // grant access
 while (victim == tid) {} // wait
}

void unlock() {}

Does this guarantee
mutual exclusion?

Does it work in practice?

60

Simple Two-Thread Locks

 The last two locks provide mutual exclusion

 LockOne succeeds iff lock attempts do not overlap

 LockTwo succeeds iff lock attempts do overlap

 Combine both into one locking strategy!

 Peterson’s lock (1981)

61

Peterson’s Two-Thread Lock (1981)

 Combines the first lock (request access) with the second lock (grant
access)

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

62

Proof Correctness

 Intuition:

 Victim is written once

 Pick thread that wrote victim last

 Show thread must have read flag==0

 Show that no sequentially consistent schedule permits that

63

Starvation Freedom

 (recap) definition: Every thread that calls lock() eventually
gets the lock.

 Implies deadlock-freedom!

 Is Peterson’s lock
starvation-free?

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

64

Proof Starvation Freedom

 Intuition:

 Threads can only wait/starve in while()

Until flag==0 or victim==other

 Other thread enters lock() sets victim to other

Will definitely “unstuck” first thread

 So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads one
must leave!

65

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

66

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

67

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

68

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

69

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 asm (“mfence”);
 flag[tid+ = 0; // I’m not interested
}

Correct Peterson Lock on x86

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 asm (“mfence”);
 flag[tid+ = 0; // I’m not interested
}

70

Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it correct?

71

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { //attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

Filter Lock - Correctness

 Lemma: For 0<j<n-1, there are at most n-j threads at level j!

 Intuition:

 Recursive proof (induction on j)

 By contradiction, assume n-j+1 threads at level j-1 and j

 Assume last thread to write victim

 Any other thread writes level before victim

 Last thread will stop at spin due to other thread’s write

 j=n-1 is critical region

72

Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it starvation-free?

73

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { //attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

Filter Lock Starvation Freedom

 Intuition:

 Inductive argument over j (levels)

 Base-case: level n-1 has one thread (not stuck)

 Level j: assume thread is stuck

Eventually, higher levels will drain (induction)

Last entering thread is victim, it will wait

Thus, only one thread can be stuck at each level

Victim can only have one value older threads will advance!

74

Filter Lock

 What are the disadvantages of this lock?

75

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { // attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

 Starvation freedom provides no guarantee on how long a thread
waits or if it is “passed”!

 To reason about fairness, we define two sections of each lock
algorithm:

 Doorway D (bounded # of steps)

 Waiting W (unbounded # of steps)

 FIFO locks:

 If TA finishes its doorway before TB the CRA CRB

 Implies fairness

void lock() {
 int j = 1 - tid;
 flag[tid+ = true; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {};
}

Lock Fairness

76

Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes number in doorway and threads enter in the order
of their number!

volatile int flag*n+ = ,0,0,…,0-;
volatile int label*n+ = ,0,0,….,0-;

void lock() {
 flag[tid] = 1; // request
 label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
 while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
public void unlock() {
 flag[tid] = 0;
}

77

Lamport’s Bakery Algorithm

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why?

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory

78

A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

 So we’re doomed! Optimal locks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171–184, December
1993

79

Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

80

