
Design of Parallel and High-Performance 
Computing 
Fall 2013 
Lecture: Languages and Locks 

Instructor: Torsten Hoefler & Markus Püschel 

TAs: Timo Schneider, Arnamoy Bhattacharyya 



Administrivia 

 You should have a project partner by now 

 Think about a project 

 Initial project presentations: Thursday 10/30 during 2nd part of recitation 

 … may continue the following Monday in lecture (order will be randomized) 

 Send slides (ppt or pdf) by 10/29 11:59pm to Timo/Arnamoy! 

 7 minutes per team (hard limit) 

 Prepare! This is your first impression, gather feedback from us! 

 Rough guidelines: 

Present your plan 

Related work (what exists, literature review!) 

Preliminary results (not necessarily) 

Main goal is to gather feedback, so present some details 

Pick one presenter (make sure to switch for other presentations!) 

 Intermediate (very short) presentation: Thursday 11/27 during recitation 

 Final project presentation: Monday 12/15 during last lecture 
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Review of last lecture 

 Locked Queue 

 Correctness 

 Lock-free two-thread queue 

 Linearizability 

 Combine object pre- and postconditions with serializability 

 Additional (semantic) constraints! 

 Histories 

 Analyze given histories 

Projections, Sequential/Concurrent, Completeness, Equivalence, Well 
formed, Linearizability (formal) 
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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 4 minutes 

 We then select a random student (team) to answer the question 

 

 How can histories be used to proof a parallel program correct? 

 How do histories relate to the source code? 

 Can proofing be automated? 

 

 What are the practical limits of linearizability? 

 Can it always be applied? 

 Is there a performance tradeoff? Always? Sometimes? Never? 
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DPHPC Overview 
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Goals of this lecture 

 Languages and Memory Models 

 Java/C++ definition 

 Recap serial consistency 

 Races (now in practice) 

 Mutual exclusion 

 Locks 

 Two-thread 

 Peterson 

 N-thread 

 Many different locks, strengths and weaknesses 

 Lock options and parameters 

 Problems and outline to next class 
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Map linearizability to sequential consistency 

 Variables with read and write operations 

 Sequential consistency (enforces sequential visibility order) 

 Objects with a type and methods 

 Linearizability (stronger than SC, considers invocation and response) 

 Map sequential consistency ↔ linearizability 

 Reduce data types to variables with read and write operations 

 Model variables as data types with read() and write() methods 

 Remember: Sequential consistency 

 A history H is sequential if it can be extended to H’ and H’ is equivalent to 
some sequential history S (i.e., program order is maintained) 

 Note: Precedence order (<H ⊆ <S) does not need to be maintained 
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Example 

time 
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Example 

time 

q.enq(x) 
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Example 

time 

q.enq(x) q.deq(y) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Properties of sequential consistency 
 
 Theorem: Sequential consistency is not compositional 

H= 

Compositional would mean: 
“If H|p and H|q are sequentially consistent, 
  then H is sequentially consistent!” 
 
This is not guaranteed for SC schedules! 
 
See following example! 

A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

History H 

time 
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H|p Sequentially Consistent 

time 

p.enq(x) p.deq(y) 

p.enq(y) 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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H|q Sequentially Consistent 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by p 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 

22 



Ordering imposed by q 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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p.enq(x) 

Ordering imposed by both 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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p.enq(x) 

Combining orders 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 

25 



A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|p 

H= 

A: p.enq(x) 
A: p:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  

H|p= 

A: p.enq(x) 
A: p:void  
A: p.deq() 
A: p:y  

B: p.enq(y) 
B: p:void  

(H|p)|A= (H|p)|B= 

H|p is sequentially consistent! 
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|q 

H= H|q= (H|q)|A= (H|q)|B= 

H|q is sequentially consistent! 

B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: q.deq() 
B: q:x  

A: q.enq(x) 
A: q:void  

B: q.enq(y) 
B: q:void  
B: q.deq() 
B: q:x  
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 

H= H|A= H|B= 

H is not sequentially consistent! 

A: p.enq(x) 
A: p:void  
A: q.enq(x) 
A: q:void  
A: p.deq() 
A: p:y 

B: q.enq(y) 
B: q:void  
B: p.enq(y) 
B: p:void  
B: q.deq() 
B: q:x  
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Correctness: Linearizability 

 Sequential Consistency 

 Not composable 

 Harder to work with 

 Good way to think about hardware models 

 

 We will use linearizability in the remainder of this course 

unless stated otherwise 

Consider routine entry and exit 
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Study Goals (Homework) 

 Define linearizability with your own words! 

 Describe the properties of linearizability! 

 Explain the differences between sequential consistency and 
linearizability! 

 

 Given a history H 

 Identify linearization points 

 Find an equivalent sequential history S 

 Decide and explain whether H is linearizable 

 Decide and explain whether H is sequentially consistent 

 Give values for the response events such that the execution is linearizable 
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Language Memory Models 

 Which transformations/reorderings can be applied to a program 

 Affects platform/system 

 Compiler, (VM), hardware 

 Affects programmer 

 What are possible semantics/output 

 Which communication between threads is legal? 

 Without memory model 

 Impossible to even define “legal” or “semantics” when data is accessed 
concurrently 

 A memory model is a contract 

 Between platform and programmer 
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History of Memory Models 

 Java’s original memory model was broken 

 Difficult to understand => widely violated 

 Did not allow reorderings as implemented in standard VMs 

 Final fields could appear to change value without synchronization 

 Volatile writes could be reordered with normal reads and writes 

=> counter-intuitive for most developers 

 Java memory model was revised 

 Java 1.5 (JSR-133) 

 Still some issues (operational semantics definition) 

 C/C++ didn’t even have a memory model until recently 

 Not able to make any statement about threaded semantics! 

 Introduced in C++11 and C11 

 Based on experience from Java, more conservative 
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Everybody wants to optimize 
 
 Language constructs for synchronization 

 Java: volatile, synchronized, … 

 C++: atomic, (NOT volatile!), mutex, … 

 

 Without synchronization (defined language-specific) 

 Compiler, (VM), architecture 

 Reorder and appear to reorder memory operations 

 Maintain sequential semantics per thread 

 Other threads may observe any order (have seen examples before) 
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Java and C++ High-level overview 

 Relaxed memory model 

 No global visibility ordering of operations 

 Allows for standard compiler optimizations 

 But 

 Program order for each thread (sequential semantics) 

 Partial order on memory operations (with respect to synchronizations) 

 Visibility function defined 

 Correctly synchronized programs 

 Guarantee sequential consistency 

 Incorrectly synchronized programs 

 Java: maintain safety and security guarantees 

Type safety etc. (require behavior bounded by causality) 

 C++: undefined behavior 

No safety (anything can happen/change) 
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Communication between Threads: Intuition 

 Not guaranteed unless by: 

 Synchronization 

 Volatile/atomic variables 

 Specialized functions/classes (e.g., java.util.concurrent, …) 

 

x = 10 
y = 5 
flag = true 

if(flag) 
  print(x+y) 

synchronization 

Thread 1 

Thread 2 

Flag is a synchronization variable  
(atomic in C++, volatile in Java), 

i.e., all memory written by T1  
must be visible to T2 after it 
reads the value true for flag! 
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 Abstract relation between threads and memory 

 Local thread view! 

 

 

 

 

 

 

 

 

 

 Does not talk about classes, objects, methods, … 

 Linearizability is a higher-level concept! 

Memory Model: Intuition 

Main Memory 

Working 

memory 

T1 

Working 

memory 

T1 

Working 

memory 

T1 

When are values transferred? 

abstraction  
of caches and  
registers 

36 



Lock Synchronization 

 Java 

 

 

 Synchronized methods as 
syntactic  sugar 

 

 

 

 C++ 

 

 

 

 Many flexible variants 

 

 

 

 

synchronized (lock) { 
   // critical region 
} 

{ 
  unique_lock<mutex> l(lock);  
  // critical region 
} 

 Semantics: 
 mutual exclusion 
 at most one thread may own a lock 
 a thread B trying to acquire a lock held by thread A blocks until thread A  

           releases lock 
 note: threads may wait forever (no progress guarantee!) 
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Memory semantics 

 Similar to synchronization variables 

 

 

 

 

 

 

 All memory accesses before an unlock … 

 are ordered before and are visible to … 

 any memory access after a matching lock! 

x = 10 
… 
y = 5 
… 
unlock(m) 

lock(m) 
  print(x+y) 

Thread 1 

Thread 2 
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Synchronization Variables 

 Variables can be declared volatile (Java) or atomic (C++) 

 

 Reads and writes to synchronization variables  

 Are totally ordered with respect to all threads 

 Must not be reordered with normal reads and writes 

 

 Compiler 

 Must not allocate synchronization variables in registers 

 Must not swap variables with synchronization variables 

 May need to issue memory fences/barriers 

 … 
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Synchronization Variables 

 Write to a synchronization variable 

 Similar memory semantics as unlock (no process synchronization!) 

 Read from a synchronization variable 

 Similar memory semantics as lock (no process synchronization!) 

class example { 
  int x = 0; 
  atomic<bool> v = false 
 
 public void writer() { 
     x = 42; 
     v = true; 
  }  
   
  public void reader() { 
     if(v) { 
       print(x) 
      } 
  } 

Thread 1     

Thread 2     

Without volatile, a  
platform may reorder 
these accesses! 
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Memory Model Rules 

 Java/C++: Correctly synchronized programs will execute sequentially 
consistent 

 Correctly synchronized = data-race free 

 iff all sequentially consistent executions are free of data races 

 Two accesses to a shared memory location form a data race in the 
execution of a program if 

 The two accesses are from different threads 

 At least one access is a write and 

 The accesses are not synchronized 

 

int x = 10 

T1 T2 T3 

read read 
write 
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Case Study: Locks - Lecture Goals 

 Among the simplest concurrency constructs 

 Yet, complex enough to illustrate many optimization principles 

 Goal 1: You understand locks in detail 

 Requirements / guarantees 

 Correctness / validation 

 Performance / scalability 

 Goal 2: Acquire the ability to design your own locks 

 Understand techniques and weaknesses/traps 

 Extend to other concurrent algorithms 

Issues are very much the same  

 Goal 3: Feel the complexity of shared memory! 
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Preliminary Comments 

 All code examples are in C/C++ style 

 Neither C nor C++ <11 have a clear memory model 

 C++ is one of the languages of choice in HPC 

 Consider source as exemplary (and pay attention to the memory model)! 

In fact, many/most of the examples are incorrect in anything but 
sequential consistency! 

In fact, you’ll most likely not need those algorithms, but the principles 
will be useful! 

 x86 is really only used because it’s common 

 This does not mean that we consider the ISA or memory model elegant! 

 We assume atomic memory (or registers)! 

Usually given on x86 (easy to enforce) 

 Number of threads/processes is p, tid is the thread id 
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Recap Concurrent Updates 

 

 

 

 

 Multi-threaded execution! 

 Value of a for p=1? 

 Value of a for p>1? 

Why? Isn’t it a single instruction? 

const int n=1000; 
volatile int a=0; 
for (int i=0; i<n; ++i)  
    a++; 

gcc -O3 

       movl $1000, %eax     // i=n=1000 
.L2: 
       movl (%rdx), %ecx    // ecx = *a 
       addl $1, %ecx           // ecx++ 
       subl $1, %eax           // i— 
       movl %ecx, (%rdx)    // *a = ecx 
       jne .L2                     // loop if i>0   

44 

       movl $1000, %eax    // i=n=1000 
       movl  $0, -24(%rsp)  // a = 0 
       mfence                       // a is visible! 
.L2: 
       lock addl $1 , -24(%rsp)  // (*a)++ 
       subl $1, %eax           // i— 
       jne .L2                     // loop if i>0   

const int n=1000; 
std::<atomic> int a; 
a=0; 
for (int i=0; i<n; ++i)  
    a++; 

g++ -O3 



Some Statistics 

 Nondeterministic execution 

 Result depends on timing  (probably not desired) 

 What do you think are the most significant results?  

 Running two threads on Core i5 dual core 

 a=1000? 2000? 1500? 1223? 1999? 

 

 

 

 

 

const int n=1000; 
volatile int a=0; 
for (int i=0; i<n; ++i)  
    a++; 
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Some Statistics 
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Conflicting Accesses 

 (recap) two memory accesses conflict if they can happen at the same time 
(in happens-before) and one of them is a write (store) 

 Such a code is said to have a “race condition” 

 Also data-race 

 Trivia around races: 

The Therac-25 killed three people  
due to a race 

A data-race lead to a large blackout  
in 2003, leaving 55 million people  
without power causing $1bn damage 

 Can be avoided by critical regions 

 Mutually exclusive access to a set of operations 
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Mutual Exclusion 

 Control access to a critical region 

 Memory accesses of all processes happen in program order (a partial 
order, many interleavings) 

An execution history defines a total order of memory accesses 

 Some subsets of memory accesses (issued by the same process) need to 
happen atomically (thread a’s memory accesses may not be interleaved 
with other thread’s accesses) 

To achieve linearizability! 

We need to restrict the valid executions 

  Requires synchronization of some sort 

 Many possible techniques (e.g., TM, CAS, T&S, …) 

 We discuss locks which have wait semantics 

 movl $1000, %eax     // i=1000 
.L2: 
       movl (%rdx), %ecx    // ecx = *a 
       addl $1, %ecx           // ecx++ 
       subl $1, %eax           // i— 
       movl %ecx, (%rdx)    // *a = ecx 
       jne .L2                     // loop if i>0   
                                            [sub sets ZF] 
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Fixing it with locks 

 

 

 

 

 

 

 

 
 What must the functions 

lock and unlock guarantee? 

 #1: prevent two threads from simultaneously entering CR 

i.e., accesses to CR must be mutually exclusive! 

 #2: ensure consistent memory 

i.e., stores must be globally visible before new lock is granted! 

 

 

const int n=1000; 
volatile int a=0; 
omp_lock_t lck;  
for (int i=0; i<n; ++i) { 
   omp_set_lock(&lck);  
   a++; 
   omp_unset_lock(&lck); 
} 

gcc -O3 

      movl $1000, %ebx      // i=1000 
.L2: 
      movq 0(%rbp), %rdi    // (SystemV CC) 
      call omp_set_lock   // get lock 
      movq 0(%rbp), %rdi   // (SystemV CC) 
      movl (%rax), %edx    // edx = *a 
      addl $1, %edx          // edx++ 
      movl %edx, (%rax)   // *a = edx 
      call omp_unset_lock // release lock 
      subl $1, %ebx         // i— 
      jne .L2                   // repeat if i>0 
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Lock Overview 

 Lock/unlock or acquire/release 

 Lock/acquire: before entering CR 

 Unlock/release: after leaving CR 

 Semantics: 

 Lock/unlock pairs have to match 

 Between lock/unlock, a thread holds the lock 
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? 

Lock Properties 

 Mutual exclusion  
 Only one thread is on the critical region  

 Consistency 
 Memory operations are visible when critical region is left 

 Progress 
 If any thread a is not in the critical region, it cannot prevent another thread b from 

entering 

 Starvation-freedom (implies deadlock-freedom) 
 If a thread is requesting access to a critical region, then it will eventually be 

granted access 

 Fairness 
 A thread a requested access to a critical region before thread b. Did is also granted 

access to this region before b? 

 Performance 
 Scaling to large numbers of contending threads 
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Simplified Notation (cf. Histories) 

 Time defined by precedence (a total order on events) 

 Events are instantaneous (linearizable) 

 Threads produce sequences of events a0,a1,a2,… 

 Program statements may be repeated, denote i-th instance of a as ai 

 Event a occurs before event b: a → b 

 An interval (a,b) is the duration between events a → b 

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c 

 Critical regions 

 A critical region CR is an interval a → b, where a is the first operation in 
the CR and b the last 

 Mutual exclusion 

 Critical regions CRA and CRB are mutually exclusive if: 

Either CRA → CRB or CRB → CRA  for all instances! 

 Assume atomic registers (for now) 
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Simple Two-Thread Locks 

  A first simple spinlock 

 

 

 

 

 

 

 

Why does this not guarantee 
mutual exclusion? 

volatile int flag=0; 
 
void lock(lock) { 
  while(flag); 
  flag = 1; 
} 
 
void unlock(lock) { 
  flag = 0; 
} 

Busy-wait to acquire lock 
(spinning) 

Is this lock correct? 
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Proof Intuition 

 Construct a sequentially consistent history that permits both 
processes to enter the CR  
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Simple Two-Thread Locks 

 Another two-thread spin-lock: LockOne 

 

 

 

 

 

 

 

volatile int flag[2]; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid] = true; 
  while (flag[j]) {} // wait 
} 
 
void unlock() { 
  flag[tid] = false; 
} 

When and why does this  
guarantee mutual exclusion? 
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Correctness Proof 

 In sequential consistency! 

 Intuitions: 

 Situation: both threads are ready to enter 

 Show that situation that allows both to enter leads to a schedule violating 
sequential consistency 

Using transitivity of program and synchronization orders 
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Simple Two-Thread Locks 

 Another two-thread spin-lock: LockOne 

 

 

 

 

 

 

 

volatile int flag[2]; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid] = true; 
  while (flag[j]) {} // wait 
} 
 
void unlock() { 
  flag[tid] = false; 
} 

When and why does this  
guarantee mutual exclusion? 

Does it work in practice? 
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Simple Two-Thread Locks 

 A third attempt at two-thread locking: LockTwo 

 

 

 

 

 

 

 

volatile int victim; 
 
void lock() { 
  victim = tid; // grant access 
  while (victim == tid) {} // wait 
} 
 
void unlock() {} 

Does this guarantee  
mutual exclusion? 
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Correctness Proof 

 Intuition: 

 Victim is only written once per lock() 

 A can only enter after B wrote 

 B cannot enter in any sequentially consistent schedule 
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Simple Two-Thread Locks 

 A third attempt at two-thread locking: LockTwo 

 

 

 

 

 

 

 

volatile int victim; 
 
void lock() { 
  victim = tid; // grant access 
  while (victim == tid) {} // wait 
} 
 
void unlock() {} 

Does this guarantee  
mutual exclusion? 

Does it work in practice? 
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Simple Two-Thread Locks 

 The last two locks provide mutual exclusion 

 LockOne succeeds iff lock attempts do not overlap 

 LockTwo succeeds iff lock attempts do overlap 

 Combine both into one locking strategy! 

 Peterson’s lock (1981) 
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Peterson’s Two-Thread Lock (1981) 

 Combines the first lock (request access) with the second lock (grant 
access)  

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 
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Proof Correctness 

 Intuition: 

 Victim is written once 

 Pick thread that wrote victim last 

 Show thread must have read flag==0 

 Show that no sequentially consistent schedule permits that 
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Starvation Freedom 

 (recap) definition: Every thread that calls lock() eventually  
gets the lock. 

 Implies deadlock-freedom! 

 Is Peterson’s lock  
starvation-free? 

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 
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Proof Starvation Freedom 

 Intuition: 

 Threads can only wait/starve in while() 

Until flag==0 or victim==other 

 Other thread enters lock()  sets victim to other 

Will definitely “unstuck” first thread 

 So other thread can only be stuck in lock() 

Will wait for victim==other, victim cannot block both threads  one 
must leave! 
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Peterson in Practice … on x86 

 Implement and run our little counter on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 



Peterson in Practice … on x86 

 Implement and run our little counter on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(v) and  

R(flag[j]) 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 



Peterson in Practice … on x86 

 Implement and run our little counter on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(v) and  

R(flag[j]) 

 Still 1.3 ∙ 10-6% 

Why? 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 



Peterson in Practice … on x86 

 Implement and run our little counter on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(v) and  

R(flag[j]) 

 Still 1.3 ∙ 10-6% 

Why? 

Reads may slip into CR! 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  asm (“mfence”);  
  flag[tid+ = 0;  // I’m not interested 
} 



Correct Peterson Lock on x86 

 Unoptimized (naïve sprinkling of mfences) 

 Performance: 

 No mfence 

375ns 

 mfence in lock 

379ns 

 mfence in unlock 

404ns 

 Two mfence 

427ns (+14%) 

 

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1;      // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  asm (“mfence”);  
  flag[tid+ = 0;  // I’m not interested 
} 
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Locking for N threads 

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1 

 Is it correct? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { //attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 



Filter Lock - Correctness 

 Lemma: For 0<j<n-1, there are at most n-j threads at level j! 

 Intuition: 

 Recursive proof (induction on j) 

 By contradiction, assume n-j+1 threads at level j-1 and j 

 Assume last thread to write victim 

 Any other thread writes level before victim 

 Last thread will stop at spin due to other thread’s write 

 j=n-1 is critical region 
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Locking for N threads 

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1 

 Is it starvation-free? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { //attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 



Filter Lock Starvation Freedom 

 Intuition: 

 Inductive argument over j (levels) 

 Base-case: level n-1 has one thread (not stuck) 

 Level j: assume thread is stuck 

Eventually, higher levels will drain (induction) 

Last entering thread is victim, it will wait 

Thus, only one thread can be stuck at each level 

Victim can only have one value  older threads will advance! 
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Filter Lock 

 What are the disadvantages of this lock? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { // attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 



 Starvation freedom provides no guarantee on how long a thread 
waits or if it is “passed”! 

 To reason about fairness, we define two sections of each lock 
algorithm: 

 Doorway D (bounded # of steps) 

 Waiting W (unbounded # of steps) 

 

 

 FIFO locks: 

 If TA finishes its doorway before TB the CRA  CRB 

 Implies fairness 

void lock() { 
  int j = 1 - tid; 
  flag[tid+ = true; // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {};  
} 

Lock Fairness 
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Lamport’s Bakery Algorithm (1974) 

 Is a FIFO lock (and thus fair) 

 Each thread takes number in doorway and threads enter in the order 
of their number! 

volatile int flag*n+ = ,0,0,…,0-; 
volatile int label*n+ = ,0,0,….,0-; 
 
void lock() { 
  flag[tid] = 1; // request 
  label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket 
  while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {}; 
} 
public void unlock() { 
  flag[tid] = 0; 
} 
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Lamport’s Bakery Algorithm 

 Advantages: 

 Elegant and correct solution 

 Starvation free, even FIFO fairness 

 

 Not used in practice! 

 Why?  

 Needs to read/write N memory locations for synchronizing N threads 

 Can we do better? 

Using only atomic registers/memory 
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A Lower Bound to Memory Complexity 

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes” 

 

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not? 

 

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993 
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Hardware Support? 

 Hardware atomic operations: 

 Test&Set 

Write const to memory while returning the old value 

 Atomic swap 

Atomically exchange memory and register 

 Fetch&Op 

Get value and apply operation to memory location 

 Compare&Swap 

Compare two values and swap memory with register if equal 

 Load-linked/Store-Conditional LL/SC 

Loads value from memory, allows operations, commits only if no other updates 
committed  mini-TM 

 Intel TSX (transactional synchronization extensions) 

Hardware-TM (roll your own atomic operations) 
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