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Review of last lecture 

 Cache-coherence is not enough! 

 Many more subtle issues for parallel programs! 

 

 Memory Models 

 Sequential consistency 

 Why threads cannot be implemented as a library  

 Relaxed consistency models 

 x86 TLO+CC case study 

 

 Complexity of reasoning about parallel objects 

 Serial specifications (e.g., pre-/postconditions) 

 Started to lock things … 
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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 4 minutes 

 We then select a random student (team) to answer the question 

 

 What are the problems with sequential consistency? 

 Is it practical? Explain! 

 Is it sufficient? Explain! 

 How would you improve the situation? 

 

 How could memory models of practical CPUs be described? 

 Is the Intel definition useful? 

 Why would one need a better definition? 

 Threads cannot be implemented as a library? Why does Pthreads work? 
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DPHPC Overview 
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Goals of this lecture 

 Queue: 

 Locked 

C++ locking (small detour) 

 Wait-free two-thread queue 

 Linearizability 

 Intuitive understanding (sequential order on objects!) 

 Linearization points 

 Linearizable  executions 

 Formal definitions (Histories, Projections, Precedence) 

 Linearizability vs. Sequential Consistency 

 Modularity 
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Recap: x86 Memory model: TLO + CC 

 Total lock order (TLO) 

 Instructions with “lock” prefix enforce total order across all processors 

 Implicit locking: xchg (locked compare and exchange) 

 

 Causal consistency (CC) 

 Write visibility is transitive 

 

 Eight principles 

 After some revisions  
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The Eight x86 Principles 

1. “Reads are not reordered with other reads.” (RR) 

2. “Writes are not reordered with other writes.” (WW) 

3. “Writes are not reordered with older reads.” (RW) 

4. “Reads may be reordered with older writes to different locations 
but not with older writes to the same location.” (NO WR!) 

5. “In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). (some more orders) 

6. “In a multiprocessor system, writes to the same location have a total 
order.” (implied by cache coherence) 

7. “In a multiprocessor system, locked instructions have a total order.“ 
(enables synchronized programming!) 

8. “Reads and writes are not reordered with locked instructions. 
“(enables synchronized programming!) 
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Principle 1 and 2 

Reads are not reordered with other reads. (RR) 

Writes are not reordered with other writes. (WW) 

 

                    All values zero initially 

 

 

 

 If r1 == 2, then r2 must be 1! 

 Not allowed: r1 == 1, r2 == 0 

 Reads and writes observed in program order 

 Cannot be reordered! 
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P1 
 

a = 1 

b = 2 

P2 
 

r1 = b 

r2 = a 



Principle 3 

Writes are not reordered with older reads. (RW) 

 

                    All values zero initially 

 

 

 

 If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0! 

 If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0! 

 Not allowed: r1 == 1 and r2 == 1 

9 

P1 
 

r1 = a 

b = 1 

P2 
 

r2 = b 

a = 1 



Principle 4 

Reads may be reordered with older writes to different locations but not 
with older writes to the same location. (NO WR!) 

 

                    All values zero initially 

 

 

 

 Allowed: r1=0, r2=0 

 Sequential consistency can be enforced with mfence 

 Attention: may allow reads to move into critical sections! 
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P1 
 

a = 1 

r1 = b 

P2 
 

b = 1 

r2 = a 



Principle 5 

In a multiprocessor system, memory ordering obeys causality (memory 
ordering respects transitive visibility). (some more orders) 

 

                    All values zero initially 

 

 

 

 

 If r1 == 1 and r2==1, then r3 must read 1 

 Not allowed: r1 == 1, r2 == 1, and r3 == 0 

 Provides some form of atomicity 
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P1 
 

a = 1 

 

 

P2 
 

r1 = a 

b = 1 

 

P3 
 

 

r2 = b 

r3 = a 



Principle 6 

In a multiprocessor system, writes to the same location have a total 
order. (implied by cache coherence) 

 

                    All values zero initially 

 

 

 

 

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1 

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s 
write before P2’s write  

 Provides some form of atomicity 
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P1 
 

a=1 

 

 

P2 
 

a=2 

 

 

P3 
 

 

r1 = a 

r2 = a 

P4 
 

 

r3 = a 

r4 = a 



Principle 7 

In a multiprocessor system, locked instructions have a total order. 
(enables synchronized programming!) 

 

                    All values zero initially, registers r1==r2==1 

 

 

 

 

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0 

 If P3 observes ordering P1:xchg  P2:xchg, P4 observes the same 
ordering 

 (xchg has implicit lock) 
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P1 
 

xchg(a,r1) 

 

 

P2 
 

xchg(b,r2) 

 

 

P3 
 

 

r3 = a 

r4 = b 

P4 
 

 

r5 = b 

r6 = a 



Principle 8 

Reads and writes are not reordered with locked instructions.               
(enables synchronized programming!) 

 

                    All values zero initially but r1 = r3 = 1 

 

 

 

 

 Not allowed: r2 == 0, r4 == 0 

 Locked instructions have total order, so P1 and P2 agree on the same 
order 

 If volatile variables use locked instructions  practical sequential 
consistency 
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P1 
 

xchg(a,r1) 

r2 = b 

 

P2 
 

xchg(b,r3) 

r4 = a 

 



An Alternative View: x86-TSO 

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model 
for x86 Multiprocessors”, CACM May 2010 

    
“*…+ real multiprocessors typically do not provide the sequentially 
consistent memory that is assumed by most work on semantics and 
verification. Instead, they have relaxed memory models, varying in subtle 
ways between processor families, in which different hardware threads 
may have only loosely consistent views of a shared memory. Second, the 
public vendor architectures, supposedly specifying what programmers 
can rely on, are often in ambiguous informal prose (a particularly poor 
medium for loose specifications), leading to widespread confusion. [...] 
We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically 
precise (rigorously defined in HOL4) but can be presented as an intuitive 
abstract machine which should be widely accessible to working 
programmers.  *…+” 
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Notions of Correctness 

 We discussed so far: 

 Read/write of the same location 

Cache coherence (write propagation and serialization/atomicity) 

 Read/write of multiple locations 

Memory models (visibility order of updates by cores) 

 

 

 Now: objects (variables/fields with invariants defined on them) 

 Invariants “tie” variables together 

 Sequential objects 

 Concurrent objects 
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Sequential Objects 

 

 Each object has a type 

 A type is defined by a class 

 Set of fields forms the state of an object 

 Set of methods (or free functions) to manipulate the state 

 

 Remark 

 An Interface is an abstract type that defines behavior 

A class implementing an interface defines several types 
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Running Example: FIFO Queue 

 Insert elements at tail 

 Remove elements from head 

 Initial: head = tail = 0 

 enq(x) 

 enq(y) 

 deq() [x] 

 … 
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Sequential Queue 
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head 
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class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 



Sequential Queue 

20 

head 

tail 
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capacity = 8 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    if(tail == head) { 

      throw EmtpyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

    return item; 

  } 

}; 



Sequential Execution 

 

 

 (The) one process executes 
operations one at a time 

 Sequential  

 

 Semantics of operation 
defined by specification 
of the class 

 Preconditions and postconditions 
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Design by Contract™! 

 Preconditions: 

 Specify conditions that must  
hold before method executes 

 Involve state and arguments  
passed 

 Specify obligations a client  
must meet before calling a  
method 

 Example: enq() 

 Queue must not be full! 
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class Queue { 

  … 

  void enq(Item x) { 

    assert(tail-head < items.size()-1); 

    … 

  } 

}; 



Design by Contract™! 

 

 

 Postconditions: 

 Specify conditions that must  
hold after method executed 

 Involve old state and  
arguments passed 

 Example: enq() 

 Queue must contain element! 
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head 

tail 
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class Queue { 

  … 

  void enq(Item x) { 

     … 

    assert( (tail == old tail + 1) &&  

         (items[old tail] == x) ); 

  } 

}; 

creative assertion  



Sequential specification 

 if(precondition) 

 Object is in a specified state 

 then(postcondition) 

 The method returns a particular value or 

 Throws a particular exception and 

 Leaves the object in a specified state 

 

 Invariants 

 Specified conditions (e.g., object state) must hold anytime a client could 
invoke an objects method! 

24 



Advantages of sequential specification 

 State between method calls is defined 

 Enables reasoning about objects 

 Interactions between methods captured by side effects on object state 

 

 Enables reasoning about each method in isolation 

 Contracts for each method 

 Local state changes global state 

 

 Adding new methods 

 Only reason about state changes that the new method causes 

 If invariants are kept: no need to check old methods  

 Modularity! 
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Concurrent execution - State 

 Concurrent threads invoke methods on possibly shared objects 

 At overlapping time intervals! 
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Property Sequential Concurrent 

State Meaningful and clearly 
defined between method 
executions  

Overlapping method executions  
object may never be “between 
method executions” 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq(); 

Method executions take time! 



Concurrent execution - Reasoning 

 Reasoning must now include all possible interleavings 

 Of changes caused by methods themselves 

 

 

 

 

 

 Consider: enq() || enq() and deq() || deq() and deq() || enq()  
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Property Sequential Concurrent 

Reasoning Consider each method in 
isolation; invariants on state 
before/after execution. 

Need to consider all possible 
interactions; all intermediate states 
during execution 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq(); 

Method executions take time! 



Concurrent execution - Method addition 

 Reasoning must now include all possible interleavings 

 Of changes caused by and methods themselves 

 

 

 

 

 

 Consider adding a method that returns the last item enqueued 

 

 

 

 

 peek() || enq(): what if tail has not yet been incremented? 

 peek() || deq(): what if last item is being dequeued? 
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Property Sequential Concurrent 

Add Method Without affecting other 
methods; invariants on state 
before/after execution. 

Everything can potentially interact 
with everything else  

Item peek() { 

     if(last-head == 0)  throw Exception; 

     return items[(tail-1) % items.size()]; 

} 

void enq(Item x) { 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

} 

Item deq() { 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

} 



Concurrent objects 

 How do we describe one? 

 No pre-/postconditions  

 How do we implement one? 

 Plan for exponential number of interactions 

 How do we tell if an object is correct? 

 Analyze all exponential interactions 

 Wait, what? Exponential? Why? 

Dependencies could form circles with diameter > 2 
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Is it time to panic for software engineers? 

Who has a solution? 



Lock-based queue 

class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

  std::mutex lock; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 

head 
tail 
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2 

1 
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Queue fields protected by  
single shared lock! 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw FullException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

}; 

Lock-based queue 
tail 

0 

2 

1 

5 4 

3 

7 

6 

Queue fields protected by  
single shared lock! 

Class question: how is the lock 
ever unlocked? 

head 
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C++ Resource Acquisition is Initialization 

 Detour – RAII – suboptimal name 

 Can be used for locks (or any other resource acquisition) 

 Constructor grabs resource 

 Destructor frees resource 

 

 Behaves as if 

 Implicit unlock at end of block! 

  

 Main advantages 

 Always free lock at exit 

 No “lost” locks due to exceptions 
or strange control flow (goto ) 

 Very easy to use 

 

class lock_guard<typename mutex_impl> { 

   mutex_impl &_mtx;   // ref to the mutex 

 

   public: 

      scoped_lock(mutex_impl & mtx ) :  _mtx(mtx) {  

          _mtx.lock();   // lock  mutex in constructor 

      } 

      ~scoped_lock() {  

         _mtx.unlock();   // unlock mutex in destructor 

      } 

}; 
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Example execution 

A: q.deq(): x 

B: q.enq(x) 

lock update q unlock 

lock update q unlock 

update q update q 

“sequential 
   behavior” 
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Correctness 

 Is the locked queue correct? 

 Yes, only one thread has access if locked correctly 

 Allows us again to reason about pre- and postconditions 

 Smells a bit like sequential consistency, no? 

 Class question: What is the problem with this approach? 

 Same as for SC  

 

 

It does not scale! 

What is the solution here? 
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Threads working at the same time? 

 Same thing (concurrent queue) 

 For simplicity, assume only two threads 

 Thread A calls only enq() 

 Thread B calls only deq() 

 

head 

tail 0 
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1 
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7 

3 6 

y x 
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Wait-free 2-Thread Queue 

tail 0 

2 

5 4 

7 

3 6 

y x 
1 

enq(z) 
deq() 

z 

head 
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Wait-free 2-Thread Queue 

head 

tail 0 

2 
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7 
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y 
1 

queue[tail] 

= z 

result = x 

z 

x 
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Wait-free 2-Thread Queue 

tail 0 

2 

5 4 

7 

3 6 

y 
1 

tail++ 
head++  

z 

head 

x 
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Is this correct? 

 Hard to reason about correctness 

 What could go wrong?  

 

 

 

 

 

 

 Nothing (at least no crash) 

 Yet, the semantics of the queue are funny (define “FIFO” now)! 

 

 void enq(Item x) { 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

} 

 

 Item deq() { 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

    return item; 

} 
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Serial to Concurrent Specifications 

 Serial specifications are complex enough, so lets stick to them 

 Define invocation and response events (start and end of method) 

 Extend the sequential concept to concurrency: linearizability 

 Each method should “take effect” 

 Instantaneously 

 Between invocation and response events 

 A concurrent object is correct if it’s “sequential” behavior is correct 

 Called “linearizable” 

method execution 

Linearization point = when method takes effect 
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Linearizability  

 Sounds like a property of an execution … 

 An object is called linearizable if all possible executions on the object 
are linearizable 

 Says nothing about the order of executions! 
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Example 

time time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 
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Example 

time 

q.enq(x) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 2 

time 
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Example 2 

time 

q.enq(x) 
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Example 2 

time 

q.enq(x) q.deq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 
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Example 3 

time time 
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Example 3 

time 

q.enq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 
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Example 4 

time 

q.enq(x) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 

63 



q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 

Example 4 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

65 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) write(1) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 
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About Executions 

 Why? 

 Can’t we specify the linearization point of each operation without 
describing an execution? 

 

 Not always 

 In some cases, the linearization point depends on the execution 

Imagine a “check if one should lock” (not recommended!) 

 

 Define a formal model for executions! 
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Properties of concurrent method executions 
 
 Method executions take time 

 May overlap 

 Method execution = operation 

 Defined by invocation and response events 

 Duration of method call 

 Interval between the events 

q.enq(x) 

time 

q.deq(): x 

invocation response 

pending 
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Formalization - Notation 

 Invocation 

 

 

 

 Response 

 

 

 

 

 Method is implicit (correctness criterion)! 

A: q.enq(x) 

thread object method arguments 

A: q:void 

thread object result 

A: q:FullException() 

thread object exception 
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Concurrency 

 A concurrent system consists of a collection of sequential threads Pi 

 Threads communicate via shared objects 

For now! 
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History 

 Describes an execution 

 Sequence of invocations and responses 

 H= 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

Invocation and response match if 
 thread names are the same 
 objects are the same 
 

Note: Method name is implicit! 

Side Question: Is this history linearizable? 
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Projections on Threads 

 Threads subhistory H|P (“H at P”) 

 Subsequences of all events in H whose thread name is P 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
 
 

 
 
 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|A= H|B= 
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Projections on Objects 

 Objects subhistory H|o (“H at o”) 

 Subsequence of all events in H whose object name is o 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|p= H|q= 

 
 
 
B: p.enq(c)  
B: p:void 
 
 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
B: q.deq() 
B: q:a 
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Sequential Histories 

 A history H is sequential if 

 

 

 

 

 

 

 

 A history H is concurrent if 

 It is not sequential 

 

A: q.enq(a) 
A: q:void 
B: p.enq(b) 
B: p:void 
B: q.deq(c)  
B: q:void 
B: q.enq() 
… 

 First event of H is an invocation 
 Each invocation (except possibly 
   the last is immediately followed  
   by a matching response 
 Each response is immediately  
   followed by an invocation 

 
Method calls of different threads  
do not interleave 
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Well-formed histories 

 Per-thread projections must be sequential 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B= 

 First event of H is an invocation 
 Each invocation (except possibly 
   the last is immediately followed  
   by a matching response 
 Each response is immediately  
   followed by an invocation 

a history is sequential if 
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Equivalent histories 

 Per-thread projections must be the same 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A=G|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B=G|B= 

A: q.enq(x) 
B: p.enq(y)  
A: q:void 
B: p:void 
B: q.deq() 
B: q:x 
 
 

G= 
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Legal Histories 

 Sequential specification allows to describe what behavior we expect 
and tolerate 

 When is a single-thread, single-object history legal? 

 Recall: Example  

 Preconditions and Postconditions 

 Many others exist! 

 A sequential (multi-object) history H is legal if 

 For every object x 

 H|x adheres to the sequential specification for x 

 Example: FIFO queue 

 Correct internal state 

Order of removal equals order of addition 

 Full and Empty Exceptions 
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Precedence 

A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void  
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) B: q.deq() 

A method execution precedes 
another if response event 
precedes invocation event 
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Precedence vs. Overlapping 

 Non-precedence = overlapping 

A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void  
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) 

B: q.enq(y) 

Some method executions 
overlap with others 
 
 

Side Question: Is this a correct linearization order? 
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Complete Histories 

 A history H is complete 

 If all invocations are matched with a response 
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A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
A: q.enq(z) 
B: q:x 
 

H= G= 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
B: q.deq() 
 

I= 

Which histories are complete and which are not? 

Complete Not complete Not complete 



Precedence Relations 

 Given history H 

 Method executions m0 and m1 in H 

 m0 →H m1 (m0 precedes m1 in H) if 

 Response event of m0 precedes invocation event of m1 

 Precedence relation m0 →H m1 is a  

 Strict partial order on method executions 

Irreflexive, antisymmetric, transitive 

 Considerations 

 Precedence forms a total order if H is sequential 

 Unrelated method calls  may overlap  concurrent 

 

 

92 



Definition Linearizability 

 A history H induces a strict partial order <H on operations 

 m0 <H m1 if m0 →H m1 

 A history H is linearizable if 

 H can be extended to a complete history H’ 

by appending responses to pending operations or dropping pending operations 

 H’ is equivalent to some legal sequential history S and 

 <H’ ⊆ <S 

 S is a linearization of H 

 Remarks: 

 For each H, there may be many valid extensions to H’ 

 For each extension H’, there may be many S 

 Interleaving at the granularity of methods 
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Ensuring <H’ ⊆ <S 

 
 Find an S that contains H’ 

time 

a 

b 

time <S 

 

c <H’ 

<H’ = {a → c,b → c} 

<S =  {a → b,a → c,b → c} 
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A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

Example 

time 

B.q.enq(4) 

A. q.enq(3) 

B.q.deq(4) B. q.enq(6) 
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Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A. q.enq(3) 
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Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 
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Example 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 

discard this one 
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Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

 

A q:void 

discard this one 
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A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 
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What would be an equivalent  
sequential history? 



A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 
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B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

Equivalent sequential history 
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Linearization Points 

 Identify one atomic step where a method “happens” (effects become 
visible to others) 

 Critical section 

 Machine instruction (atomics, transactional memory …) 

 Does not always succeed 

 One may need to define several different steps for a given method 

 If so, extreme care must be taken to ensure pre-/postconditions  

 All possible executions on the object must be linearizable 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 
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Composition 

 H is linearizable iff for every object x, H|x is linearizable! 

 Composing linearizable objects results in a linearizable system 

 

 Reasoning 

 Consider linearizability of objects in isolation 

 

 Modularity 

 Allows concurrent systems to be constructed in a modular fashion 

 Compose independently-implemented objects 
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Linearizability vs. Sequential Consistency 

 Sequential consistency 

 Correctness condition 

 For describing hardware memory interfaces 

 Remember: not actual ones! 

 

 Linearizability 

 Stronger correctness condition 

 For describing higher-level systems composed from linearizable 
components 

Requires understanding of object semantics 
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Map linearizability to sequential consistency 

 Variables with read and write operations 

 Sequential consistency 

 Objects with a type and methods 

 Linearizability 

 Map sequential consistency ↔ linearizability 

 Reduce data types to variables with read and write operations 

 Model variables as data types with read() and write() methods 

 Remember: Sequential consistency 

 A history H is sequential if it can be extended to H’ and H’ is equivalent to 
some sequential history S 

 Note: Precedence order (<H ⊆ <S) does not need to be maintained 
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Example 

time 
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Example 

time 

q.enq(x) 

108 



Example 

time 

q.enq(x) q.deq(y) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Properties of sequential consistency 
 
 Theorem: Sequential consistency is not compositional 

H= 

Compositional would mean: 
“If H|p and H|q are sequentially consistent, 
  then H is sequentially consistent!” 
 
This is not guaranteed for SC schedules! 
 
See following example! 

A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

time 

116 



FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

History H 

time 
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H|p Sequentially Consistent 

time 

p.enq(x) p.deq(y) 

p.enq(y) 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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H|q Sequentially Consistent 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by p 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by q 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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p.enq(x) 

Ordering imposed by both 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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p.enq(x) 

Combining orders 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|p 

H= 

A: p.enq(x) 
A: p:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  

H|p= 

A: p.enq(x) 
A: p:void  
A: p.deq() 
A: p:y  

B: p.enq(y) 
B: p:void  

(H|p)|A= (H|p)|B= 

H|p is sequentially consistent! 
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|q 

H= H|q= (H|q)|A= (H|q)|B= 

H|q is sequentially consistent! 

B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: q.deq() 
B: q:x  

A: q.enq(x) 
A: q:void  

B: q.enq(y) 
B: q:void  
B: q.deq() 
B: q:x  
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 

H= H|A= H|B= 

H is not sequentially consistent! 

A: p.enq(x) 
A: p:void  
A: q.enq(x) 
A: q:void  
A: p.deq() 
A: p:y 

B: q.enq(y) 
B: q:void  
B: p.enq(y) 
B: p:void  
B: q.deq() 
B: q:x  
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Correctness: Linearizability 

 Sequential Consistency 

 Not composable 

 Harder to work with 

 Good way to think about hardware models 

 

 We will use linearizability in the remainder of this course 

unless stated otherwise 

Consider routine entry and exit 
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Study Goals (Homework) 

 Define linearizability with your own words! 

 Describe the properties of linearizability! 

 Explain the differences between sequential consistency and 
linearizability! 

 

 Given a history H 

 Identify linearization points 

 Find equivalent sequential history S 

 Decide and explain whether H is linearizable 

 Decide and explain whether H is sequentially consistent 

 Give values for the response events such that the execution is linearizable 
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Language Memory Models 

 Which transformations/reorderings can be applied to a program 

 Affects platform/system 

 Compiler, (VM), hardware 

 Affects programmer 

 What are possible semantics/output 

 Which communication between threads is legal? 

 Without memory model 

 Impossible to even define “legal” or “semantics” when data is accessed 
concurrently 

 A memory model is a contract 

 Between platform and programmer 
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History of Memory Models 

 Java’s original memory model was broken 

 Difficult to understand => widely violated 

 Did not allow reorderings as implemented in standard VMs 

 Final fields could appear to change value without synchronization 

 Volatile writes could be reordered with normal reads and writes 

=> counter-intuitive for most developers 

 Java memory model was revised 

 Java 1.5 (JSR-133) 

 Still some issues (operational semantics definition) 

 C/C++ didn’t even have a memory model until recently 

 Not able to make any statement about threaded semantics! 

 Introduced in C++11 and C11 

 Based on experience from Java, more conservative 
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Everybody wants to optimize 
 
 Language constructs for synchronization 

 Java: volatile, synchronized, … 

 C++: atomic, (NOT volatile!), mutex, … 

 

 Without synchronization (defined language-specific) 

 Compiler, (VM), architecture 

 Reorder and appear to reorder memory operations 

 Maintain sequential semantics per thread 

 Other threads may observe any order (have seen examples before) 
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Java and C++ High-level overview 

 Relaxed memory model 

 No global visibility ordering of operations 

 Allows for standard compiler optimizations 

 But 

 Program order for each thread (sequential semantics) 

 Partial order on memory operations (with respect to synchronizations) 

 Visibility function defined 

 Correctly synchronized programs 

 Guarantee sequential consistency 

 Incorrectly synchronized programs 

 Java: maintain safety and security guarantees 

Type safety etc. (require behavior bounded by causality) 

 C++: undefined behavior 

No safety (anything can happen/change) 
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