
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Linearizability

Instructor: Torsten Hoefler & Markus Püschel

TAs: Timo Schneider, Arnamoy Bhattacharyya

Review of last lecture

 Cache-coherence is not enough!

 Many more subtle issues for parallel programs!

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library

 Relaxed consistency models

 x86 TLO+CC case study

 Complexity of reasoning about parallel objects

 Serial specifications (e.g., pre-/postconditions)

 Started to lock things …

2

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 4 minutes

 We then select a random student (team) to answer the question

 What are the problems with sequential consistency?

 Is it practical? Explain!

 Is it sufficient? Explain!

 How would you improve the situation?

 How could memory models of practical CPUs be described?

 Is the Intel definition useful?

 Why would one need a better definition?

 Threads cannot be implemented as a library? Why does Pthreads work?

3

DPHPC Overview

4

Goals of this lecture

 Queue:

 Locked

C++ locking (small detour)

 Wait-free two-thread queue

 Linearizability

 Intuitive understanding (sequential order on objects!)

 Linearization points

 Linearizable executions

 Formal definitions (Histories, Projections, Precedence)

 Linearizability vs. Sequential Consistency

 Modularity

5

Recap: x86 Memory model: TLO + CC

 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors

 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)

 Write visibility is transitive

 Eight principles

 After some revisions

6

The Eight x86 Principles

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations
but not with older writes to the same location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility). (some more orders)

6. “In a multiprocessor system, writes to the same location have a total
order.” (implied by cache coherence)

7. “In a multiprocessor system, locked instructions have a total order.“
(enables synchronized programming!)

8. “Reads and writes are not reordered with locked instructions.
“(enables synchronized programming!)

7

Principle 1 and 2

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

 All values zero initially

 If r1 == 2, then r2 must be 1!

 Not allowed: r1 == 1, r2 == 0

 Reads and writes observed in program order

 Cannot be reordered!

8

P1

a = 1

b = 2

P2

r1 = b

r2 = a

Principle 3

Writes are not reordered with older reads. (RW)

 All values zero initially

 If r1 == 1, then P2:W(a) P1:R(a), thus r2 must be 0!

 If r2 == 1, then P1:W(b) P1:R(b), thus r1 must be 0!

 Not allowed: r1 == 1 and r2 == 1

9

P1

r1 = a

b = 1

P2

r2 = b

a = 1

Principle 4

Reads may be reordered with older writes to different locations but not
with older writes to the same location. (NO WR!)

 All values zero initially

 Allowed: r1=0, r2=0

 Sequential consistency can be enforced with mfence

 Attention: may allow reads to move into critical sections!

10

P1

a = 1

r1 = b

P2

b = 1

r2 = a

Principle 5

In a multiprocessor system, memory ordering obeys causality (memory
ordering respects transitive visibility). (some more orders)

 All values zero initially

 If r1 == 1 and r2==1, then r3 must read 1

 Not allowed: r1 == 1, r2 == 1, and r3 == 0

 Provides some form of atomicity

11

P1

a = 1

P2

r1 = a

b = 1

P3

r2 = b

r3 = a

Principle 6

In a multiprocessor system, writes to the same location have a total
order. (implied by cache coherence)

 All values zero initially

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s
write before P2’s write

 Provides some form of atomicity

12

P1

a=1

P2

a=2

P3

r1 = a

r2 = a

P4

r3 = a

r4 = a

Principle 7

In a multiprocessor system, locked instructions have a total order.
(enables synchronized programming!)

 All values zero initially, registers r1==r2==1

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0

 If P3 observes ordering P1:xchg P2:xchg, P4 observes the same
ordering

 (xchg has implicit lock)

13

P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a

r4 = b

P4

r5 = b

r6 = a

Principle 8

Reads and writes are not reordered with locked instructions.
(enables synchronized programming!)

 All values zero initially but r1 = r3 = 1

 Not allowed: r2 == 0, r4 == 0

 Locked instructions have total order, so P1 and P2 agree on the same
order

 If volatile variables use locked instructions practical sequential
consistency

14

P1

xchg(a,r1)

r2 = b

P2

xchg(b,r3)

r4 = a

An Alternative View: x86-TSO

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model
for x86 Multiprocessors”, CACM May 2010

“*…+ real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on semantics and
verification. Instead, they have relaxed memory models, varying in subtle
ways between processor families, in which different hardware threads
may have only loosely consistent views of a shared memory. Second, the
public vendor architectures, supposedly specifying what programmers
can rely on, are often in ambiguous informal prose (a particularly poor
medium for loose specifications), leading to widespread confusion. [...]
We present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically
precise (rigorously defined in HOL4) but can be presented as an intuitive
abstract machine which should be widely accessible to working
programmers. *…+”

15

Notions of Correctness

 We discussed so far:

 Read/write of the same location

Cache coherence (write propagation and serialization/atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

16

Sequential Objects

 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

17

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …

18

head

tail

0

2

1

5 4

3

y x

capacity = 8

7

6

Sequential Queue

19

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

Sequential Queue

20

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 public:

 void enq(Item x) {

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 if(tail == head) {

 throw EmtpyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 return item;

 }

};

Sequential Execution

 (The) one process executes
operations one at a time

 Sequential

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

21

head

tail

0

2

1

5 4

3

capacity = 8

7

6

Design by Contract™!

 Preconditions:

 Specify conditions that must
hold before method executes

 Involve state and arguments
passed

 Specify obligations a client
must meet before calling a
method

 Example: enq()

 Queue must not be full!

22

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 assert(tail-head < items.size()-1);

 …

 }

};

Design by Contract™!

 Postconditions:

 Specify conditions that must
hold after method executed

 Involve old state and
arguments passed

 Example: enq()

 Queue must contain element!

23

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 …

 assert((tail == old tail + 1) &&

 (items[old tail] == x));

 }

};

creative assertion

Sequential specification

 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could
invoke an objects method!

24

Advantages of sequential specification

 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods

 Modularity!

25

Concurrent execution - State

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

26

Property Sequential Concurrent

State Meaningful and clearly
defined between method
executions

Overlapping method executions
object may never be “between
method executions”

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq();

Method executions take time!

Concurrent execution - Reasoning

 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

 Consider: enq() || enq() and deq() || deq() and deq() || enq()

27

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq();

Method executions take time!

Concurrent execution - Method addition

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 peek() || enq(): what if tail has not yet been incremented?

 peek() || deq(): what if last item is being dequeued?

28

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact
with everything else

Item peek() {

 if(last-head == 0) throw Exception;

 return items[(tail-1) % items.size()];

}

void enq(Item x) {

 items[tail] = x;

 tail = (tail+1)%items.size();

}

Item deq() {

 Item item = items[head];

 head = (head+1)%items.size();

}

Concurrent objects

 How do we describe one?

 No pre-/postconditions

 How do we implement one?

 Plan for exponential number of interactions

 How do we tell if an object is correct?

 Analyze all exponential interactions

 Wait, what? Exponential? Why?

Dependencies could form circles with diameter > 2

29

Is it time to panic for software engineers?

Who has a solution?

Lock-based queue

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 std::mutex lock;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

30

class Queue {

 …

 public:

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw FullException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

};

Lock-based queue
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

31

C++ Resource Acquisition is Initialization

 Detour – RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto)

 Very easy to use

class lock_guard<typename mutex_impl> {

 mutex_impl &_mtx; // ref to the mutex

 public:

 scoped_lock(mutex_impl & mtx) : _mtx(mtx) {

 _mtx.lock(); // lock mutex in constructor

 }

 ~scoped_lock() {

 _mtx.unlock(); // unlock mutex in destructor

 }

};

32

Example execution

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
 behavior”

33

Correctness

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC

It does not scale!

What is the solution here?

34

Threads working at the same time?

 Same thing (concurrent queue)

 For simplicity, assume only two threads

 Thread A calls only enq()

 Thread B calls only deq()

head

tail 0

2

1

5 4

7

3 6

y x

35

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y x
1

enq(z)
deq()

z

head

36

Wait-free 2-Thread Queue

head

tail 0

2

5 4

7

3 6

y
1

queue[tail]

= z

result = x

z

x

37

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y
1

tail++
head++

z

head

x

38

Is this correct?

 Hard to reason about correctness

 What could go wrong?

 Nothing (at least no crash)

 Yet, the semantics of the queue are funny (define “FIFO” now)!

 void enq(Item x) {

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

}

 Item deq() {

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 return item;

}

39

Serial to Concurrent Specifications

 Serial specifications are complex enough, so lets stick to them

 Define invocation and response events (start and end of method)

 Extend the sequential concept to concurrency: linearizability

 Each method should “take effect”

 Instantaneously

 Between invocation and response events

 A concurrent object is correct if it’s “sequential” behavior is correct

 Called “linearizable”

method execution

Linearization point = when method takes effect

40

Linearizability

 Sounds like a property of an execution …

 An object is called linearizable if all possible executions on the object
are linearizable

 Says nothing about the order of executions!

41

Example

time time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

42

Example

time

q.enq(x)

time

43

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y)

time

44

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

45

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

46

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

47

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

48

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example 2

time

49

Example 2

time

q.enq(x)

50

Example 2

time

q.enq(x) q.deq(y)

51

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)

52

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

53

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

54

Example 3

time time

55

Example 3

time

q.enq(x)

time

56

Example 3

time

q.enq(x)

q.deq(x)

time

57

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

58

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

59

Example 4

time

q.enq(x)

time

60

Example 4

time

q.enq(x)

q.enq(y)

time

61

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

time

62

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

63

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

Example 4

64

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

65

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

write(1) already

happened

66

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already

happened

67

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

write(1) already

happened

68

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

69

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

70

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

71

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

72

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

73

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2)

74

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

75

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

76

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

77

About Executions

 Why?

 Can’t we specify the linearization point of each operation without
describing an execution?

 Not always

 In some cases, the linearization point depends on the execution

Imagine a “check if one should lock” (not recommended!)

 Define a formal model for executions!

78

Properties of concurrent method executions

 Method executions take time

 May overlap

 Method execution = operation

 Defined by invocation and response events

 Duration of method call

 Interval between the events

q.enq(x)

time

q.deq(): x

invocation response

pending

79

Formalization - Notation

 Invocation

 Response

 Method is implicit (correctness criterion)!

A: q.enq(x)

thread object method arguments

A: q:void

thread object result

A: q:FullException()

thread object exception

80

Concurrency

 A concurrent system consists of a collection of sequential threads Pi

 Threads communicate via shared objects

For now!

81

History

 Describes an execution

 Sequence of invocations and responses

 H=

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

Invocation and response match if
 thread names are the same
 objects are the same

Note: Method name is implicit!

Side Question: Is this history linearizable?

82

Projections on Threads

 Threads subhistory H|P (“H at P”)

 Subsequences of all events in H whose thread name is P

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

A: q.enq(a)
A: q:void
A: q.enq(b)

B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|A= H|B=

83

Projections on Objects

 Objects subhistory H|o (“H at o”)

 Subsequence of all events in H whose object name is o

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|p= H|q=

B: p.enq(c)
B: p:void

A: q.enq(a)
A: q:void
A: q.enq(b)

B: q.deq()
B: q:a

84

Sequential Histories

 A history H is sequential if

 A history H is concurrent if

 It is not sequential

A: q.enq(a)
A: q:void
B: p.enq(b)
B: p:void
B: q.deq(c)
B: q:void
B: q.enq()
…

 First event of H is an invocation
 Each invocation (except possibly
 the last is immediately followed
 by a matching response
 Each response is immediately
 followed by an invocation

Method calls of different threads
do not interleave

85

Well-formed histories

 Per-thread projections must be sequential

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=

 First event of H is an invocation
 Each invocation (except possibly
 the last is immediately followed
 by a matching response
 Each response is immediately
 followed by an invocation

a history is sequential if

86

Equivalent histories

 Per-thread projections must be the same

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=G|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=G|B=

A: q.enq(x)
B: p.enq(y)
A: q:void
B: p:void
B: q.deq()
B: q:x

G=

87

Legal Histories

 Sequential specification allows to describe what behavior we expect
and tolerate

 When is a single-thread, single-object history legal?

 Recall: Example

 Preconditions and Postconditions

 Many others exist!

 A sequential (multi-object) history H is legal if

 For every object x

 H|x adheres to the sequential specification for x

 Example: FIFO queue

 Correct internal state

Order of removal equals order of addition

 Full and Empty Exceptions

88

Precedence

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x) B: q.deq()

A method execution precedes
another if response event
precedes invocation event

89

Precedence vs. Overlapping

 Non-precedence = overlapping

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)

B: q.enq(y)

Some method executions
overlap with others

Side Question: Is this a correct linearization order?

90

Complete Histories

 A history H is complete

 If all invocations are matched with a response

91

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
A: q.enq(z)
B: q:x

H= G=

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x
B: q.deq()

I=

Which histories are complete and which are not?

Complete Not complete Not complete

Precedence Relations

 Given history H

 Method executions m0 and m1 in H

 m0 →H m1 (m0 precedes m1 in H) if

 Response event of m0 precedes invocation event of m1

 Precedence relation m0 →H m1 is a

 Strict partial order on method executions

Irreflexive, antisymmetric, transitive

 Considerations

 Precedence forms a total order if H is sequential

 Unrelated method calls may overlap concurrent

92

Definition Linearizability

 A history H induces a strict partial order <H on operations

 m0 <H m1 if m0 →H m1

 A history H is linearizable if

 H can be extended to a complete history H’

by appending responses to pending operations or dropping pending operations

 H’ is equivalent to some legal sequential history S and

 <H’ ⊆ <S

 S is a linearization of H

 Remarks:

 For each H, there may be many valid extensions to H’

 For each extension H’, there may be many S

 Interleaving at the granularity of methods

 93

Ensuring <H’ ⊆ <S

 Find an S that contains H’

time

a

b

time <S

c <H’

<H’ = {a → c,b → c}

<S = {a → b,a → c,b → c}

94

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

95

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A. q.enq(3)

96

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

97

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one

98

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one

99

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

100

What would be an equivalent
sequential history?

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

101

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history

102

Linearization Points

 Identify one atomic step where a method “happens” (effects become
visible to others)

 Critical section

 Machine instruction (atomics, transactional memory …)

 Does not always succeed

 One may need to define several different steps for a given method

 If so, extreme care must be taken to ensure pre-/postconditions

 All possible executions on the object must be linearizable

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

103

Composition

 H is linearizable iff for every object x, H|x is linearizable!

 Composing linearizable objects results in a linearizable system

 Reasoning

 Consider linearizability of objects in isolation

 Modularity

 Allows concurrent systems to be constructed in a modular fashion

 Compose independently-implemented objects

104

Linearizability vs. Sequential Consistency

 Sequential consistency

 Correctness condition

 For describing hardware memory interfaces

 Remember: not actual ones!

 Linearizability

 Stronger correctness condition

 For describing higher-level systems composed from linearizable
components

Requires understanding of object semantics

105

Map linearizability to sequential consistency

 Variables with read and write operations

 Sequential consistency

 Objects with a type and methods

 Linearizability

 Map sequential consistency ↔ linearizability

 Reduce data types to variables with read and write operations

 Model variables as data types with read() and write() methods

 Remember: Sequential consistency

 A history H is sequential if it can be extended to H’ and H’ is equivalent to
some sequential history S

 Note: Precedence order (<H ⊆ <S) does not need to be maintained

106

Example

time

107

Example

time

q.enq(x)

108

Example

time

q.enq(x) q.deq(y)

109

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Linearizable?

110

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

111

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

112

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

113

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

114

Properties of sequential consistency

 Theorem: Sequential consistency is not compositional

H=

Compositional would mean:
“If H|p and H|q are sequentially consistent,
 then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

115

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

time

116

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

117

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

History H

time

118

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

119

H|q Sequentially Consistent

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

120

Ordering imposed by p

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

121

Ordering imposed by q

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

122

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

123

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

124

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|p

H=

A: p.enq(x)
A: p:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y

H|p=

A: p.enq(x)
A: p:void
A: p.deq()
A: p:y

B: p.enq(y)
B: p:void

(H|p)|A= (H|p)|B=

H|p is sequentially consistent!

125

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|q

H= H|q= (H|q)|A= (H|q)|B=

H|q is sequentially consistent!

B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)
A: q:void

B: q.enq(y)
B: q:void
B: q.deq()
B: q:x

126

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

H= H|A= H|B=

H is not sequentially consistent!

A: p.enq(x)
A: p:void
A: q.enq(x)
A: q:void
A: p.deq()
A: p:y

B: q.enq(y)
B: q:void
B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

127

Correctness: Linearizability

 Sequential Consistency

 Not composable

 Harder to work with

 Good way to think about hardware models

 We will use linearizability in the remainder of this course

unless stated otherwise

Consider routine entry and exit

128

Study Goals (Homework)

 Define linearizability with your own words!

 Describe the properties of linearizability!

 Explain the differences between sequential consistency and
linearizability!

 Given a history H

 Identify linearization points

 Find equivalent sequential history S

 Decide and explain whether H is linearizable

 Decide and explain whether H is sequentially consistent

 Give values for the response events such that the execution is linearizable

129

Language Memory Models

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed
concurrently

 A memory model is a contract

 Between platform and programmer

130

History of Memory Models

 Java’s original memory model was broken

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition)

 C/C++ didn’t even have a memory model until recently

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, more conservative

131

Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

132

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

133

