
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Linearizability

Instructor: Torsten Hoefler & Markus Püschel

TAs: Timo Schneider, Arnamoy Bhattacharyya

Review of last lecture

 Cache-coherence is not enough!

 Many more subtle issues for parallel programs!

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library 

 Relaxed consistency models

 x86 TLO+CC case study

 Complexity of reasoning about parallel objects

 Serial specifications (e.g., pre-/postconditions)

 Started to lock things …

2

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 4 minutes

 We then select a random student (team) to answer the question

 What are the problems with sequential consistency?

 Is it practical? Explain!

 Is it sufficient? Explain!

 How would you improve the situation?

 How could memory models of practical CPUs be described?

 Is the Intel definition useful?

 Why would one need a better definition?

 Threads cannot be implemented as a library? Why does Pthreads work?

3

DPHPC Overview

4

Goals of this lecture

 Queue:

 Locked

C++ locking (small detour)

 Wait-free two-thread queue

 Linearizability

 Intuitive understanding (sequential order on objects!)

 Linearization points

 Linearizable executions

 Formal definitions (Histories, Projections, Precedence)

 Linearizability vs. Sequential Consistency

 Modularity

5

Recap: x86 Memory model: TLO + CC

 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors

 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)

 Write visibility is transitive

 Eight principles

 After some revisions 

6

The Eight x86 Principles

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations
but not with older writes to the same location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility). (some more orders)

6. “In a multiprocessor system, writes to the same location have a total
order.” (implied by cache coherence)

7. “In a multiprocessor system, locked instructions have a total order.“
(enables synchronized programming!)

8. “Reads and writes are not reordered with locked instructions.
“(enables synchronized programming!)

7

Principle 1 and 2

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

 All values zero initially

 If r1 == 2, then r2 must be 1!

 Not allowed: r1 == 1, r2 == 0

 Reads and writes observed in program order

 Cannot be reordered!

8

P1

a = 1

b = 2

P2

r1 = b

r2 = a

Principle 3

Writes are not reordered with older reads. (RW)

 All values zero initially

 If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!

 If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

 Not allowed: r1 == 1 and r2 == 1

9

P1

r1 = a

b = 1

P2

r2 = b

a = 1

Principle 4

Reads may be reordered with older writes to different locations but not
with older writes to the same location. (NO WR!)

 All values zero initially

 Allowed: r1=0, r2=0

 Sequential consistency can be enforced with mfence

 Attention: may allow reads to move into critical sections!

10

P1

a = 1

r1 = b

P2

b = 1

r2 = a

Principle 5

In a multiprocessor system, memory ordering obeys causality (memory
ordering respects transitive visibility). (some more orders)

 All values zero initially

 If r1 == 1 and r2==1, then r3 must read 1

 Not allowed: r1 == 1, r2 == 1, and r3 == 0

 Provides some form of atomicity

11

P1

a = 1

P2

r1 = a

b = 1

P3

r2 = b

r3 = a

Principle 6

In a multiprocessor system, writes to the same location have a total
order. (implied by cache coherence)

 All values zero initially

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s
write before P2’s write

 Provides some form of atomicity

12

P1

a=1

P2

a=2

P3

r1 = a

r2 = a

P4

r3 = a

r4 = a

Principle 7

In a multiprocessor system, locked instructions have a total order.
(enables synchronized programming!)

 All values zero initially, registers r1==r2==1

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0

 If P3 observes ordering P1:xchg  P2:xchg, P4 observes the same
ordering

 (xchg has implicit lock)

13

P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a

r4 = b

P4

r5 = b

r6 = a

Principle 8

Reads and writes are not reordered with locked instructions.
(enables synchronized programming!)

 All values zero initially but r1 = r3 = 1

 Not allowed: r2 == 0, r4 == 0

 Locked instructions have total order, so P1 and P2 agree on the same
order

 If volatile variables use locked instructions  practical sequential
consistency

14

P1

xchg(a,r1)

r2 = b

P2

xchg(b,r3)

r4 = a

An Alternative View: x86-TSO

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model
for x86 Multiprocessors”, CACM May 2010

“*…+ real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on semantics and
verification. Instead, they have relaxed memory models, varying in subtle
ways between processor families, in which different hardware threads
may have only loosely consistent views of a shared memory. Second, the
public vendor architectures, supposedly specifying what programmers
can rely on, are often in ambiguous informal prose (a particularly poor
medium for loose specifications), leading to widespread confusion. [...]
We present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically
precise (rigorously defined in HOL4) but can be presented as an intuitive
abstract machine which should be widely accessible to working
programmers. *…+”

15

Notions of Correctness

 We discussed so far:

 Read/write of the same location

Cache coherence (write propagation and serialization/atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

16

Sequential Objects

 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

17

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …

18

head

tail

0

2

1

5 4

3

y x

capacity = 8

7

6

Sequential Queue

19

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

Sequential Queue

20

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 public:

 void enq(Item x) {

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 if(tail == head) {

 throw EmtpyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 return item;

 }

};

Sequential Execution

 (The) one process executes
operations one at a time

 Sequential 

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

21

head

tail

0

2

1

5 4

3

capacity = 8

7

6

Design by Contract™!

 Preconditions:

 Specify conditions that must
hold before method executes

 Involve state and arguments
passed

 Specify obligations a client
must meet before calling a
method

 Example: enq()

 Queue must not be full!

22

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 assert(tail-head < items.size()-1);

 …

 }

};

Design by Contract™!

 Postconditions:

 Specify conditions that must
hold after method executed

 Involve old state and
arguments passed

 Example: enq()

 Queue must contain element!

23

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 …

 assert((tail == old tail + 1) &&

 (items[old tail] == x));

 }

};

creative assertion 

Sequential specification

 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could
invoke an objects method!

24

Advantages of sequential specification

 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods

 Modularity!

25

Concurrent execution - State

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

26

Property Sequential Concurrent

State Meaningful and clearly
defined between method
executions

Overlapping method executions 
object may never be “between
method executions”

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq();

Method executions take time!

Concurrent execution - Reasoning

 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

 Consider: enq() || enq() and deq() || deq() and deq() || enq()

27

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq();

Method executions take time!

Concurrent execution - Method addition

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 peek() || enq(): what if tail has not yet been incremented?

 peek() || deq(): what if last item is being dequeued?

28

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact
with everything else

Item peek() {

 if(last-head == 0) throw Exception;

 return items[(tail-1) % items.size()];

}

void enq(Item x) {

 items[tail] = x;

 tail = (tail+1)%items.size();

}

Item deq() {

 Item item = items[head];

 head = (head+1)%items.size();

}

Concurrent objects

 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for exponential number of interactions

 How do we tell if an object is correct?

 Analyze all exponential interactions

 Wait, what? Exponential? Why?

Dependencies could form circles with diameter > 2

29

Is it time to panic for software engineers?

Who has a solution?

Lock-based queue

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 std::mutex lock;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

30

class Queue {

 …

 public:

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw FullException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

};

Lock-based queue
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

31

C++ Resource Acquisition is Initialization

 Detour – RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto )

 Very easy to use

class lock_guard<typename mutex_impl> {

 mutex_impl &_mtx; // ref to the mutex

 public:

 scoped_lock(mutex_impl & mtx) : _mtx(mtx) {

 _mtx.lock(); // lock mutex in constructor

 }

 ~scoped_lock() {

 _mtx.unlock(); // unlock mutex in destructor

 }

};

32

Example execution

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
 behavior”

33

Correctness

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC 

It does not scale!

What is the solution here?

34

Threads working at the same time?

 Same thing (concurrent queue)

 For simplicity, assume only two threads

 Thread A calls only enq()

 Thread B calls only deq()

head

tail 0

2

1

5 4

7

3 6

y x

35

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y x
1

enq(z)
deq()

z

head

36

Wait-free 2-Thread Queue

head

tail 0

2

5 4

7

3 6

y
1

queue[tail]

= z

result = x

z

x

37

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y
1

tail++
head++

z

head

x

38

Is this correct?

 Hard to reason about correctness

 What could go wrong?

 Nothing (at least no crash)

 Yet, the semantics of the queue are funny (define “FIFO” now)!

 void enq(Item x) {

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

}

 Item deq() {

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 return item;

}

39

Serial to Concurrent Specifications

 Serial specifications are complex enough, so lets stick to them

 Define invocation and response events (start and end of method)

 Extend the sequential concept to concurrency: linearizability

 Each method should “take effect”

 Instantaneously

 Between invocation and response events

 A concurrent object is correct if it’s “sequential” behavior is correct

 Called “linearizable”

method execution

Linearization point = when method takes effect

40

Linearizability

 Sounds like a property of an execution …

 An object is called linearizable if all possible executions on the object
are linearizable

 Says nothing about the order of executions!

41

Example

time time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

42

Example

time

q.enq(x)

time

43

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y)

time

44

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

45

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

46

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

47

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

48

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if((tail+1)%size==head) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

linearization points

Example 2

time

49

Example 2

time

q.enq(x)

50

Example 2

time

q.enq(x) q.deq(y)

51

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)

52

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

53

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

54

Example 3

time time

55

Example 3

time

q.enq(x)

time

56

Example 3

time

q.enq(x)

q.deq(x)

time

57

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

58

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

59

Example 4

time

q.enq(x)

time

60

Example 4

time

q.enq(x)

q.enq(y)

time

61

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

time

62

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

63

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

Example 4

64

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

65

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

write(1) already

happened

66

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already

happened

67

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

write(1) already

happened

68

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

69

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

70

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

71

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

72

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

73

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2)

74

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

75

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

76

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

77

About Executions

 Why?

 Can’t we specify the linearization point of each operation without
describing an execution?

 Not always

 In some cases, the linearization point depends on the execution

Imagine a “check if one should lock” (not recommended!)

 Define a formal model for executions!

78

Properties of concurrent method executions

 Method executions take time

 May overlap

 Method execution = operation

 Defined by invocation and response events

 Duration of method call

 Interval between the events

q.enq(x)

time

q.deq(): x

invocation response

pending

79

Formalization - Notation

 Invocation

 Response

 Method is implicit (correctness criterion)!

A: q.enq(x)

thread object method arguments

A: q:void

thread object result

A: q:FullException()

thread object exception

80

Concurrency

 A concurrent system consists of a collection of sequential threads Pi

 Threads communicate via shared objects

For now!

81

History

 Describes an execution

 Sequence of invocations and responses

 H=

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

Invocation and response match if
 thread names are the same
 objects are the same

Note: Method name is implicit!

Side Question: Is this history linearizable?

82

Projections on Threads

 Threads subhistory H|P (“H at P”)

 Subsequences of all events in H whose thread name is P

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

A: q.enq(a)
A: q:void
A: q.enq(b)

B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|A= H|B=

83

Projections on Objects

 Objects subhistory H|o (“H at o”)

 Subsequence of all events in H whose object name is o

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|p= H|q=

B: p.enq(c)
B: p:void

A: q.enq(a)
A: q:void
A: q.enq(b)

B: q.deq()
B: q:a

84

Sequential Histories

 A history H is sequential if

 A history H is concurrent if

 It is not sequential

A: q.enq(a)
A: q:void
B: p.enq(b)
B: p:void
B: q.deq(c)
B: q:void
B: q.enq()
…

 First event of H is an invocation
 Each invocation (except possibly
 the last is immediately followed
 by a matching response
 Each response is immediately
 followed by an invocation

Method calls of different threads
do not interleave

85

Well-formed histories

 Per-thread projections must be sequential

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=

 First event of H is an invocation
 Each invocation (except possibly
 the last is immediately followed
 by a matching response
 Each response is immediately
 followed by an invocation

a history is sequential if

86

Equivalent histories

 Per-thread projections must be the same

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=G|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=G|B=

A: q.enq(x)
B: p.enq(y)
A: q:void
B: p:void
B: q.deq()
B: q:x

G=

87

Legal Histories

 Sequential specification allows to describe what behavior we expect
and tolerate

 When is a single-thread, single-object history legal?

 Recall: Example

 Preconditions and Postconditions

 Many others exist!

 A sequential (multi-object) history H is legal if

 For every object x

 H|x adheres to the sequential specification for x

 Example: FIFO queue

 Correct internal state

Order of removal equals order of addition

 Full and Empty Exceptions

88

Precedence

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x) B: q.deq()

A method execution precedes
another if response event
precedes invocation event

89

Precedence vs. Overlapping

 Non-precedence = overlapping

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)

B: q.enq(y)

Some method executions
overlap with others

Side Question: Is this a correct linearization order?

90

Complete Histories

 A history H is complete

 If all invocations are matched with a response

91

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
A: q.enq(z)
B: q:x

H= G=

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x
B: q.deq()

I=

Which histories are complete and which are not?

Complete Not complete Not complete

Precedence Relations

 Given history H

 Method executions m0 and m1 in H

 m0 →H m1 (m0 precedes m1 in H) if

 Response event of m0 precedes invocation event of m1

 Precedence relation m0 →H m1 is a

 Strict partial order on method executions

Irreflexive, antisymmetric, transitive

 Considerations

 Precedence forms a total order if H is sequential

 Unrelated method calls  may overlap  concurrent

92

Definition Linearizability

 A history H induces a strict partial order <H on operations

 m0 <H m1 if m0 →H m1

 A history H is linearizable if

 H can be extended to a complete history H’

by appending responses to pending operations or dropping pending operations

 H’ is equivalent to some legal sequential history S and

 <H’ ⊆ <S

 S is a linearization of H

 Remarks:

 For each H, there may be many valid extensions to H’

 For each extension H’, there may be many S

 Interleaving at the granularity of methods

 93

Ensuring <H’ ⊆ <S

 Find an S that contains H’

time

a

b

time <S

c <H’

<H’ = {a → c,b → c}

<S = {a → b,a → c,b → c}

94

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

95

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A. q.enq(3)

96

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

97

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one

98

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one

99

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

100

What would be an equivalent
sequential history?

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

101

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history

102

Linearization Points

 Identify one atomic step where a method “happens” (effects become
visible to others)

 Critical section

 Machine instruction (atomics, transactional memory …)

 Does not always succeed

 One may need to define several different steps for a given method

 If so, extreme care must be taken to ensure pre-/postconditions

 All possible executions on the object must be linearizable

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head];

 head = (head+1)%items.size();

 }

103

Composition

 H is linearizable iff for every object x, H|x is linearizable!

 Composing linearizable objects results in a linearizable system

 Reasoning

 Consider linearizability of objects in isolation

 Modularity

 Allows concurrent systems to be constructed in a modular fashion

 Compose independently-implemented objects

104

Linearizability vs. Sequential Consistency

 Sequential consistency

 Correctness condition

 For describing hardware memory interfaces

 Remember: not actual ones!

 Linearizability

 Stronger correctness condition

 For describing higher-level systems composed from linearizable
components

Requires understanding of object semantics

105

Map linearizability to sequential consistency

 Variables with read and write operations

 Sequential consistency

 Objects with a type and methods

 Linearizability

 Map sequential consistency ↔ linearizability

 Reduce data types to variables with read and write operations

 Model variables as data types with read() and write() methods

 Remember: Sequential consistency

 A history H is sequential if it can be extended to H’ and H’ is equivalent to
some sequential history S

 Note: Precedence order (<H ⊆ <S) does not need to be maintained

106

Example

time

107

Example

time

q.enq(x)

108

Example

time

q.enq(x) q.deq(y)

109

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Linearizable?

110

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

111

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

112

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

113

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

114

Properties of sequential consistency

 Theorem: Sequential consistency is not compositional

H=

Compositional would mean:
“If H|p and H|q are sequentially consistent,
 then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

115

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

time

116

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

117

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

History H

time

118

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

119

H|q Sequentially Consistent

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

120

Ordering imposed by p

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

121

Ordering imposed by q

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

122

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

123

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

124

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|p

H=

A: p.enq(x)
A: p:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y

H|p=

A: p.enq(x)
A: p:void
A: p.deq()
A: p:y

B: p.enq(y)
B: p:void

(H|p)|A= (H|p)|B=

H|p is sequentially consistent!

125

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional – H|q

H= H|q= (H|q)|A= (H|q)|B=

H|q is sequentially consistent!

B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)
A: q:void

B: q.enq(y)
B: q:void
B: q.deq()
B: q:x

126

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

H= H|A= H|B=

H is not sequentially consistent!

A: p.enq(x)
A: p:void
A: q.enq(x)
A: q:void
A: p.deq()
A: p:y

B: q.enq(y)
B: q:void
B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

127

Correctness: Linearizability

 Sequential Consistency

 Not composable

 Harder to work with

 Good way to think about hardware models

 We will use linearizability in the remainder of this course

unless stated otherwise

Consider routine entry and exit

128

Study Goals (Homework)

 Define linearizability with your own words!

 Describe the properties of linearizability!

 Explain the differences between sequential consistency and
linearizability!

 Given a history H

 Identify linearization points

 Find equivalent sequential history S

 Decide and explain whether H is linearizable

 Decide and explain whether H is sequentially consistent

 Give values for the response events such that the execution is linearizable

129

Language Memory Models

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed
concurrently

 A memory model is a contract

 Between platform and programmer

130

History of Memory Models

 Java’s original memory model was broken

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition)

 C/C++ didn’t even have a memory model until recently

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, more conservative

131

Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

132

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

133

