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Lecture: Linearizability 

Instructor: Torsten Hoefler & Markus Püschel 

TAs: Timo Schneider, Arnamoy Bhattacharyya 

Review of last lecture 

 Cache-coherence is not enough! 

 Many more subtle issues for parallel programs! 

 

 Memory Models 

 Sequential consistency 

 Why threads cannot be implemented as a library  

 Relaxed consistency models 

 x86 TLO+CC case study 

 

 Complexity of reasoning about parallel objects 

 Serial specifications (e.g., pre-/postconditions) 

 Started to lock things … 
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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 4 minutes 

 We then select a random student (team) to answer the question 

 

 What are the problems with sequential consistency? 

 Is it practical? Explain! 

 Is it sufficient? Explain! 

 How would you improve the situation? 

 

 How could memory models of practical CPUs be described? 

 Is the Intel definition useful? 

 Why would one need a better definition? 

 Threads cannot be implemented as a library? Why does Pthreads work? 
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DPHPC Overview 

4 

Goals of this lecture 

 Queue: 

 Locked 

C++ locking (small detour) 

 Wait-free two-thread queue 

 Linearizability 

 Intuitive understanding (sequential order on objects!) 

 Linearization points 

 Linearizable  executions 

 Formal definitions (Histories, Projections, Precedence) 

 Linearizability vs. Sequential Consistency 

 Modularity 
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Recap: x86 Memory model: TLO + CC 

 Total lock order (TLO) 

 Instructions with “lock” prefix enforce total order across all processors 

 Implicit locking: xchg (locked compare and exchange) 

 

 Causal consistency (CC) 

 Write visibility is transitive 

 

 Eight principles 

 After some revisions  
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The Eight x86 Principles 

1. “Reads are not reordered with other reads.” (RR) 

2. “Writes are not reordered with other writes.” (WW) 

3. “Writes are not reordered with older reads.” (RW) 

4. “Reads may be reordered with older writes to different locations 
but not with older writes to the same location.” (NO WR!) 

5. “In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). (some more orders) 

6. “In a multiprocessor system, writes to the same location have a total 
order.” (implied by cache coherence) 

7. “In a multiprocessor system, locked instructions have a total order.“ 
(enables synchronized programming!) 

8. “Reads and writes are not reordered with locked instructions. 
“(enables synchronized programming!) 
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Principle 1 and 2 

Reads are not reordered with other reads. (RR) 

Writes are not reordered with other writes. (WW) 

 

                    All values zero initially 

 

 

 

 If r1 == 2, then r2 must be 1! 

 Not allowed: r1 == 1, r2 == 0 

 Reads and writes observed in program order 

 Cannot be reordered! 
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P1 
 

a = 1 

b = 2 

P2 
 

r1 = b 

r2 = a 

Principle 3 

Writes are not reordered with older reads. (RW) 

 

                    All values zero initially 

 

 

 

 If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0! 

 If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0! 

 Not allowed: r1 == 1 and r2 == 1 
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P1 
 

r1 = a 

b = 1 

P2 
 

r2 = b 

a = 1 

Principle 4 

Reads may be reordered with older writes to different locations but not 
with older writes to the same location. (NO WR!) 

 

                    All values zero initially 

 

 

 

 Allowed: r1=0, r2=0 

 Sequential consistency can be enforced with mfence 

 Attention: may allow reads to move into critical sections! 
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P1 
 

a = 1 

r1 = b 

P2 
 

b = 1 

r2 = a 

Principle 5 

In a multiprocessor system, memory ordering obeys causality (memory 
ordering respects transitive visibility). (some more orders) 

 

                    All values zero initially 

 

 

 

 

 If r1 == 1 and r2==1, then r3 must read 1 

 Not allowed: r1 == 1, r2 == 1, and r3 == 0 

 Provides some form of atomicity 
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P1 
 

a = 1 

 

 

P2 
 

r1 = a 

b = 1 

 

P3 
 

 

r2 = b 

r3 = a 

Principle 6 

In a multiprocessor system, writes to the same location have a total 
order. (implied by cache coherence) 

 

                    All values zero initially 

 

 

 

 

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1 

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s 
write before P2’s write  

 Provides some form of atomicity 
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P1 
 

a=1 

 

 

P2 
 

a=2 

 

 

P3 
 

 

r1 = a 

r2 = a 

P4 
 

 

r3 = a 

r4 = a 



Principle 7 

In a multiprocessor system, locked instructions have a total order. 
(enables synchronized programming!) 

 

                    All values zero initially, registers r1==r2==1 

 

 

 

 

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0 

 If P3 observes ordering P1:xchg  P2:xchg, P4 observes the same 
ordering 

 (xchg has implicit lock) 
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P1 
 

xchg(a,r1) 

 

 

P2 
 

xchg(b,r2) 

 

 

P3 
 

 

r3 = a 

r4 = b 

P4 
 

 

r5 = b 

r6 = a 

Principle 8 

Reads and writes are not reordered with locked instructions.               
(enables synchronized programming!) 

 

                    All values zero initially but r1 = r3 = 1 

 

 

 

 

 Not allowed: r2 == 0, r4 == 0 

 Locked instructions have total order, so P1 and P2 agree on the same 
order 

 If volatile variables use locked instructions  practical sequential 
consistency 
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P1 
 

xchg(a,r1) 

r2 = b 

 

P2 
 

xchg(b,r3) 

r4 = a 

 

An Alternative View: x86-TSO 

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model 
for x86 Multiprocessors”, CACM May 2010 

    
“*…+ real multiprocessors typically do not provide the sequentially 
consistent memory that is assumed by most work on semantics and 
verification. Instead, they have relaxed memory models, varying in subtle 
ways between processor families, in which different hardware threads 
may have only loosely consistent views of a shared memory. Second, the 
public vendor architectures, supposedly specifying what programmers 
can rely on, are often in ambiguous informal prose (a particularly poor 
medium for loose specifications), leading to widespread confusion. [...] 
We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically 
precise (rigorously defined in HOL4) but can be presented as an intuitive 
abstract machine which should be widely accessible to working 
programmers.  *…+” 
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Notions of Correctness 

 We discussed so far: 

 Read/write of the same location 

Cache coherence (write propagation and serialization/atomicity) 

 Read/write of multiple locations 

Memory models (visibility order of updates by cores) 

 

 

 Now: objects (variables/fields with invariants defined on them) 

 Invariants “tie” variables together 

 Sequential objects 

 Concurrent objects 
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Sequential Objects 

 

 Each object has a type 

 A type is defined by a class 

 Set of fields forms the state of an object 

 Set of methods (or free functions) to manipulate the state 

 

 Remark 

 An Interface is an abstract type that defines behavior 

A class implementing an interface defines several types 
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Running Example: FIFO Queue 

 Insert elements at tail 

 Remove elements from head 

 Initial: head = tail = 0 

 enq(x) 

 enq(y) 

 deq() [x] 

 … 
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tail 
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7 
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Sequential Queue 
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head 

tail 

0 

2 

1 

5 4 

3 

capacity = 8 

7 
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class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 

Sequential Queue 
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head 

tail 

0 

2 

1 

5 4 

3 

capacity = 8 

7 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    if(tail == head) { 

      throw EmtpyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

    return item; 

  } 

}; 

Sequential Execution 

 

 

 (The) one process executes 
operations one at a time 

 Sequential  

 

 Semantics of operation 
defined by specification 
of the class 

 Preconditions and postconditions 
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Design by Contract™! 

 Preconditions: 

 Specify conditions that must  
hold before method executes 

 Involve state and arguments  
passed 

 Specify obligations a client  
must meet before calling a  
method 

 Example: enq() 

 Queue must not be full! 
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class Queue { 

  … 

  void enq(Item x) { 

    assert(tail-head < items.size()-1); 

    … 

  } 

}; 

Design by Contract™! 

 

 

 Postconditions: 

 Specify conditions that must  
hold after method executed 

 Involve old state and  
arguments passed 

 Example: enq() 

 Queue must contain element! 
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head 

tail 
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3 
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7 
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class Queue { 

  … 

  void enq(Item x) { 

     … 

    assert( (tail == old tail + 1) &&  

         (items[old tail] == x) ); 

  } 

}; 

creative assertion  

Sequential specification 

 if(precondition) 

 Object is in a specified state 

 then(postcondition) 

 The method returns a particular value or 

 Throws a particular exception and 

 Leaves the object in a specified state 

 

 Invariants 

 Specified conditions (e.g., object state) must hold anytime a client could 
invoke an objects method! 
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Advantages of sequential specification 

 State between method calls is defined 

 Enables reasoning about objects 

 Interactions between methods captured by side effects on object state 

 

 Enables reasoning about each method in isolation 

 Contracts for each method 

 Local state changes global state 

 

 Adding new methods 

 Only reason about state changes that the new method causes 

 If invariants are kept: no need to check old methods  

 Modularity! 
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Concurrent execution - State 

 Concurrent threads invoke methods on possibly shared objects 

 At overlapping time intervals! 
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Property Sequential Concurrent 

State Meaningful and clearly 
defined between method 
executions  

Overlapping method executions  
object may never be “between 
method executions” 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq(); 

Method executions take time! 

Concurrent execution - Reasoning 

 Reasoning must now include all possible interleavings 

 Of changes caused by methods themselves 

 

 

 

 

 

 Consider: enq() || enq() and deq() || deq() and deq() || enq()  
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Property Sequential Concurrent 

Reasoning Consider each method in 
isolation; invariants on state 
before/after execution. 

Need to consider all possible 
interactions; all intermediate states 
during execution 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq(); 

Method executions take time! 

Concurrent execution - Method addition 

 Reasoning must now include all possible interleavings 

 Of changes caused by and methods themselves 

 

 

 

 

 

 Consider adding a method that returns the last item enqueued 

 

 

 

 

 peek() || enq(): what if tail has not yet been incremented? 

 peek() || deq(): what if last item is being dequeued? 
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Property Sequential Concurrent 

Add Method Without affecting other 
methods; invariants on state 
before/after execution. 

Everything can potentially interact 
with everything else  

Item peek() { 

     if(last-head == 0)  throw Exception; 

     return items[(tail-1) % items.size()]; 

} 

void enq(Item x) { 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

} 

Item deq() { 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

} 

Concurrent objects 

 How do we describe one? 

 No pre-/postconditions  

 How do we implement one? 

 Plan for exponential number of interactions 

 How do we tell if an object is correct? 

 Analyze all exponential interactions 

 Wait, what? Exponential? Why? 

Dependencies could form circles with diameter > 2 
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Is it time to panic for software engineers? 

Who has a solution? 

Lock-based queue 

class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

  std::mutex lock; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 

head 
tail 

0 

2 

1 

5 4 

3 

7 

6 

Queue fields protected by  
single shared lock! 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw FullException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

}; 

Lock-based queue 
tail 

0 

2 

1 

5 4 

3 

7 

6 

Queue fields protected by  
single shared lock! 

Class question: how is the lock 
ever unlocked? 

head 
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C++ Resource Acquisition is Initialization 

 Detour – RAII – suboptimal name 

 Can be used for locks (or any other resource acquisition) 

 Constructor grabs resource 

 Destructor frees resource 

 

 Behaves as if 

 Implicit unlock at end of block! 

  

 Main advantages 

 Always free lock at exit 

 No “lost” locks due to exceptions 
or strange control flow (goto ) 

 Very easy to use 

 

class lock_guard<typename mutex_impl> { 

   mutex_impl &_mtx;   // ref to the mutex 

 

   public: 

      scoped_lock(mutex_impl & mtx ) :  _mtx(mtx) {  

          _mtx.lock();   // lock  mutex in constructor 

      } 

      ~scoped_lock() {  

         _mtx.unlock();   // unlock mutex in destructor 

      } 

}; 
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Example execution 

A: q.deq(): x 

B: q.enq(x) 

lock update q unlock 

lock update q unlock 

update q update q 

“sequential 
   behavior” 
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Correctness 

 Is the locked queue correct? 

 Yes, only one thread has access if locked correctly 

 Allows us again to reason about pre- and postconditions 

 Smells a bit like sequential consistency, no? 

 Class question: What is the problem with this approach? 

 Same as for SC  

 

 

It does not scale! 

What is the solution here? 
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Threads working at the same time? 

 Same thing (concurrent queue) 

 For simplicity, assume only two threads 

 Thread A calls only enq() 

 Thread B calls only deq() 

 

head 

tail 0 

2 

1 

5 4 

7 

3 6 

y x 
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Wait-free 2-Thread Queue 

tail 0 

2 

5 4 

7 

3 6 

y x 
1 

enq(z) 
deq() 

z 

head 
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Wait-free 2-Thread Queue 

head 

tail 0 

2 

5 4 

7 

3 6 

y 
1 

queue[tail] 

= z 

result = x 

z 

x 
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Wait-free 2-Thread Queue 

tail 0 

2 

5 4 

7 

3 6 

y 
1 

tail++ 
head++  

z 

head 

x 
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Is this correct? 

 Hard to reason about correctness 

 What could go wrong?  

 

 

 

 

 

 

 Nothing (at least no crash) 

 Yet, the semantics of the queue are funny (define “FIFO” now)! 

 

 void enq(Item x) { 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

} 

 

 Item deq() { 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

    return item; 

} 
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Serial to Concurrent Specifications 

 Serial specifications are complex enough, so lets stick to them 

 Define invocation and response events (start and end of method) 

 Extend the sequential concept to concurrency: linearizability 

 Each method should “take effect” 

 Instantaneously 

 Between invocation and response events 

 A concurrent object is correct if it’s “sequential” behavior is correct 

 Called “linearizable” 

method execution 

Linearization point = when method takes effect 
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Linearizability  

 Sounds like a property of an execution … 

 An object is called linearizable if all possible executions on the object 
are linearizable 

 Says nothing about the order of executions! 
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Example 

time time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 
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Example 

time 

q.enq(x) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 

Example 

time 

q.enq(x) 

q.enq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 

Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 

Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 

Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 

Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if((tail+1)%size==head) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 2 

time 
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Example 2 

time 

q.enq(x) 
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Example 2 

time 

q.enq(x) q.deq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 
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Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 
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Example 3 

time time 
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Example 3 

time 

q.enq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 
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Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 
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Example 4 

time 

q.enq(x) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

time 
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Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 
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q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 

Example 4 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) write(1) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 
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Read/Write Register Example 

time 

write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 
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About Executions 

 Why? 

 Can’t we specify the linearization point of each operation without 
describing an execution? 

 

 Not always 

 In some cases, the linearization point depends on the execution 

Imagine a “check if one should lock” (not recommended!) 

 

 Define a formal model for executions! 
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Properties of concurrent method executions 
 
 Method executions take time 

 May overlap 

 Method execution = operation 

 Defined by invocation and response events 

 Duration of method call 

 Interval between the events 

q.enq(x) 

time 

q.deq(): x 

invocation response 

pending 
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Formalization - Notation 

 Invocation 

 

 

 

 Response 

 

 

 

 

 Method is implicit (correctness criterion)! 

A: q.enq(x) 

thread object method arguments 

A: q:void 

thread object result 

A: q:FullException() 

thread object exception 
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Concurrency 

 A concurrent system consists of a collection of sequential threads Pi 

 Threads communicate via shared objects 

For now! 
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History 

 Describes an execution 

 Sequence of invocations and responses 

 H= 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

Invocation and response match if 
 thread names are the same 
 objects are the same 
 

Note: Method name is implicit! 

Side Question: Is this history linearizable? 
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Projections on Threads 

 Threads subhistory H|P (“H at P”) 

 Subsequences of all events in H whose thread name is P 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
 
 

 
 
 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|A= H|B= 
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Projections on Objects 

 Objects subhistory H|o (“H at o”) 

 Subsequence of all events in H whose object name is o 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|p= H|q= 

 
 
 
B: p.enq(c)  
B: p:void 
 
 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
B: q.deq() 
B: q:a 
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Sequential Histories 

 A history H is sequential if 

 

 

 

 

 

 

 

 A history H is concurrent if 

 It is not sequential 

 

A: q.enq(a) 
A: q:void 
B: p.enq(b) 
B: p:void 
B: q.deq(c)  
B: q:void 
B: q.enq() 
… 

 First event of H is an invocation 
 Each invocation (except possibly 
   the last is immediately followed  
   by a matching response 
 Each response is immediately  
   followed by an invocation 

 
Method calls of different threads  
do not interleave 
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Well-formed histories 

 Per-thread projections must be sequential 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B= 

 First event of H is an invocation 
 Each invocation (except possibly 
   the last is immediately followed  
   by a matching response 
 Each response is immediately  
   followed by an invocation 

a history is sequential if 
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Equivalent histories 

 Per-thread projections must be the same 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A=G|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B=G|B= 

A: q.enq(x) 
B: p.enq(y)  
A: q:void 
B: p:void 
B: q.deq() 
B: q:x 
 
 

G= 
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Legal Histories 

 Sequential specification allows to describe what behavior we expect 
and tolerate 

 When is a single-thread, single-object history legal? 

 Recall: Example  

 Preconditions and Postconditions 

 Many others exist! 

 A sequential (multi-object) history H is legal if 

 For every object x 

 H|x adheres to the sequential specification for x 

 Example: FIFO queue 

 Correct internal state 

Order of removal equals order of addition 

 Full and Empty Exceptions 
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Precedence 

A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void  
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) B: q.deq() 

A method execution precedes 
another if response event 
precedes invocation event 
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Precedence vs. Overlapping 

 Non-precedence = overlapping 

A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void  
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) 

B: q.enq(y) 

Some method executions 
overlap with others 
 
 

Side Question: Is this a correct linearization order? 

90 



Complete Histories 

 A history H is complete 

 If all invocations are matched with a response 
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A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
A: q.enq(z) 
B: q:x 
 

H= G= 

A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
B: q.deq() 
 

I= 

Which histories are complete and which are not? 

Complete Not complete Not complete 

Precedence Relations 

 Given history H 

 Method executions m0 and m1 in H 

 m0 →H m1 (m0 precedes m1 in H) if 

 Response event of m0 precedes invocation event of m1 

 Precedence relation m0 →H m1 is a  

 Strict partial order on method executions 

Irreflexive, antisymmetric, transitive 

 Considerations 

 Precedence forms a total order if H is sequential 

 Unrelated method calls  may overlap  concurrent 
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Definition Linearizability 

 A history H induces a strict partial order <H on operations 

 m0 <H m1 if m0 →H m1 

 A history H is linearizable if 

 H can be extended to a complete history H’ 

by appending responses to pending operations or dropping pending operations 

 H’ is equivalent to some legal sequential history S and 

 <H’ ⊆ <S 

 S is a linearization of H 

 Remarks: 

 For each H, there may be many valid extensions to H’ 

 For each extension H’, there may be many S 

 Interleaving at the granularity of methods 
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Ensuring <H’ ⊆ <S 

 
 Find an S that contains H’ 

time 

a 

b 

time <S 

 

c <H’ 

<H’ = {a → c,b → c} 

<S =  {a → b,a → c,b → c} 
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A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

Example 

time 

B.q.enq(4) 

A. q.enq(3) 

B.q.deq(4) B. q.enq(6) 
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Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A. q.enq(3) 
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Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 
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Example 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 

discard this one 
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Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

 

A q:void 

discard this one 
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A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 
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What would be an equivalent  
sequential history? 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 
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B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

Equivalent sequential history 
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Linearization Points 

 Identify one atomic step where a method “happens” (effects become 
visible to others) 

 Critical section 

 Machine instruction (atomics, transactional memory …) 

 Does not always succeed 

 One may need to define several different steps for a given method 

 If so, extreme care must be taken to ensure pre-/postconditions  

 All possible executions on the object must be linearizable 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head]; 

    head = (head+1)%items.size(); 

  } 
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Composition 

 H is linearizable iff for every object x, H|x is linearizable! 

 Composing linearizable objects results in a linearizable system 

 

 Reasoning 

 Consider linearizability of objects in isolation 

 

 Modularity 

 Allows concurrent systems to be constructed in a modular fashion 

 Compose independently-implemented objects 
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Linearizability vs. Sequential Consistency 

 Sequential consistency 

 Correctness condition 

 For describing hardware memory interfaces 

 Remember: not actual ones! 

 

 Linearizability 

 Stronger correctness condition 

 For describing higher-level systems composed from linearizable 
components 

Requires understanding of object semantics 
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Map linearizability to sequential consistency 

 Variables with read and write operations 

 Sequential consistency 

 Objects with a type and methods 

 Linearizability 

 Map sequential consistency ↔ linearizability 

 Reduce data types to variables with read and write operations 

 Model variables as data types with read() and write() methods 

 Remember: Sequential consistency 

 A history H is sequential if it can be extended to H’ and H’ is equivalent to 
some sequential history S 

 Note: Precedence order (<H ⊆ <S) does not need to be maintained 
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Example 

time 

107 

Example 

time 

q.enq(x) 
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Example 

time 

q.enq(x) q.deq(y) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Linearizable? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 
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Properties of sequential consistency 
 
 Theorem: Sequential consistency is not compositional 

H= 

Compositional would mean: 
“If H|p and H|q are sequentially consistent, 
  then H is sequentially consistent!” 
 
This is not guaranteed for SC schedules! 
 
See following example! 

A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

History H 

time 
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H|p Sequentially Consistent 

time 

p.enq(x) p.deq(y) 

p.enq(y) 

q.enq(x) 

q.enq(y) q.deq(x) 

time 
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H|q Sequentially Consistent 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by p 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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Ordering imposed by q 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 
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p.enq(x) 

Ordering imposed by both 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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p.enq(x) 

Combining orders 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|p 

H= 

A: p.enq(x) 
A: p:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  

H|p= 

A: p.enq(x) 
A: p:void  
A: p.deq() 
A: p:y  

B: p.enq(y) 
B: p:void  

(H|p)|A= (H|p)|B= 

H|p is sequentially consistent! 
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional – H|q 

H= H|q= (H|q)|A= (H|q)|B= 

H|q is sequentially consistent! 

B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: q.deq() 
B: q:x  

A: q.enq(x) 
A: q:void  

B: q.enq(y) 
B: q:void  
B: q.deq() 
B: q:x  
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A: p.enq(x) 
A: p:void  
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void  
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 

H= H|A= H|B= 

H is not sequentially consistent! 

A: p.enq(x) 
A: p:void  
A: q.enq(x) 
A: q:void  
A: p.deq() 
A: p:y 

B: q.enq(y) 
B: q:void  
B: p.enq(y) 
B: p:void  
B: q.deq() 
B: q:x  
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Correctness: Linearizability 

 Sequential Consistency 

 Not composable 

 Harder to work with 

 Good way to think about hardware models 

 

 We will use linearizability in the remainder of this course 

unless stated otherwise 

Consider routine entry and exit 
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Study Goals (Homework) 

 Define linearizability with your own words! 

 Describe the properties of linearizability! 

 Explain the differences between sequential consistency and 
linearizability! 

 

 Given a history H 

 Identify linearization points 

 Find equivalent sequential history S 

 Decide and explain whether H is linearizable 

 Decide and explain whether H is sequentially consistent 

 Give values for the response events such that the execution is linearizable 
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Language Memory Models 

 Which transformations/reorderings can be applied to a program 

 Affects platform/system 

 Compiler, (VM), hardware 

 Affects programmer 

 What are possible semantics/output 

 Which communication between threads is legal? 

 Without memory model 

 Impossible to even define “legal” or “semantics” when data is accessed 
concurrently 

 A memory model is a contract 

 Between platform and programmer 
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History of Memory Models 

 Java’s original memory model was broken 

 Difficult to understand => widely violated 

 Did not allow reorderings as implemented in standard VMs 

 Final fields could appear to change value without synchronization 

 Volatile writes could be reordered with normal reads and writes 

=> counter-intuitive for most developers 

 Java memory model was revised 

 Java 1.5 (JSR-133) 

 Still some issues (operational semantics definition) 

 C/C++ didn’t even have a memory model until recently 

 Not able to make any statement about threaded semantics! 

 Introduced in C++11 and C11 

 Based on experience from Java, more conservative 
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Everybody wants to optimize 
 
 Language constructs for synchronization 

 Java: volatile, synchronized, … 

 C++: atomic, (NOT volatile!), mutex, … 

 

 Without synchronization (defined language-specific) 

 Compiler, (VM), architecture 

 Reorder and appear to reorder memory operations 

 Maintain sequential semantics per thread 

 Other threads may observe any order (have seen examples before) 
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Java and C++ High-level overview 

 Relaxed memory model 

 No global visibility ordering of operations 

 Allows for standard compiler optimizations 

 But 

 Program order for each thread (sequential semantics) 

 Partial order on memory operations (with respect to synchronizations) 

 Visibility function defined 

 Correctly synchronized programs 

 Guarantee sequential consistency 

 Incorrectly synchronized programs 

 Java: maintain safety and security guarantees 

Type safety etc. (require behavior bounded by causality) 

 C++: undefined behavior 

No safety (anything can happen/change) 
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