
Design of Parallel and High-Performance
Computing
Fall 2014
Lecture: Memory Models

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider, Arnamoy Bhattacharyya

Review of last lecture

 Architecture case studies

 Memory performance is often the bottleneck

 Parallelism grows with compute performance

 Caching is important

 Several issues to address for parallel systems

 Cache Coherence

 Hardware support to aid programmers

 Two invariants:

Write propagation (updates are eventually visible to all readers)

Write serialization (writes to the same location are observed in order)

 Two major mechanisms:

Snooping

Directory-based

 Protocols: MESI (MOESI, MESIF)

2

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 4 minutes

 We then select a random student (team) to answer the question

 Discuss the MESI protocol – what would be a possible
extension to improve it’s performance

 Try something we didn’t discuss last week

 Argue why is it an improvement!

 Directory-based Cache Coherence?

 What are the pros/cons of directory-based CC?

 Can this be mixed with broadcast-bases?

 If yes, how and why?

3

DPHPC Overview

4

Goals of this lecture

 Cache-coherence is not enough!

 Many more subtle issues for parallel programs!

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library

 Relaxed consistency models

 Linearizability

 More complex objects

5

Is coherence everything?

 Coherence is concerned with behavior of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

6

P1

Y=10

X=2

P2

while (X==0)

Z=Y

P1 P2

X: 0 Y: 0

X=2

Y=10

read X

read Y

Is coherence everything?

 Coherence is concerned with behavior of individual locations

 Consider the program (initial X,Y,Z = 0)

 Y=10 does not need to have completed before
X=2 is visible to P2!

 This allows P2 to exit the loop and read Y=0

 This may not be the intent of the programmer!

 This may be due to congestion (imagine X is pushed to a remote cache
while Y misses to main memory) and or due to write buffering, or …

 Bonus class question: what happens when Y and X are on the same
cache line (assume simple MESI)?

7

P1

Y=10

X=2

P2

while (X==0)

Z=Y

P1 P2

X: 0 Y: 0

X=2

Y=10

read X

read Y

Memory Models

 Need to define what it means to “read a location” and “to write a
location” and the respective ordering!

 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:

 Compiler and hardware maintain data and control dependencies at all
levels:

8

Y=10

….

T = 14

Y=15

Y = 5

X = 5

T = 3

Y = 3

If (X==Y)

 Z = 5

….

Two operations to
the same location

One operation controls
execution of others

Sequential Processor

 Correctness condition:

 The result of the execution is the same as if the operations had been
executed in the order specified by the program

“program order”

 A read returns the value last written to the same location

“last” is determined by program order!

 Consider only memory operations (e.g., a trace)

 N Processors

 P1, P2, …., PN

 Operations

 Read, Write on shared variables (initial state: all 0)

 Notation:

 P1: R(x):3 P1 reads x and observes the value 3

 P2: W(x,5) P2 writes 5 to variable x
9

Terminology

 Program order

 Deals with a single processor

 Per-processor order of memory accesses, determined by program ‘s

Control flow

 Often represented as trace

 Visibility order

 Deals with operations on all processors

 Order of memory accesses observed by one or more processors

 E.g., “every read of a memory location returns the value that was written
last”

Defined by memory model

10

Memory Models

 Contract at each level between programmer and processor

11

Programmer

High-level language API

Compiler Frontend

Intermediate Language

Compiler Backend/JIT

Machine code

Processor

Optimizing transformations

Reordering

Operation overlap
OOO Execution
VLIW, Vector ISA

Sequential Consistency

 Extension of sequential processor model

 The execution happens as if

 The operations of all processes were executed in some sequential order
(atomicity requirement), and

 The operations of each individual processor appear in this sequence in the
order specified by the program (program order requirement)

 Applies to all layers!

 Disallows many compiler optimizations (e.g., reordering of any memory
instruction)

 Disallows many hardware optimizations (e.g., store buffers, nonblocking
reads, invalidation buffers)

12

Illustration of Sequential Consistency

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

13

Processors issue in
program order

“Switch” selects arbitrary
next operation

Original SC Definition

“The result of any execution is the same as if the operations of
all the processes were executed in some sequential order and
the operations of each individual process appear in this
sequence in the order specified by its program”

 (Lamport, 1979)

14
Good read: Gharachorloo et al.: “Memory consistency and event ordering in scalable shared-memory multiprocessors.”

Alternative SC Definition

 Textbook: Hennessy/Patterson Computer Architecture

 A sequentially consistent system maintains three invariants:

1. A load L from memory location A issued by processor Pi obtains the value
of the previous store to A by Pi, unless another processor has to stored a
value to A in between

2. A load L from memory location A obtains the value of a store S to A by
another processor Pk if S and L are “sufficiently separated in time” and if
no other store occurred between S and L

3. Stores to the same location are serialized (defined as in (2))

 “Sufficiently separated in time” not precise

 Works but is not formal (a formalization must include all possibilities)

15

Example Operation Reordering

 Recap: “normal” sequential assumption:

 Compiler and hardware can reorder instructions as long as control and
data dependencies are met

 Examples:

 Register allocation

 Code motion

 Common subexpression elimination

 Loop transformations

 Pipelining

 Multiple issue (OOO)

 Write buffer bypassing

 Nonblocking reads

16

C
o

m
p

ile
r

H
ar

d
w

ar
e

Simple compiler optimization

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

 What optimizations can a compiler perform for P1?

17

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

Simple compiler optimization

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or

Switch statements

 What happens?

18

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

Simple compiler optimization

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or

Switch statements

 What happens?

P2 may never terminate, or

Compute with wrong input

19

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

Sequential Consistency Examples

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

 Relying on single sequential order (atomicity): three sharers

 What can be printed if visibility is not atomic?
20

P1

a = 1

if(b == 0)

 critical section

 a = 0

P2

b = 1

if(a == 0)

 critical section

 b = 0

P1
a = 5

a = 1

P2

if (a == 1)

 b = 1

P3

if(b == 1)

 print(a)

Optimizations violating program order

 Analyzing P1 and P2 in isolation!

 Compiler can reorder

 Hardware can reorder, assume a writes go to write buffer or speculation

21

P1

a = 1

if(b == 0)

 critical section

 a = 0

P2

b = 1

if(a == 0)

 critical section

 b = 0

P1

if(b == 0)

critical section

 a = 0

else

 a = 1

P2

if(a == 0)

 critical section

 b = 0

else

 b = 1

P1

a = 1

if(b == 0)

 critical section

 a = 0

P2

b = 1

if(a == 0)

 critical section

 b = 0

P1

if(b == 0)

 a = 1

 critical section

 a = 0

P2

if(a == 0)

 b = 1

 critical section

 b = 0

Considerations

 Define partial order on memory requests A B

 If Pi issues two requests A and B and A is issued before B in program order,
then A B

 A and B are issued to the same variable, and A is entered first, then A B
(on all processors)

 These partial orders can be interleaved, define a total order

 Many total orders are sequentially consistent!

 Example:

 P1: W(a), R(b), W(c)

 P2: R(a), W(a), R(b)

 Are the following schedules (total orders) sequentially consistent?

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c)

2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a)

3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b)

22

Write buffer example

 Write buffer

 Absorbs writes faster than the next cache prevents stalls

 Aggregates writes to the same cache block reduces cache traffic

23

Write buffer example

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W R)

24

/

Nonblocking read example

 W W: OK

 R W, R R: No order between read and following read/write

25

/

/ /

2

Discussion

 Programmer’s view:

 Prefer sequential consistency

 Easiest to reason about

 Compiler/hardware designer’s view:

 Sequential consistency disallows many optimizations!

 Substantial speed difference

 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming

 Access to shared data (aka. “racing accesses”) are ordered by
synchronization operations

 Synchronization operations guarantee memory ordering (aka. fence)

 More later!

26

 Varying definitions!

 Cache coherence: a mechanism that propagates writes to other
processors/caches if needed, recap:

 Writes are eventually visible to all processors

 Writes to the same location are observed in order

 Memory models: define the bounds on when the value is propagated
to other processors

 E.g., sequential consistency requires all reads and writes to be ordered in
program order

Cache Coherence vs. Memory Model

27 Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers”

Relaxed Memory Models

 Sequential consistency

 RR, RW, WR, WW (all orders guaranteed)

 Relaxed consistency (varying terminology):

 Processor consistency (aka. TSO)

Relaxes WR

 Partial write (store) order (aka. PSO)

Relaxes WR, WW

 Weak consistency and release consistency (aka. RMO)

Relaxes RR, RW, WR, WW

 Other combinations/variants possible

28

Architectures

29

Source: Wikipedia

Case Study: Memory ordering on Intel

 Intel® 64 and IA-32 Architectures Software Developer's Manual

 Volume 3A: System Programming Guide

 Chapter 8.2 Memory Ordering

 http://www.intel.com/products/processor/manuals/

 Google Tech Talk: IA Memory Ordering

 Richard L. Hudson

http://www.youtube.com/watch?v=WUfvvFD5tAA

30

http://www.youtube.com/watch?v=WUfvvFD5tAA

x86 Memory model: TLO + CC

 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors

 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)

 Write visibility is transitive

 Eight principles

 After some revisions

31

The Eight x86 Principles

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations
but not with older writes to the same location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility). (some more orders)

6. “In a multiprocessor system, writes to the same location have a total
order.” (implied by cache coherence)

7. “In a multiprocessor system, locked instructions have a total order.“
(enables synchronized programming!)

8. “Reads and writes are not reordered with locked instructions.
“(enables synchronized programming!)

32

Principle 1 and 2

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

 All values zero initially

 If r1 == 2, then r2 must be 1!

 Not allowed: r1 == 1, r2 == 0

 Reads and writes observed in program order

 Cannot be reordered!

33

P1

a = 1

b = 2

P2

r1 = b

r2 = a

Principle 3

Writes are not reordered with older reads. (RW)

 All values zero initially

 If r1 == 1, then P2:W(a) P1:R(a), thus r2 must be 0!

 If r2 == 1, then P1:W(b) P1:R(b), thus r1 must be 0!

 Not allowed: r1 == 1 and r2 == 1

34

P1

r1 = a

b = 1

P2

r2 = b

a = 1

Principle 4

Reads may be reordered with older writes to different locations but not
with older writes to the same location. (NO WR!)

 All values zero initially

 Allowed: r1=0, r2=0

 Sequential consistency can be enforced with mfence

 Attention: may allow reads to move into critical sections!

35

P1

a = 1

r1 = b

P2

b = 1

r2 = a

Principle 5

In a multiprocessor system, memory ordering obeys causality (memory
ordering respects transitive visibility). (some more orders)

 All values zero initially

 If r1 == 1 and r2==1, then r3 must read 1

 Not allowed: r1 == 1, r2 == 1, and r3 == 0

 Provides some form of atomicity

36

P1

a = 1

P2

r1 = a

b = 1

P3

r2 = b

r3 = a

Principle 6

In a multiprocessor system, writes to the same location have a total
order. (implied by cache coherence)

 All values zero initially

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s
write before P2’s write

 Provides some form of atomicity

37

P1

a=1

P2

a=2

P3

r1 = a

r2 = a

P4

r3 = a

r4 = a

Principle 7

In a multiprocessor system, locked instructions have a total order.
(enables synchronized programming!)

 All values zero initially, registers r1==r2==1

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0

 If P3 observes ordering P1:xchg P2:xchg, P4 observes the same
ordering

 (xchg has implicit lock)

38

P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a

r4 = b

P4

r5 = b

r6 = a

Principle 8

Reads and writes are not reordered with locked instructions.
(enables synchronized programming!)

 All values zero initially but r1 = r3 = 1

 Not allowed: r2 == 0, r4 == 0

 Locked instructions have total order, so P1 and P2 agree on the same
order

 If volatile variables use locked instructions practical sequential
consistency

39

P1

xchg(a,r1)

r2 = b

P2

xchg(b,r3)

r4 = a

An Alternative View: x86-TSO

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model
for x86 Multiprocessors”, CACM May 2010

“*…+ real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on semantics and
verification. Instead, they have relaxed memory models, varying in subtle
ways between processor families, in which different hardware threads
may have only loosely consistent views of a shared memory. Second, the
public vendor architectures, supposedly specifying what programmers
can rely on, are often in ambiguous informal prose (a particularly poor
medium for loose specifications), leading to widespread confusion. [...]
We present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically
precise (rigorously defined in HOL4) but can be presented as an intuitive
abstract machine which should be widely accessible to working
programmers. *…+”

40

Notions of Correctness

 We discussed so far:

 Read/write of the same location

Cache coherence (write serialization and atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

41

Sequential Objects

 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

42

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …

43

head

tail

0

2

1

5 4

3

y x

capacity = 8

7

6

Sequential Queue

44

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

Sequential Queue

45

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 public:

 void enq(Item x) {

 if(tail-head == items.size()-1) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 if(tail == head) {

 throw EmtpyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

};

Sequential Execution

 (The) one process executes
operations one at a time

 Sequential

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

46

head

tail

0

2

1

5 4

3

capacity = 8

7

6

Design by Contract!

 Preconditions:

 Specify conditions that must
hold before method executes

 Involve state and arguments
passed

 Specify obligations a client
must meet before calling a
method

 Example: enq()

 Queue must not be full!

47

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 assert(tail-head < items.size()-1);

 …

 }

};

Design by Contract!

 Postconditions:

 Specify conditions that must
hold after method executed

 Involve old state and
arguments passed

 Example: enq()

 Queue must contain element!

48

head

tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 …

 void enq(Item x) {

 …

 assert((tail == old tail + 1) &&

 (items[old tail] == x));

 }

};

creative assertion

Sequential specification

 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could
invoke an objects method!

49

Advantages of sequential specification

 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods

 Modularity!

50

Concurrent execution - State

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

51

Property Sequential Concurrent

State Meaningful only between
method executions

Overlapping method executions
object may never be “between
method executions”

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq;

Method executions take time!

Concurrent execution - Reasoning

 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

 Consider: enq() || enq() and deq() || deq() and deq() || enq()

52

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq;

Method executions take time!

Concurrent execution - Method addition

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 peek() || enq(): what if tail has not yet been incremented?

 peek() || deq(): what if last item is being dequeued?

53

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact
with everything else

Item peek() {

 if(last-head == 0) throw Exception;

 return items[(tail-1) % items.size()];

}

void enq(Item x) {

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

}

Item deq() {

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

}

Concurrent objects

 How do we describe one?

 No pre-/postconditions

 How do we implement one?

 Plan for exponential number of interactions

 How do we tell if an object is correct?

 Analyze all exponential interactions

54

Is it time to panic for software engineers?

Who has a solution?

Lock-based queue

55

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 std::mutex lock;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Lock-based queue

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 std::mutex lock;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

56

class Queue {

 …

 public:

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw FullException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

};

Lock-based queue
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

57

C++ Resource Acquisition is Initialization

 RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto)

 Very easy to use

class lock_guard<typename mutex_impl> {

 mutex_impl &_mtx; // ref to the mutex

 public:

 scoped_lock(mutex_impl & mtx) : _mtx(mtx) {

 _mtx.lock(); // lock mutex in constructor

 }

 ~scoped_lock() {

 _mtx.unlock(); // unlock mutex in destructor

 }

};

58

Example execution

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
 behavior”

59

Correctness

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC

It does not scale!

What is the solution here?

60

