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Review of last lecture 

 Architecture case studies  

 Memory performance is often the bottleneck 

 Parallelism grows with compute performance 

 Caching is important  

 Several issues to address for parallel systems 

 Cache Coherence 

 Hardware support to aid programmers 

 Two invariants: 

Write propagation (updates are eventually visible to all readers) 

Write serialization (writes to the same location are observed in order) 

 Two major mechanisms: 

Snooping 

Directory-based 

 Protocols: MESI (MOESI, MESIF) 
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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 4 minutes 

 We then select a random student (team) to answer the question 

 

 Discuss the MESI protocol – what would be a possible 
extension to improve it’s performance 

 Try something we didn’t discuss last week  

 Argue why is it an improvement! 

 

 Directory-based Cache Coherence? 

 What are the pros/cons of directory-based CC? 

 Can this be mixed with broadcast-bases? 

 If yes, how and why? 
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DPHPC Overview 
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Goals of this lecture 

 Cache-coherence is not enough! 

 Many more subtle issues for parallel programs! 

 

 Memory Models 

 Sequential consistency 

 Why threads cannot be implemented as a library  

 Relaxed consistency models 

 

 Linearizability 

 More complex objects 
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Is coherence everything? 

 Coherence is concerned with behavior of individual locations 

 Consider the program (initial X,Y,Z = 0) 

 

 

 

 Class question: what value will Z on P2 have? 
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P1 
 

Y=10 

X=2 

P2 
 

while (X==0) 

Z=Y 

P1 P2 

X: 0 Y: 0 

X=2 

Y=10 

read X 

read Y 



Is coherence everything? 

 Coherence is concerned with behavior of individual locations 

 Consider the program (initial X,Y,Z = 0) 

 

 

 

 Y=10 does not need to have completed before  
X=2 is visible to P2! 

 This allows P2 to exit the loop and read Y=0 

 This may not be the intent of the programmer! 

 This may be due to congestion (imagine X is pushed to a remote cache 
while Y misses to main memory) and or due to write buffering, or … 

 Bonus class question: what happens when Y and X are on the same 
cache line (assume simple MESI)? 
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while (X==0) 
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Y=10 

read X 

read Y 



Memory Models 

 Need to define what it means to “read a location” and “to write a 
location” and the respective ordering! 

 What values should be seen by a processor 

 First thought: extend the abstractions seen by a sequential processor: 

 Compiler and hardware maintain data and control dependencies at all 
levels: 
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Y=10 

…. 

T = 14 

Y=15 

Y = 5 

X = 5 

T = 3 

Y = 3 

If (X==Y) 

  Z = 5 

…. 

Two operations to  
the same location 

One operation controls 
execution of others 



Sequential Processor 

 Correctness condition: 

 The result of the execution is the same as if the operations had been 
executed in the order specified by the program 

“program order” 

 A read returns the value last written to the same location 

“last” is determined by program order! 

 Consider only memory operations (e.g., a trace) 

 N Processors 

  P1, P2, …., PN 

 Operations 

 Read, Write on shared variables (initial state: all 0) 

 Notation: 

 P1: R(x):3 P1 reads x and observes the value 3 

 P2: W(x,5) P2 writes 5 to variable x 
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Terminology 

 Program order 

 Deals with a single processor 

 Per-processor order of memory accesses, determined by program ‘s 

Control flow 

 Often represented as trace  

 

 

 Visibility order 

 Deals with operations on all processors 

 Order of memory accesses observed by one or more processors 

 E.g., “every read of a memory location returns the value that was written 
last” 

Defined by memory model 
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Memory Models 

 Contract at each level between programmer and processor 
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Programmer 

High-level language API 

Compiler Frontend 

Intermediate Language 

Compiler Backend/JIT 

Machine code 

Processor 

Optimizing transformations 

Reordering 

Operation overlap 
OOO Execution 
VLIW, Vector ISA 



Sequential Consistency 

 Extension of sequential processor model 

 

 The execution happens as if 

 The operations of all processes were executed in some sequential order 
(atomicity requirement), and 

 The operations of each individual processor appear in this sequence in the 
order specified by the program (program order requirement) 

 

 Applies to all layers! 

 Disallows many compiler optimizations (e.g., reordering of any memory 
instruction) 

 Disallows many hardware optimizations (e.g., store buffers, nonblocking 
reads, invalidation buffers) 
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Illustration of Sequential Consistency 

 

 

 

 

 

 

 

 

 

 Globally consistent view of memory operations (atomicity) 

 Strict ordering in program order 
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Processors issue in  
program order 

“Switch” selects arbitrary 
next operation 



Original SC Definition 

 

 

“The result of any execution is the same as if the operations of 
all the  processes were executed in some sequential order and 
the operations of each individual process appear in this 
sequence in the order specified by its program” 

                                                                     (Lamport, 1979)  
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Alternative SC Definition 

 Textbook: Hennessy/Patterson Computer Architecture 

 

 A sequentially consistent system maintains three invariants:  

1. A load L from memory location A issued by processor Pi obtains the value 
of the previous store to A by Pi, unless another processor has to stored a 
value to A in between 

2. A load L from memory location A obtains the value of a store S to A by 
another processor Pk if S and L are “sufficiently separated in time” and if 
no other store occurred between S and L 

3. Stores to the same location are serialized (defined as in (2)) 

 

 “Sufficiently separated in time” not precise 

 Works but is not formal (a formalization must include all possibilities) 
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Example Operation Reordering 

 Recap: “normal” sequential assumption: 

 Compiler and hardware can reorder instructions as long as control and 
data dependencies are met  

 Examples: 

 Register allocation 

 Code motion 

 Common subexpression elimination 

 Loop transformations 

 

 Pipelining 

 Multiple issue (OOO) 

 Write buffer bypassing 

 Nonblocking reads 
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Simple compiler optimization 

 Initially, all values are zero 

 

 

 

 

 Assume P1 and P2 are compiled separately! 

 What optimizations can a compiler perform for P1? 
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P1 
 

input = 23 

ready = 1 

P2 
 

while (ready == 0) {} 

compute(input) 



Simple compiler optimization 

 Initially, all values are zero 

 

 

 

 

 Assume P1 and P2 are compiled separately! 

 What optimizations can a compiler perform for P1? 

Register allocation or even replace with constant, or 

Switch statements 

 What happens? 
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P1 
 

input = 23 

ready = 1 

P2 
 

while (ready == 0) {} 

compute(input) 



Simple compiler optimization 

 Initially, all values are zero 

 

 

 

 

 Assume P1 and P2 are compiled separately! 

 What optimizations can a compiler perform for P1? 

Register allocation or even replace with constant, or 

Switch statements 

 What happens? 

P2 may never terminate, or 

Compute with wrong input 
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P1 
 

input = 23 

ready = 1 

P2 
 

while (ready == 0) {} 

compute(input) 



Sequential Consistency Examples 

 Relying on program order: Dekker’s algorithm 

 Initially, all zero 

 

 

 

 

 

 What can happen at compiler and hardware level? 

 Relying on single sequential order (atomicity): three sharers 

 

 

 

 

 What can be printed if visibility is not atomic? 
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P1 
 

a = 1 

if(b == 0) 

  critical section 

  a = 0 

P2 
 

b = 1 

if(a == 0) 

  critical section 

  b = 0 

P1 
a = 5 

a = 1 

 

 

P2 
 

if (a == 1) 

  b = 1 

 

P3 
 

 

if(b == 1) 

  print(a) 



Optimizations violating program order 

 Analyzing P1 and P2 in isolation! 

 Compiler can reorder 

 

 

 

 

 

 

 

 Hardware can reorder, assume a writes go to write buffer or speculation 
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P1 
 

a = 1 

if(b == 0) 

  critical section 

  a = 0 

 

P2 
 

b = 1 

if(a == 0) 

  critical section 

  b = 0 

 

P1 
 

if(b == 0) 

critical section 

  a = 0 

else  

  a = 1 

P2 
 

if(a == 0) 

  critical section 

  b = 0 

else 

  b = 1  

P1 
 

a = 1 

if(b == 0) 

  critical section 

  a = 0 

 

P2 
 

b = 1 

if(a == 0) 

  critical section 

  b = 0 

 

P1 
 

if(b == 0) 

  a = 1 

  critical section 

  a = 0 

 

P2 
 

if(a == 0) 

  b = 1 

  critical section 

  b = 0 

 



Considerations 

 Define partial order on memory requests A  B 

 If Pi issues two requests A and B and A is issued before B in program order, 
then A  B 

 A and B are issued to the same variable, and A is entered first, then A  B 
(on all processors) 

 These partial orders can be interleaved, define a total order 

 Many total orders are sequentially consistent! 

 Example: 

 P1: W(a), R(b), W(c) 

 P2: R(a), W(a), R(b) 

 Are the following schedules (total orders) sequentially consistent? 

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c) 

2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a) 

3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b) 
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Write buffer example 

 Write buffer 

 Absorbs writes faster than the next cache  prevents stalls 

 Aggregates writes to the same cache block  reduces cache traffic 
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Write buffer example 

 Reads can bypass previous writes for faster completion 

 If read and write access different locations 

 No order between write and following read (W  R) 
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Nonblocking read example 

 W  W: OK 

 R  W, R  R: No order between read and following read/write 
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/ 

/ / 
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Discussion 

 Programmer’s view: 

 Prefer sequential consistency 

 Easiest to reason about 

 

 Compiler/hardware designer’s view: 

 Sequential consistency disallows many optimizations! 

 Substantial speed difference 

 Most architectures and compilers don’t adhere to sequential consistency! 

 

 Solution: synchronized programming 

 Access to shared data (aka. “racing accesses”) are ordered by 
synchronization operations 

 Synchronization operations guarantee memory ordering (aka. fence) 

 More later! 
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 Varying definitions! 

 

 Cache coherence: a mechanism that propagates writes to other 
processors/caches if needed, recap: 

 Writes are eventually visible to all processors 

 Writes to the same location are observed in order 

 

 Memory models: define the bounds on when the value is propagated 
to other processors 

 E.g., sequential consistency requires all reads and writes to be ordered in 
program order 

Cache Coherence vs. Memory Model 

27 Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers” 



Relaxed Memory Models 

 Sequential consistency 

 RR, RW, WR, WW (all orders guaranteed) 

 

 Relaxed consistency (varying terminology): 

 Processor consistency (aka. TSO) 

Relaxes WR 

 Partial write (store) order (aka. PSO) 

Relaxes WR, WW 

 Weak consistency and release consistency (aka. RMO) 

Relaxes RR, RW, WR, WW 

 Other combinations/variants possible 
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Architectures 
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Source: Wikipedia 



Case Study: Memory ordering on Intel  

 Intel® 64 and IA-32 Architectures Software Developer's Manual 

 Volume 3A: System Programming Guide 

 Chapter 8.2 Memory Ordering 

 http://www.intel.com/products/processor/manuals/ 

 

 Google Tech Talk: IA Memory Ordering 

 Richard L. Hudson 

http://www.youtube.com/watch?v=WUfvvFD5tAA 
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x86 Memory model: TLO + CC 

 Total lock order (TLO) 

 Instructions with “lock” prefix enforce total order across all processors 

 Implicit locking: xchg (locked compare and exchange) 

 

 Causal consistency (CC) 

 Write visibility is transitive 

 

 Eight principles 

 After some revisions  
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The Eight x86 Principles 

1. “Reads are not reordered with other reads.” (RR) 

2. “Writes are not reordered with other writes.” (WW) 

3. “Writes are not reordered with older reads.” (RW) 

4. “Reads may be reordered with older writes to different locations 
but not with older writes to the same location.” (NO WR!) 

5. “In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). (some more orders) 

6. “In a multiprocessor system, writes to the same location have a total 
order.” (implied by cache coherence) 

7. “In a multiprocessor system, locked instructions have a total order.“ 
(enables synchronized programming!) 

8. “Reads and writes are not reordered with locked instructions. 
“(enables synchronized programming!) 
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Principle 1 and 2 

Reads are not reordered with other reads. (RR) 

Writes are not reordered with other writes. (WW) 

 

                    All values zero initially 

 

 

 

 If r1 == 2, then r2 must be 1! 

 Not allowed: r1 == 1, r2 == 0 

 Reads and writes observed in program order 

 Cannot be reordered! 
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P1 
 

a = 1 

b = 2 

P2 
 

r1 = b 

r2 = a 



Principle 3 

Writes are not reordered with older reads. (RW) 

 

                    All values zero initially 

 

 

 

 If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0! 

 If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0! 

 Not allowed: r1 == 1 and r2 == 1 

34 

P1 
 

r1 = a 

b = 1 

P2 
 

r2 = b 

a = 1 



Principle 4 

Reads may be reordered with older writes to different locations but not 
with older writes to the same location. (NO WR!) 

 

                    All values zero initially 

 

 

 

 Allowed: r1=0, r2=0 

 Sequential consistency can be enforced with mfence 

 Attention: may allow reads to move into critical sections! 
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P1 
 

a = 1 

r1 = b 

P2 
 

b = 1 

r2 = a 



Principle 5 

In a multiprocessor system, memory ordering obeys causality (memory 
ordering respects transitive visibility). (some more orders) 

 

                    All values zero initially 

 

 

 

 

 If r1 == 1 and r2==1, then r3 must read 1 

 Not allowed: r1 == 1, r2 == 1, and r3 == 0 

 Provides some form of atomicity 
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P1 
 

a = 1 

 

 

P2 
 

r1 = a 

b = 1 

 

P3 
 

 

r2 = b 

r3 = a 



Principle 6 

In a multiprocessor system, writes to the same location have a total 
order. (implied by cache coherence) 

 

                    All values zero initially 

 

 

 

 

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1 

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s 
write before P2’s write  

 Provides some form of atomicity 
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a=1 

 

 

P2 
 

a=2 

 

 

P3 
 

 

r1 = a 

r2 = a 

P4 
 

 

r3 = a 

r4 = a 



Principle 7 

In a multiprocessor system, locked instructions have a total order. 
(enables synchronized programming!) 

 

                    All values zero initially, registers r1==r2==1 

 

 

 

 

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0 

 If P3 observes ordering P1:xchg  P2:xchg, P4 observes the same 
ordering 

 (xchg has implicit lock) 
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P1 
 

xchg(a,r1) 

 

 

P2 
 

xchg(b,r2) 

 

 

P3 
 

 

r3 = a 

r4 = b 

P4 
 

 

r5 = b 

r6 = a 



Principle 8 

Reads and writes are not reordered with locked instructions.               
(enables synchronized programming!) 

 

                    All values zero initially but r1 = r3 = 1 

 

 

 

 

 Not allowed: r2 == 0, r4 == 0 

 Locked instructions have total order, so P1 and P2 agree on the same 
order 

 If volatile variables use locked instructions  practical sequential 
consistency 
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P1 
 

xchg(a,r1) 

r2 = b 

 

P2 
 

xchg(b,r3) 

r4 = a 

 



An Alternative View: x86-TSO 

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model 
for x86 Multiprocessors”, CACM May 2010 

    
“*…+ real multiprocessors typically do not provide the sequentially 
consistent memory that is assumed by most work on semantics and 
verification. Instead, they have relaxed memory models, varying in subtle 
ways between processor families, in which different hardware threads 
may have only loosely consistent views of a shared memory. Second, the 
public vendor architectures, supposedly specifying what programmers 
can rely on, are often in ambiguous informal prose (a particularly poor 
medium for loose specifications), leading to widespread confusion. [...] 
We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically 
precise (rigorously defined in HOL4) but can be presented as an intuitive 
abstract machine which should be widely accessible to working 
programmers.  *…+” 
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Notions of Correctness 

 We discussed so far: 

 Read/write of the same location 

Cache coherence (write serialization and atomicity) 

 Read/write of multiple locations 

Memory models (visibility order of updates by cores) 

 

 

 Now: objects (variables/fields with invariants defined on them) 

 Invariants “tie” variables together 

 Sequential objects 

 Concurrent objects 
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Sequential Objects 

 

 Each object has a type 

 A type is defined by a class 

 Set of fields forms the state of an object 

 Set of methods (or free functions) to manipulate the state 

 

 Remark 

 An Interface is an abstract type that defines behavior 

A class implementing an interface defines several types 
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Running Example: FIFO Queue 

 Insert elements at tail 

 Remove elements from head 

 Initial: head = tail = 0 

 enq(x) 

 enq(y) 

 deq() [x] 

 … 
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Sequential Queue 
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head 

tail 

0 

2 

1 

5 4 

3 

capacity = 8 

7 

6 

class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 



Sequential Queue 
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head 

tail 

0 

2 

1 

5 4 

3 

capacity = 8 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    if(tail-head == items.size()-1) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    if(tail == head) { 

      throw EmtpyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

}; 

 



Sequential Execution 

 

 

 (The) one process executes 
operations one at a time 

 Sequential  

 

 Semantics of operation 
defined by specification 
of the class 

 Preconditions and postconditions 

46 

head 

tail 

0 

2 

1 

5 4 

3 

capacity = 8 

7 

6 



Design by Contract! 

 Preconditions: 

 Specify conditions that must  
hold before method executes 

 Involve state and arguments  
passed 

 Specify obligations a client  
must meet before calling a  
method 

 Example: enq() 

 Queue must not be full! 
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class Queue { 

  … 

  void enq(Item x) { 

    assert(tail-head < items.size()-1); 

    … 

  } 

}; 



Design by Contract! 

 

 

 Postconditions: 

 Specify conditions that must  
hold after method executed 

 Involve old state and  
arguments  passed 

 Example: enq() 

 Queue must contain element! 
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head 
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class Queue { 

  … 

  void enq(Item x) { 

     … 

    assert( (tail == old tail + 1) &&  

         (items[old tail] == x) ); 

  } 

}; 

creative assertion  



Sequential specification 

 if(precondition) 

 Object is in a specified state 

 then(postcondition) 

 The method returns a particular value or 

 Throws a particular exception and 

 Leaves the object in a specified state 

 

 Invariants 

 Specified conditions (e.g., object state) must hold anytime a client could 
invoke an objects method! 
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Advantages of sequential specification 

 State between method calls is defined 

 Enables reasoning about objects 

 Interactions between methods captured by side effects on object state 

 

 Enables reasoning about each method in isolation 

 Contracts for each method 

 Local state changes global state 

 

 Adding new methods 

 Only reason about state changes that the new method causes 

 If invariants are kept: no need to check old methods  

 Modularity! 
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Concurrent execution - State 

 Concurrent threads invoke methods on possibly shared objects 

 At overlapping time intervals! 
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Property Sequential Concurrent 

State Meaningful only between 
method executions  

Overlapping method executions  
object may never be “between 
method executions” 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq; 

Method executions take time! 



Concurrent execution - Reasoning 

 Reasoning must now include all possible interleavings 

 Of changes caused by methods themselves 

 

 

 

 

 

 Consider: enq() || enq() and deq() || deq() and deq() || enq()  
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Property Sequential Concurrent 

Reasoning Consider each method in 
isolation; invariants on state 
before/after execution. 

Need to consider all possible 
interactions; all intermediate states 
during execution 

A: q.enq(x); 

B: q.enq(y); 

Time 

C: q.deq; 

Method executions take time! 



Concurrent execution - Method addition 

 Reasoning must now include all possible interleavings 

 Of changes caused by and methods themselves 

 

 

 

 

 

 Consider adding a method that returns the last item enqueued 

 

 

 

 

 peek() || enq(): what if tail has not yet been incremented? 

 peek() || deq(): what if last item is being dequeued? 
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Property Sequential Concurrent 

Add Method Without affecting other 
methods; invariants on state 
before/after execution. 

Everything can potentially interact 
with everything else  

Item peek() { 

     if(last-head == 0)  throw Exception; 

     return items[(tail-1) % items.size()]; 

} 

void enq(Item x) { 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

} 

Item deq() { 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

} 



Concurrent objects 

 How do we describe one? 

 No pre-/postconditions  

 How do we implement one? 

 Plan for exponential number of interactions 

 How do we tell if an object is correct? 

 Analyze all exponential interactions 
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Is it time to panic for software engineers? 

Who has a solution? 



Lock-based queue 
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class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

  std::mutex lock; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 
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Queue fields protected by  
single shared lock! 



Lock-based queue 

class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

  std::mutex lock; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 

head 
tail 

0 

2 

1 

5 4 

3 

7 

6 

Queue fields protected by  
single shared lock! 
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class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw FullException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

}; 

Lock-based queue 
tail 

0 

2 

1 

5 4 

3 

7 

6 

Queue fields protected by  
single shared lock! 

Class question: how is the lock 
ever unlocked? 

head 
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C++ Resource Acquisition is Initialization 

 RAII – suboptimal name 

 Can be used for locks (or any other resource acquisition) 

 Constructor grabs resource 

 Destructor frees resource 

 

 Behaves as if 

 Implicit unlock at end of block! 

  

 Main advantages 

 Always free lock at exit 

 No “lost” locks due to exceptions 
or strange control flow (goto ) 

 Very easy to use 

 

class lock_guard<typename mutex_impl> { 

   mutex_impl &_mtx;   // ref to the mutex 

 

   public: 

      scoped_lock(mutex_impl & mtx ) :  _mtx(mtx) {  

          _mtx.lock();   // lock  mutex in constructor 

      } 

      ~scoped_lock() {  

         _mtx.unlock();   // unlock mutex in destructor 

      } 

}; 
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Example execution 

A: q.deq(): x 

B: q.enq(x) 

lock update q unlock 

lock update q unlock 

update q update q 

“sequential 
   behavior” 
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Correctness 

 Is the locked queue correct? 

 Yes, only one thread has access if locked correctly 

 Allows us again to reason about pre- and postconditions 

 Smells a bit like sequential consistency, no? 

 Class question: What is the problem with this approach? 

 Same as for SC  

 

 

It does not scale! 

What is the solution here? 
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