Design of Parallel and High-Performance

Computing
Fall 2014
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Puschel
TAs: Timo Schneider, Arnamoy Bhattacharyya

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Peer Quiz

Instructions:
= Pick some partners (locally) and discuss each question for 3 minutes
= We then select a random student (team) to answer the question

What is the top500 list? Discuss its usefulness (pro/con)!
= What should we change?

What is the main limitation in single-core scaling today?
= j.e., why do cores not become much faster?
= What will be the next big problem/limit?

What is the difference between UMA and NUMA architectures?
® Discuss which architecture is more scalable!

Describe the difference between shared memory, partitioned global
address space, and distributed memory programming

= Name at least one practical example programming system for each
= Why do all of these models co-exist?

DPHPC Overview

DPHPC\
" locality Egrallelism
S L \ T
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 , cache coherency
o3 |
P memory | distributed |
o models ' algorithms '
S
= locks group commu-
& lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law ,

| |
2 : memory o PRAM - LogP :
@) | I I |
2 o

I/O complexity

balance principles | balance principles Il
Little's Law scheduling

Goals of this lecture

m Memory Trends
m Cache Coherence

m Memory Consistency

Memory — CPU gap widens

162 PFlop/s
100 Pflop/s

m Measure processor speed as “throughput” -
= FLOPS/s, IOPS/s, ... _— o /_//

" Moore’s law - “60% growth per year otopt

76.5 TFlop/s

| 6-8 years
1 Tflop/s
1.17 TElop/s
N=500

100 Gflop/s - My Laptop (70 Gﬂop/s!=
59.7 GFlop/s [
10 Gflop/s
My iPad2 & iPhone 4s (1.02 Gflop/s)
1 Gflop/s +
Flo /s

100 Mflop/s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012

Source: Jack Dongarra

m Today’s architectures | o
= POWER7: 256 GFLOP/s — 128 GB/s memory bandwidth ™[— = = 3
" BG/Q: 205 GFLOPS/s —42.6 GB/s memory bandwidth oo ¢ cpees

ORAM Speed

" Trend: memory performance grows 10% per year

Ferformance
-
=

A.1
1975 19288 1985 1996 1995 28680 2065 2618
fear

Source: John Mc.Calpin

5

Issues

m How to measure bandwidth?

® Data sheet (often peak performance, may include overheads)
Frequency times bus width: 51 GiB/s

® Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?

= Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

m How to measure Latency?
= Data sheet (often optimistic, or not provided)
<100ns
= Random pointer chase
110 ns with one core, 258 ns with 32 cores!

Conjecture: Buffering is a must!

m Write Buffers
® Delayed write back saves memory bandwidth
= Data is often overwritten or re-read

m Caching
® Directory of recently used locations
= Stored as blocks (cache lines)

Cache Coherence

m Different caches may have a copy of the same memory location!

m Cache coherence
" Manages existence of multiple copies

m Cache architectures
= Multi level caches
® Multi-port vs. single port
= Shared vs. private (partitioned)
" |nclusive vs. exclusive
= Write back vs. write through
® Victim cache to reduce conflict misses

Exclusive Hierarchical Caches

Shared Hierarchical Caches

10

Shared Hierarchical Caches with MT

11

Caching Strategies (repeat)

m Remember:
= Write Back?
= Write Through?

m Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation (updates are eventually visible to all readers)
= Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (later)

Write Through Cache

1. CPU,reads X from memory

* |oads X=0 into its cache
2. CPU, reads X from memory

* |oads X=0 into its cache
3. CPU, writes X=1

e stores X=1in its cache

* stores X=1in memory
4 CPU, reads X from its cache
Memory . Ioads X=0 from its cache

Incoherent value for X on CPU,

CPU, may wait for update!

Requires write propagation!

Write Back Cache

1. CPU,reads X from memory
* |oads X=0 into its cache
2. CPU, reads X from memory
* |oads X=0 into its cache
3. CPU, writes X=1
* stores X=1in its cache
4. CPU, writes X =2

* stores X=2 in its cache

Memory 5. CPU, writes back cache line
* stores X=2 in in memory

6. CPU, writes back cache line

* stores X=1in memory
Later store X=2 from CPU, lost

Requires write serialization!

A simple (?) example

m Assume C99: struct twoint {
int a;
int b;

}

m Two threads:
= |nitially: a=b=0
" Thread O: write 1to a
®" Thread 1: writel1tob

m Assume non-coherent write back cache

= What may end up in main memory?

Cache Coherence Protocol

m Programmer can hardly deal with unpredictable behavior!

m Cache controller maintains data integrity
= All writes to different locations are visible

Fundamental Mechanisms

m Snooping
= Shared bus or (broadcast) network
® Cache controller “snoops” all transactions
® Monitors and changes the state of the cache’s data

m Directory-based
® Record information necessary to maintain coherence

= E.g., owner and state of a line etc.

Cache Coherence Parameters

m Concerns/Goals
= Performance
= |mplementation cost (chip space)
" Correctness
= (Memory model side effects)

m Issues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
= Precision of block sharing (per block, per sub-block?)
= Block size (cache line size?)

An Engineering Approach: Empirical start

m Problem 1: stale reads
® Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

m Problem 2: lost update

® |ncorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data

= Solution:
Disallow more than one modified copy

Cache Coherence Approaches

m Based on invalidation

= Broadcast all coherency traffic (writes to shared lines) to all caches ——

" Each cache snoops o |6 HE:
Invalidate lines written by other CPUs e |52 %
Signal sharing for cache lines in local cache to other caches o i % N,

= Simple implementation for bus-based systems [z e

= Works at small scale, challenging at large-scale o
E.g., Intel Sandy Bridge :&,;’:;w:;"ft |

m Based on explicit updates] (] oo (] (o)

= Central directory for cache line ownership % % — : %

® Local write updates copies in remote caches o [f’b == = j H
Can update all CPUs at once - L
Multiple writes cause multiple updates (more traffic) \mIRE‘ \I | oae \cgﬂw \cgnﬁw

= Scalable but more complex/expensive

E.g., Intel Xeon Phi
19

Invalidation vs. update

m Invalidation-based:
= Only write misses hit the bus (works with write-back caches)
m Subsequent writes to the same cache line are local
® - Good for multiple writes to the same line (in the same cache)

m Update-based:
= All sharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often
= Supports producer-consumer pattern well
= Many (local) writes may waste bandwidth!

m Hybrid forms are possible!

MESI Cache Coherence

m Most common hardware implementation of discussed requirements
aka. “lllinois protocol”

Each line has one of the following states (in a cache):

= Modified (M)
® Local copy has been modified, no copies in other caches
" Memory is stale

m Exclusive (E)
= No copies in other caches
= Memory is up to date

m Shared (S)

= Unmodified copies may exist in other caches
= Memory is up to date

m Invalid (I)
® lineis notin cache

Terminology

Clean line:

= Content of cache line and main memory is identical (also: memory is up to
date)

® Can be evicted without write-back

Dirty line:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details

Bus transaction:
= Asignal on the bus that can be observed by all caches
= Usually blocking

Local read/write:
= A load/store operation originating at a core connected to the cache

Transitions in response to local reads

m Stateis M
" No bus transaction

m StateisE
" No bus transaction

m StateisS
®" No bus transaction

m Stateisl|
= Generate bus read request (BusRd)
May force other cache operations (see later)
= QOther cache(s) signal “sharing” if they hold a copy
= |f shared was signaled, go to state S
= QOtherwise, go to state E

m After update: return read value

Transitions in response to local writes

m Stateis M
" No bus transaction

m StateisE
" No bus transaction
® Go to state M

m StateisS
" Line already local & clean
" There may be other copies
® Generate bus read request for upgrade to exclusive (BusRdX*)
" Go tostate M

m Stateisl|
" Generate bus read request for exclusive ownership (BusRdX)
" Go to state M

Transitions in response to snooped BusRd

m StateisM
= Write cache line back to main memory
= Signal “shared”
" GotostateS

m StateisE
= Signal “shared”
® Go to state S and signal “shared”

m StateisS
= Signal “shared”

m Stateis|

" [gnore

Transitions in response to snooped BusRdX

m StateisM
® Write cache line back to memory
" Discard lineand go to |

m StateisE
® Discard lineand go to |

m StateisS
® Discard lineand go to |

m Stateis|

" [gnore

m BusRdX* is handled like BusRdX!

MESI State Diagram (FSM)

BusRdx

Source: Wikipedia

27

Small Exercise

m Initially: all in | state

Action | PLstate | P2state | P3state | Bus action | Data from _

P1 reads x
P2 reads x
P1 writes x
P1 reads x

P3 writes x

28

Small Exercise

m Initially: all in | state

m P1state mm

P1 reads x BusRd Memory
P2readsx S S I BusRd Memory
P1writesx M I I BusRdX* Cache
Plreadsx M I I - Cache

P3 writesx | I M BusRdX Memory

29

Optimizations?

m Class question: what could be optimized in the MESI protocol to
make a system faster?

Related Protocols: MOESI (AMD)

m Extended MESI protocol

m Cache-to-cache transfer of modified cache lines
® Cache in M or O state always transfers cache line to requesting cache

" No need to contact (slow) main memory

m Avoids write back when another process accesses cache line
" Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!

m Broadcasts updates in O state
= Additional load on the bus

MOESI State Diagram

Read Hit

Reset
INVD, WEINVD

Probe Write Hit

Invalid |

Read Miss, Bxclusive

Modified

probe Read Hit ‘

Wiite F
Read Hit
Write Hit

Read Hit
Probe Read Hit

Read Hit
Probe Read Hit

Source: AMDG64 Architecture Programmer’s Manua

32

Related Protocols: MOESI (AMD)

m Modified (M): Modified Exclusive
" No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)

m Owner (0): Modified Shared
= Exclusive right to make changes (1

= Other S copies may exist (“dirty sharing”)
= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):

= Same as MESI (one local copy, up to date memory)

m Shared (S):
= Unmodified copy may exist in other caches
= Memory is up to date unless an O copy exists in another cache

m Invalid (l):
= Same as MESI

Related Protocols: MESIF (Intel)

m Modified (M): Modified Exclusive
" No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):
= Same as MESI (one local copy, up to date memory)

m Shared (S):

" Unmodified copy may exist in other caches
= Memory is up to date unless an O copy exists in another cache

m Invalid (I):
= Same as MESI

m Forward (F):
® Special form of S state, other caches may have linein S
® Most recent requester of line is in F state
® Cache acts as responder for requests to this line

Multi-level caches

m Most systems have multi-level caches
" Problem: only “last level cache” is connected to bus or network
® Snoop requests are relevant for inner-levels of cache (L1)
= Modifications of L1 data may not be visible at L2 (and thus the bus)

m L1/L2 modifications
® On BusRd check if line is in M state in L1
It may be in EorSin L2!
" On BusRdX(*) send invalidations to L1
= Everything else can be handled in L2

m If L1 is write through, L2 could “remember” state of L1 cache line
® May increase traffic though

Directory-based cache coherence

m Snooping does not scale
® Bus transactions must be globally visible
" |mplies broadcast

m Typical solution: tree-based (hierarchical) snooping
" Root becomes a bottleneck

m Directory-based schemes are more scalable
= Directory (entry for each CL) keeps track of all owning caches
® Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI ...

Basic Scheme

Presence bits

37

System with N processors P,

For each memory block (size: cache
line) maintain a directory entry

= N presence bits
= Setif block in cache of P,
= 1 dirty bit

For each cache block
= 1 valid and 1 dirty bit

First proposed by Censier and
Feautrier (1978)

Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bit (in directory) is off
= Read from main memory
m Set presence|i]
= Supply data to reader

m If dirty bitis on
" Recall cache line from P, (determine by presencef])
= Update memory
= Unset dirty bit, block shared
= Set presenceli]
= Supply data to reader

Directory-based CC: Write miss

= P, intends to write, misses

m If dirty bit (in directory) is off
" Send invalidations to all processors P; with presencelj] turned on
® Unset presence bit for all processors
= Set dirty bit
= Set presenceli], owner P,

m If dirty bitis on
" Recall cache line from owner P,
= Update memory
= Unset presencelj]
= Set presenceli], dirty bit remains set
= Supply data to writer

Discussion

m Scaling of memory bandwidth
=" No centralized memory

m Directory-based approaches scale with restrictions
® Require presence bit for each cache
= Number of bits determined at design time
= Directory requires memory (size scales linearly)
® Shared vs. distributed directory

m Software-emulation
= Distributed shared memory (DSM)
" Emulate cache coherence in software (e.g., TreadMarks)
= Often on a per-page basis, utilizes memory virtualization and paging

Open Problems (for projects or theses)

m Tune algorithms to cache-coherence schemes
" What is the optimal parallel algorithm for a given scheme?
= Parameterize for an architecture

m Measure and classify hardware

= Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!

= RDMA consistency is barely understood!
" GPU memories are not well understood!
Huge potential for new insights!

m Can we program (easily) without cache coherence?
" How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?

Case Study: Intel Xeon Phi 4,

CORE CORE L LN CORE CORE

PN
T 1 1 1

GDDR5 [¢—»

<+—» GDDR5

TD TD 00 0 TD TD
D TD XN) TD D

GDDR5 | ¢—»

<+—» | GDDR5

(r N\
N SN R S
1 1 1

CORE CORE (Y X CORE CORE

T, read
RI
AN T, RFO
[N R
\ \ \\
[RNEERN Ti, read
\ \ \\ I
\ <
\
\\ \ \\\ TZ, RFO
[~evict
\\ \ N
\ N
\ So Ty, read

Rie

o, read
T,, read

T,, read
Ty, RFO (T2, read N Biwm
R \
LM T,. RFO
*RL,S
To, read
R,M
Ty, RFO T., RFO Rus
R.s

‘
Ty, read

To, read R
(T,, read;

1
.
(T,, read),
N m)
> R)
Rg,s ’

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

T,, RFO
T° read To, RFO T., RFO T1, RFO
(T», read) To, read , \ T1, read Ty, read

R, - (T,, read)

/TZI RFO TZ RFO « R[_’*
-7 evict evict
T1, RFO
RR,*
To, RFO
Ty, read R.*

To, RFO
(T, evict)

Ryx gl;ievict)
(*,*) T
@ EEE B
Invalid read R;=278 ns e read PN),
Local read: R;=8.6 ns >

Remote read Ry =235 ns (cone | [cone | ewe [cone | [cone |

45
Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

Single-Line Ping Pong

| Thread O Thread 1

start timer \

/[SendBuffer0 [flagH pol

‘\ '<_ : _»I \ - /l
\ R ! RecvBuffer1 | q

~— cacheline — ™1
(

I | SendBuffer1 |flag|
/ ~—cacheline
v RecvBliffer0 |flag

end timer |<—7(e line 7A

T, = RL,SS + RR,Sr + RR,M + O

=R_L +2Rg +0O

m Prediction for both in E state: 479 ns
" Measurement: 497 ns (0O=18)

Multi-Line Ping Pong

m More complex due to prefetch

Amortization of
startup

Asymptotic Fetch

Latency for each cache

line (optimal
prefetch!)

Startup
overhead

/

\

Multi-Line Ping Pong

P wl S
Tn =0-N+q—— ~| © average .
N —— model ;
O
s E state: * rel. error - oo§
" 0=76ns 3 o 5
" g=1,521ns > L]
c o
" p=1,096ns Q9 2.2
S ©
m | state: o
" 0=95ns "
" g=2,750ns o= X * ¥ xlo
" p=2,017ns 64 128 512 = 2048 = 8192

Size (Bytes)

48

DTD Contention ®

18
T T ,<T T =1 © average T
[GoDRS] +—> —— model :
s} R o ol © rel.error B —~
< X
> — <
[core | [cORE | eee [CORE | [coRE] ‘g o B
L " O - 1O Pl
a > — Lﬁ
To(ny) =c-ngp +b— — © -
Tth c Q
& Q.2
© - =
m E state: i |~ %
= 3=0ns o : o oY
" b=320ns N T
" ¢=56.2ns _ M . | :
o - X ¥ * ¥ lo
1 3 7 15 31 59

Number of Threads

49

