
Design of Parallel and High-Performance
Computing
Fall 2014
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Püschel

TAs: Timo Schneider, Arnamoy Bhattacharyya

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 3 minutes

 We then select a random student (team) to answer the question

 What is the top500 list? Discuss its usefulness (pro/con)!

 What should we change?

 What is the main limitation in single-core scaling today?

 i.e., why do cores not become much faster?

 What will be the next big problem/limit?

 What is the difference between UMA and NUMA architectures?

 Discuss which architecture is more scalable!

 Describe the difference between shared memory, partitioned global
address space, and distributed memory programming

 Name at least one practical example programming system for each

 Why do all of these models co-exist?

2

DPHPC Overview

3

Goals of this lecture

 Memory Trends

 Cache Coherence

 Memory Consistency

4

Memory – CPU gap widens

 Measure processor speed as “throughput”

 FLOPS/s, IOPS/s, …

 Moore’s law - ~60% growth per year

 Today’s architectures

 POWER7: 256 GFLOP/s – 128 GB/s memory bandwidth

 BG/Q: 205 GFLOPS/s – 42.6 GB/s memory bandwidth

 Trend: memory performance grows 10% per year

5

Source: Jack Dongarra

Source: John Mc.Calpin

Issues

 How to measure bandwidth?

 Data sheet (often peak performance, may include overheads)

Frequency times bus width: 51 GiB/s

 Microbenchmark performance

Stride 1 access (32 MiB): 32 GiB/s

Random access (8 B out of 32 MiB): 241 MiB/s

Why?

 Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

 How to measure Latency?

 Data sheet (often optimistic, or not provided)

<100ns

 Random pointer chase

110 ns with one core, 258 ns with 32 cores!

 6

Conjecture: Buffering is a must!

 Write Buffers

 Delayed write back saves memory bandwidth

 Data is often overwritten or re-read

 Caching

 Directory of recently used locations

 Stored as blocks (cache lines)

7

Cache Coherence

 Different caches may have a copy of the same memory location!

 Cache coherence

 Manages existence of multiple copies

 Cache architectures

 Multi level caches

 Multi-port vs. single port

 Shared vs. private (partitioned)

 Inclusive vs. exclusive

 Write back vs. write through

 Victim cache to reduce conflict misses

 …

8

Exclusive Hierarchical Caches

9

Shared Hierarchical Caches

10

Shared Hierarchical Caches with MT

11

Caching Strategies (repeat)

 Remember:

 Write Back?

 Write Through?

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation (updates are eventually visible to all readers)

 Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (later)

12

Write Through Cache

13

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

Write Back Cache

14

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later store X=2 from CPU1 lost

 Requires write serialization!

A simple (?) example

 Assume C99:

 Two threads:

 Initially: a=b=0

 Thread 0: write 1 to a

 Thread 1: write 1 to b

 Assume non-coherent write back cache

 What may end up in main memory?

15

struct twoint {

 int a;

 int b;

}

Cache Coherence Protocol

 Programmer can hardly deal with unpredictable behavior!

 Cache controller maintains data integrity

 All writes to different locations are visible

 Snooping

 Shared bus or (broadcast) network

 Cache controller “snoops” all transactions

 Monitors and changes the state of the cache’s data

 Directory-based

 Record information necessary to maintain coherence

 E.g., owner and state of a line etc.

16

Fundamental Mechanisms

Cache Coherence Parameters

 Concerns/Goals

 Performance

 Implementation cost (chip space)

 Correctness

 (Memory model side effects)

 Issues

 Detection (when does a controller need to act)

 Enforcement (how does a controller guarantee coherence)

 Precision of block sharing (per block, per sub-block?)

 Block size (cache line size?)

17

An Engineering Approach: Empirical start

 Problem 1: stale reads

 Cache 1 holds value that was already modified in cache 2

 Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update

 Incorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data

 Solution:

Disallow more than one modified copy

18

Cache Coherence Approaches

 Based on invalidation

 Broadcast all coherency traffic (writes to shared lines) to all caches

 Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches

 Simple implementation for bus-based systems

 Works at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

 Based on explicit updates

 Central directory for cache line ownership

 Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)

 Scalable but more complex/expensive

E.g., Intel Xeon Phi

 19

Source: Intel

Invalidation vs. update

 Invalidation-based:

 Only write misses hit the bus (works with write-back caches)

 Subsequent writes to the same cache line are local

 Good for multiple writes to the same line (in the same cache)

 Update-based:

 All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often

 Supports producer-consumer pattern well

 Many (local) writes may waste bandwidth!

 Hybrid forms are possible!

20

 Most common hardware implementation of discussed requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

 Modified (M)

 Local copy has been modified, no copies in other caches

 Memory is stale

 Exclusive (E)

 No copies in other caches

 Memory is up to date

 Shared (S)

 Unmodified copies may exist in other caches

 Memory is up to date

 Invalid (I)

 Line is not in cache

MESI Cache Coherence

21

Terminology

 Clean line:

 Content of cache line and main memory is identical (also: memory is up to
date)

 Can be evicted without write-back

 Dirty line:

 Content of cache line and main memory differ (also: memory is stale)

 Needs to be written back eventually

Time depends on protocol details

 Bus transaction:

 A signal on the bus that can be observed by all caches

 Usually blocking

 Local read/write:

 A load/store operation originating at a core connected to the cache

22

Transitions in response to local reads

 State is M

 No bus transaction

 State is E

 No bus transaction

 State is S

 No bus transaction

 State is I

 Generate bus read request (BusRd)

May force other cache operations (see later)

 Other cache(s) signal “sharing” if they hold a copy

 If shared was signaled, go to state S

 Otherwise, go to state E

 After update: return read value

23

Transitions in response to local writes

 State is M

 No bus transaction

 State is E

 No bus transaction

 Go to state M

 State is S

 Line already local & clean

 There may be other copies

 Generate bus read request for upgrade to exclusive (BusRdX*)

 Go to state M

 State is I

 Generate bus read request for exclusive ownership (BusRdX)

 Go to state M

24

Transitions in response to snooped BusRd

 State is M

 Write cache line back to main memory

 Signal “shared”

 Go to state S

 State is E

 Signal “shared”

 Go to state S and signal “shared”

 State is S

 Signal “shared”

 State is I

 Ignore

25

Transitions in response to snooped BusRdX

 State is M

 Write cache line back to memory

 Discard line and go to I

 State is E

 Discard line and go to I

 State is S

 Discard line and go to I

 State is I

 Ignore

 BusRdX* is handled like BusRdX!

26

MESI State Diagram (FSM)

27 Source: Wikipedia

Small Exercise

 Initially: all in I state

28

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

Small Exercise

 Initially: all in I state

29

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Memory

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory

Optimizations?

 Class question: what could be optimized in the MESI protocol to
make a system faster?

30

Related Protocols: MOESI (AMD)

 Extended MESI protocol

 Cache-to-cache transfer of modified cache lines

 Cache in M or O state always transfers cache line to requesting cache

 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line

 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

 Broadcasts updates in O state

 Additional load on the bus

31

MOESI State Diagram

32 Source: AMD64 Architecture Programmer’s Manual

Related Protocols: MOESI (AMD)

 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared

 Exclusive right to make changes

 Other S copies may exist (“dirty sharing”)

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI
33

Related Protocols: MESIF (Intel)

 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI

 Forward (F):

 Special form of S state, other caches may have line in S

 Most recent requester of line is in F state

 Cache acts as responder for requests to this line
34

Multi-level caches

 Most systems have multi-level caches

 Problem: only “last level cache” is connected to bus or network

 Snoop requests are relevant for inner-levels of cache (L1)

 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications

 On BusRd check if line is in M state in L1

It may be in E or S in L2!

 On BusRdX(*) send invalidations to L1

 Everything else can be handled in L2

 If L1 is write through, L2 could “remember” state of L1 cache line

 May increase traffic though

35

Directory-based cache coherence

 Snooping does not scale

 Bus transactions must be globally visible

 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping

 Root becomes a bottleneck

 Directory-based schemes are more scalable

 Directory (entry for each CL) keeps track of all owning caches

 Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

36

© Markus Püschel
Computer Science

Basic Scheme

 System with N processors Pi

 For each memory block (size: cache
line) maintain a directory entry

 N presence bits

 Set if block in cache of Pi

 1 dirty bit

 For each cache block

 1 valid and 1 dirty bit

 First proposed by Censier and
Feautrier (1978)

 37

Directory-based CC: Read miss

 Pi intends to read, misses

 If dirty bit (in directory) is off

 Read from main memory

 Set presence[i]

 Supply data to reader

 If dirty bit is on

 Recall cache line from Pj (determine by presence[])

 Update memory

 Unset dirty bit, block shared

 Set presence[i]

 Supply data to reader

38

Directory-based CC: Write miss

 Pi intends to write, misses

 If dirty bit (in directory) is off

 Send invalidations to all processors Pj with presence[j] turned on

 Unset presence bit for all processors

 Set dirty bit

 Set presence[i], owner Pi

 If dirty bit is on

 Recall cache line from owner Pj

 Update memory

 Unset presence[j]

 Set presence[i], dirty bit remains set

 Supply data to writer

39

Discussion

 Scaling of memory bandwidth

 No centralized memory

 Directory-based approaches scale with restrictions

 Require presence bit for each cache

 Number of bits determined at design time

 Directory requires memory (size scales linearly)

 Shared vs. distributed directory

 Software-emulation

 Distributed shared memory (DSM)

 Emulate cache coherence in software (e.g., TreadMarks)

 Often on a per-page basis, utilizes memory virtualization and paging

41

Open Problems (for projects or theses)

 Tune algorithms to cache-coherence schemes

 What is the optimal parallel algorithm for a given scheme?

 Parameterize for an architecture

 Measure and classify hardware

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!

 RDMA consistency is barely understood!

 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?

 How to fix the problems with inconsistent values?

 Compiler support (issues with arrays)?

42

Case Study: Intel Xeon Phi

43

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
44

Local read: RL= 8.6 ns
Remote read RR = 235 ns

Invalid read RI=278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”
45

 Prediction for both in E state: 479 ns

 Measurement: 497 ns (O=18)

Single-Line Ping Pong

46

 More complex due to prefetch

Multi-Line Ping Pong

Asymptotic Fetch
Latency for each cache

line (optimal
prefetch!)

Number
of CLs

Startup
overhead

Amortization of
startup

47

 E state:

 o=76 ns

 q=1,521ns

 p=1,096ns

 I state:

 o=95ns

 q=2,750ns

 p=2,017ns

Multi-Line Ping Pong

48

 E state:

 a=0ns

 b=320ns

 c=56.2ns

DTD Contention

49

