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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 3 minutes 

 We then select a random student (team) to answer the question 

 What is the top500 list? Discuss its usefulness (pro/con)! 

 What should we change? 

 What is the main limitation in single-core scaling today? 

 i.e., why do cores not become much faster? 

 What will be the next big problem/limit? 

 What is the difference between UMA and NUMA architectures? 

 Discuss which architecture is more scalable! 

 Describe the difference between shared memory, partitioned global 
address space, and distributed memory programming 

 Name at least one practical example programming system for each 

 Why do all of these models co-exist? 
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DPHPC Overview 

3 



Goals of this lecture 

 Memory Trends 

 

 Cache Coherence 

 

 Memory Consistency 
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Memory – CPU gap widens 

 Measure processor speed as “throughput” 

 FLOPS/s, IOPS/s, … 

 Moore’s law - ~60% growth per year 

 

 

 

 

 Today’s architectures 

 POWER7: 256 GFLOP/s – 128 GB/s memory bandwidth 

 BG/Q: 205 GFLOPS/s – 42.6 GB/s memory bandwidth 

 Trend: memory performance grows 10% per year 
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Source: Jack Dongarra 

Source: John Mc.Calpin 



Issues 

 How to measure bandwidth? 

 Data sheet (often peak performance, may include overheads) 

Frequency times bus width: 51 GiB/s 

 Microbenchmark performance 

Stride 1 access (32 MiB): 32 GiB/s 

Random access (8 B out of 32 MiB): 241 MiB/s 

Why? 

 Application performance  

As observed (performance counters) 

Somewhere in between stride 1 and random access 

 How to measure Latency? 

 Data sheet (often optimistic, or not provided) 

<100ns 

 Random pointer chase 

110 ns with one core, 258 ns with 32 cores! 
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Conjecture: Buffering is a must! 

 Write Buffers 

 Delayed write back saves memory bandwidth 

 Data is often overwritten or re-read 

 Caching 

 Directory of recently used locations 

 Stored as blocks (cache lines) 
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Cache Coherence 

 Different caches may have a copy of the same memory location! 

 Cache coherence 

 Manages existence of multiple copies 

 Cache architectures 

 Multi level caches 

 Multi-port vs. single port 

 Shared vs. private (partitioned) 

 Inclusive vs. exclusive 

 Write back vs. write through 

 Victim cache to reduce conflict misses 

 … 
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Exclusive Hierarchical Caches 
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Shared Hierarchical Caches 
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Shared Hierarchical Caches with MT 
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Caching Strategies (repeat) 

 Remember: 

 Write Back? 

 Write Through? 

 

 Cache coherence requirements 

A memory system is coherent if it guarantees the following: 

 Write propagation (updates are eventually visible to all readers) 

 Write serialization (writes to the same location must be observed in order) 

Everything else: memory model issues (later) 
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Write Through Cache 
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1. CPU0 reads X from memory 
• loads X=0 into its cache 

2. CPU1 reads X from memory 
• loads X=0 into its cache 

3. CPU0 writes X=1 
• stores X=1 in its cache 
• stores X=1 in memory 

4. CPU1 reads X from its cache 
• loads X=0 from its cache 
Incoherent value for X on CPU1 

 
CPU1 may wait for update! 

Requires write propagation! 



Write Back Cache 
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1. CPU0 reads X from memory 
• loads X=0 into its cache 

2. CPU1 reads X from memory 
• loads X=0 into its cache 

3. CPU0 writes X=1 
• stores X=1 in its cache 

4. CPU1 writes X =2  
• stores X=2 in its cache 

5. CPU1 writes back cache line 
• stores X=2 in in memory 

6. CPU0 writes back cache line 
• stores X=1 in memory 
Later store X=2 from CPU1 lost 

 
 Requires write serialization! 



A simple (?) example 

 Assume C99: 

 

 

 Two threads: 

 Initially: a=b=0 

 Thread 0: write 1 to a 

 Thread 1: write 1 to b 

 

 Assume non-coherent write back cache 

 What may end up in main memory? 
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struct twoint { 

   int a; 

   int b; 

} 



Cache Coherence Protocol 

 Programmer can hardly deal with unpredictable behavior! 

 Cache controller maintains data integrity 

 All writes to different locations are visible 

 

 

 Snooping 

 Shared bus or (broadcast) network  

 Cache controller “snoops” all transactions 

 Monitors and changes the state of the cache’s data 

 Directory-based  

 Record information necessary to maintain coherence 

 E.g., owner and state of a line etc. 
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Fundamental Mechanisms 



Cache Coherence Parameters 

 Concerns/Goals 

 Performance 

 Implementation cost (chip space) 

 Correctness 

 (Memory model side effects) 

 

 Issues 

 Detection (when does a controller need to act) 

 Enforcement (how does a controller guarantee coherence) 

 Precision of block sharing (per block, per sub-block?) 

 Block size (cache line size?) 
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An Engineering Approach: Empirical start 

 Problem 1: stale reads 

 Cache 1 holds value that was already modified in cache 2 

 Solution: 

Disallow this state 

Invalidate all remote copies before allowing a write to complete 

 

 Problem 2: lost update 

 Incorrect write back of modified line writes main memory in different 
order from the order of the write operations or overwrites neighboring 
data 

 Solution: 

Disallow more than one modified copy 
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Cache Coherence Approaches 

 Based on invalidation 

 Broadcast all coherency traffic (writes to shared lines) to all caches 

 Each cache snoops 

Invalidate lines written by other CPUs 

Signal sharing for cache lines in local cache to other caches 

 Simple implementation for bus-based systems 

 Works at small scale, challenging at large-scale 

E.g., Intel Sandy Bridge 

 Based on explicit updates 

 Central directory for cache line ownership 

 Local write updates copies in remote caches 

Can update all CPUs at once 

Multiple writes cause multiple updates (more traffic) 

 Scalable but more complex/expensive 

E.g., Intel Xeon Phi 
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Source: Intel 



Invalidation vs. update 

 Invalidation-based: 

 Only write misses hit the bus (works with write-back caches) 

 Subsequent writes to the same cache line are local 

  Good for multiple writes to the same line (in the same cache) 

 

 Update-based: 

 All sharers continue to hit cache line after one core writes 

Implicit assumption: shared lines are accessed often 

 Supports producer-consumer pattern well 

 Many (local) writes may waste bandwidth! 

 

 Hybrid forms are possible! 
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 Most common hardware implementation of discussed requirements 

aka. “Illinois protocol” 

Each line has one of the following states (in a cache): 

 Modified (M) 

 Local copy has been modified, no copies in other caches 

 Memory is stale 

 Exclusive (E) 

 No copies in other caches 

 Memory is up to date 

 Shared (S) 

 Unmodified copies may exist in other caches  

 Memory is up to date 

 Invalid (I) 

 Line is not in cache 

 

 

MESI Cache Coherence 
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Terminology 

 Clean line: 

 Content of cache line and main memory is identical (also: memory is up to 
date) 

 Can be evicted without write-back 

 Dirty line: 

 Content of cache line and main memory differ (also: memory is stale) 

 Needs to be written back eventually 

Time depends on protocol details 

 Bus transaction: 

 A signal on the bus that can be observed by all caches 

 Usually blocking 

 Local read/write: 

 A load/store operation originating at a core connected to the cache 
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Transitions in response to local reads 

 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 State is S 

 No bus transaction 

 State is I 

 Generate bus read request (BusRd) 

May force other cache operations (see later) 

 Other cache(s) signal “sharing” if they hold a copy 

 If shared was signaled, go to state S 

 Otherwise, go to state E 

 After update: return read value 
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Transitions in response to local writes 

 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 Go to state M 

 State is S 

 Line already local & clean 

 There may be other copies 

 Generate bus read request for upgrade to exclusive (BusRdX*) 

 Go to state M 

 State is I 

 Generate bus read request for exclusive ownership (BusRdX) 

 Go to state M 

 
24 



Transitions in response to snooped BusRd  

 State is M 

 Write cache line back to main memory 

 Signal “shared” 

 Go to state S  

 State is E 

 Signal “shared” 

 Go to state S and signal “shared” 

 State is S 

 Signal “shared” 

 State is I 

 Ignore 
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Transitions in response to snooped BusRdX  

 State is M 

 Write cache line back to memory 

 Discard line and go to I 

 State is E 

 Discard line and go to I 

 State is S 

 Discard line and go to I 

 State is I 

 Ignore 

 

 BusRdX* is handled like BusRdX! 
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MESI State Diagram (FSM) 

27 Source: Wikipedia 



Small Exercise 

 Initially: all in I state 
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Action P1 state P2 state P3 state Bus action Data from 

P1 reads x 

P2 reads x 

P1 writes x 

P1 reads x 

P3 writes x 



Small Exercise 

 Initially: all in I state 
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Action P1 state P2 state P3 state Bus action Data from 

P1 reads x E I I BusRd Memory 

P2 reads x S S I BusRd Memory 

P1 writes x M I I BusRdX* Cache 

P1 reads x M I I - Cache 

P3 writes x I I M BusRdX Memory 



Optimizations? 

 Class question: what could be optimized in the MESI protocol to 
make a system faster? 
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Related Protocols: MOESI (AMD) 

 Extended MESI protocol 

 Cache-to-cache transfer of modified cache lines 

 Cache in M or O state always transfers cache line to requesting cache 

 No need to contact (slow) main memory 

 Avoids write back when another process accesses cache line 

 Good when cache-to-cache performance is higher than cache-to-memory 

E.g., shared last level cache! 

 Broadcasts updates in O state 

 Additional load on the bus 
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MOESI State Diagram 

 

32 Source: AMD64 Architecture Programmer’s Manual 



Related Protocols: MOESI (AMD) 

 Modified (M): Modified Exclusive 

 No copies in other caches, local copy dirty 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Owner (O): Modified Shared 

 Exclusive right to make changes 

 Other S copies may exist (“dirty sharing”) 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Exclusive (E): 

 Same as MESI (one local copy, up to date memory) 

 Shared (S): 

 Unmodified copy may exist in other caches 

 Memory is up to date unless an O copy exists in another cache 

 Invalid (I): 

 Same as MESI 
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Related Protocols: MESIF (Intel) 

 Modified (M): Modified Exclusive 

 No copies in other caches, local copy dirty 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Exclusive (E): 

 Same as MESI (one local copy, up to date memory) 

 Shared (S): 

 Unmodified copy may exist in other caches 

 Memory is up to date unless an O copy exists in another cache 

 Invalid (I): 

 Same as MESI 

 Forward (F): 

 Special form of S state, other caches may have line in S 

 Most recent requester of line is in F state 

 Cache acts as responder for requests to this line 
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Multi-level caches 

 Most systems have multi-level caches 

 Problem: only “last level cache” is connected to bus or network 

 Snoop requests are relevant for inner-levels of cache (L1) 

 Modifications of L1 data may not be visible at L2 (and thus the bus) 

 L1/L2 modifications 

 On BusRd check if line is in M state in L1 

It may be in E or S in L2! 

 On BusRdX(*) send invalidations to L1 

 Everything else can be handled in L2 

 If L1 is write through, L2 could “remember” state of L1 cache line 

 May increase traffic though 
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Directory-based cache coherence 

 Snooping does not scale 

 Bus transactions must be globally visible 

 Implies broadcast 

 Typical solution: tree-based (hierarchical) snooping 

 Root becomes a bottleneck 

 Directory-based schemes are more scalable 

 Directory (entry for each CL) keeps track of all owning caches 

 Point-to-point update to involved processors 

No broadcast 

Can use specialized (high-bandwidth) network, e.g., HT, QPI … 
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© Markus Püschel 
Computer Science 

Basic Scheme 

 System with N processors Pi 

 For each memory block (size: cache 
line) maintain a directory entry 

 N presence bits 

 Set if block in cache of Pi 

 1 dirty bit 

 

 For each cache block 

 1 valid and 1 dirty bit 

 

 First proposed by Censier and 
Feautrier (1978) 
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Directory-based CC: Read miss 

 Pi intends to read, misses  

 

 If dirty bit (in directory) is off 

 Read from main memory 

 Set presence[i] 

 Supply data to reader 

 If dirty bit is on 

 Recall cache line from Pj (determine by presence[]) 

 Update memory 

 Unset dirty bit, block shared 

 Set presence[i] 

 Supply data to reader 
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Directory-based CC: Write miss 

 Pi intends to write, misses  

 

 If dirty bit (in directory) is off 

 Send invalidations to all processors Pj with presence[j] turned on 

 Unset presence bit for all processors 

 Set dirty bit 

 Set presence[i], owner Pi 

 If dirty bit is on 

 Recall cache line from owner Pj 

 Update memory 

 Unset presence[j] 

 Set presence[i], dirty bit remains set 

 Supply data to writer 
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Discussion 

 Scaling of memory bandwidth 

 No centralized memory 

 Directory-based approaches scale with restrictions 

 Require presence bit for each cache  

 Number of bits determined at design time 

 Directory requires memory (size scales linearly) 

 Shared vs. distributed directory 

 

 Software-emulation 

 Distributed shared memory (DSM) 

 Emulate cache coherence in software (e.g., TreadMarks) 

 Often on a per-page basis, utilizes memory virtualization and paging 
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Open Problems (for projects or theses) 

 Tune algorithms to cache-coherence schemes 

 What is the optimal parallel algorithm for a given scheme? 

 Parameterize for an architecture 

 

 Measure and classify hardware  

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER 
Relaxed Memory Models” and have fun! 

 RDMA consistency is barely understood! 

 GPU memories are not well understood! 

Huge potential for  new insights! 

 

 Can we program (easily) without cache coherence? 

 How to fix the problems with inconsistent values? 

 Compiler support (issues with arrays)? 

 
42 



Case Study: Intel Xeon Phi 
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Communication? 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 
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Local read: RL= 8.6 ns 
Remote read RR = 235 ns 

Invalid read RI=278 ns 

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system” 
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 Prediction for both in E state: 479 ns 

 Measurement: 497 ns (O=18) 

 

Single-Line Ping Pong 
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 More complex due to prefetch 

 

Multi-Line Ping Pong 

Asymptotic Fetch 
Latency for each cache 

line (optimal 
prefetch!) 

Number 
of CLs 

Startup 
overhead 

Amortization of 
startup 
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 E state: 

 o=76 ns 

 q=1,521ns 

 p=1,096ns 

 I state: 

 o=95ns 

 q=2,750ns 

 p=2,017ns 

Multi-Line Ping Pong 
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 E state: 

 a=0ns 

 b=320ns 

 c=56.2ns 

 

 

 

DTD Contention  
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