Design of Parallel and High-Performance

Computing
Fall 2014
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Piischel
TAs: Timo Schneider, Arnamoy Bhattacharyya

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Peer Quiz

= Instructions:
= Pick some partners (locally) and discuss each question for 3 minutes
= We then select a random student (team) to answer the question

= What is the top500 list? Discuss its usefulness (pro/con)!
= What should we change?

= What is the main limitation in single-core scaling today?
= j.e., why do cores not become much faster?
= What will be the next big problem/limit?

= What is the difference between UMA and NUMA architectures?
= Discuss which architecture is more scalable!
m Describe the difference between shared memory, partitioned global
address space, and distributed memory programming

®* Name at least one practical example programming system for each
= Why do all of these models co-exist?

DPHPC Overview

DPHPC
» locality parallelism
@ s
=} e
-g -caches vector ISA shared memory distributed memory
£ - memory hierarchy
8
o3 -
@ distributed
g,- algorithms
s locks group commu-
8 lock free nications
wait free
linearizability
| Amdahl's and Gustafson's law |
T 1

= 1 memory 11 PRAM 11 LogP |
el T T L 1
g o-P

1/0 complexity

balance principles | balance principles Il

Little's Law scheduling

Goals of this lecture

= Memory Trends
m Cache Coherence

= Memory Consistency

Memory — CPU gap widens

opcpis

m Measure processor speed as “throughput” «~- s

spnopss

= FLOPS/s, IOPS/s, ... o

= Moore’s law - “60% growth per year

Tt

100Gy My Laptop (70 Gllops)
s {78 Gleptthy.
oG
My 1Pad2 & iPhone 45 (1.02 Gflopis)
+Glaprs it
1001y Ml

Source: Jack Dongarra

m Today’s architectures
4iny banduidth —= HUGE FOTTLENESK
= POWER7: 256 GFLOP/s — 128 GB/s memory bandwidth **f
= BG/Q: 205 GFLOPS/s —42.6 GB/s memory bandwidth o[oy cpees

TRAN Speed —

= Trend: memory performance grows 10% per year

Ferformanoe
5

0.1 P S
1975 1986 1985 1390 1995 2600 2085 2018
Year

Source: John Mc.Calpin

Issues

= How to measure bandwidth?

= Data sheet (often peak performance, may include overheads)
Frequency times bus width: 51 GiB/s

= Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?

= Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

= How to measure Latency?
= Data sheet (often optimistic, or not provided)
<100ns
= Random pointer chase
110 ns with one core, 258 ns with 32 cores!

Conjecture: Buffering is a must!

m Write Buffers
= Delayed write back saves memory bandwidth
= Data is often overwritten or re-read

m Caching
= Directory of recently used locations
= Stored as blocks (cache lines)

Cache Coherence

u Different caches may have a copy of the same memory location!

m Cache coherence
= Manages existence of multiple copies

m Cache architectures
= Multi level caches
= Multi-port vs. single port
= Shared vs. private (partitioned)
® Inclusive vs. exclusive
= Write back vs. write through
= Victim cache to reduce conflict misses

Exclusive Hierarchical Caches

Shared Hierarchical Caches

Shared Hierarchical Caches with MT

HT, B HT, HT, | HT,

Caching Strategies (repeat)

= Remember:
= Write Back?
= Write Through?

m Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation (updates are eventually visible to all readers)
= Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (later)

Write Through Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU, reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1
* stores X=1in its cache
I * stores X=1in memory

(\4. CPU, reads X from its cache
Memory ¢ loads X=0 from its cache

Incoherent value for X on CPU,

CPU, may wait for update!

Requires write propagation!

Write Back Cache

CPU, reads X from memory
* loads X=0 into its cache
CPU, reads X from memory
* loads X=0 into its cache
CPU, writes X=1
* stores X=1in its cache
CPU, writes X =2

¢ stores X=2 in its cache

Memory 5. CPU, writes back cache line
* stores X=2 in in memory

6. CPU, writes back cache line

* stores X=1in memory
Later store X=2 from CPU, lost

js
Lin

Requires write serialization!

A simple (?) example

struct twoint {
int a;
intb;

}

m Assume C99:

= Two threads:
= |nitially: a=b=0
® Thread 0: write 1toa
®* Thread 1: write 1to b

m Assume non-coherent write back cache
= What may end up in main memory?

Cache Coherence Protocol

m Programmer can hardly deal with unpredictable behavior!

m Cache controller maintains data integrity
= All writes to different locations are visible

Fundamental Mechanisms

= Snooping
= Shared bus or (broadcast) network
= Cache controller “snoops” all transactions
®= Monitors and changes the state of the cache’s data

m Directory-based
= Record information necessary to maintain coherence
= E.g., owner and state of a line etc.

Cache Coherence Parameters

m Concerns/Goals
= Performance
= |mplementation cost (chip space)
= Correctness
= (Memory model side effects)

m Issues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
= Precision of block sharing (per block, per sub-block?)
= Block size (cache line size?)

An Engineering Approach: Empirical start

m Problem 1: stale reads
= Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

= Problem 2: lost update

= Incorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data

= Solution:
Disallow more than one modified copy

Cache Coherence Approaches

= Based on invalidation

= Broadcast all coherency traffic (writes to shared lines) to all caches
= Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches
= Simple implementation for bus-based systems
= Works at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

= Based on explicit updates
= Central directory for cache line ownership
= Local write updates copies in remote caches
Can update all CPUs at once
Multiple writes cause multiple updates (more traffic)
= Scalable but more complex/expensive
E.g., Intel Xeon Phi

Invalidation vs. update

= Invalidation-based:
= Only write misses hit the bus (works with write-back caches)
= Subsequent writes to the same cache line are local
= - Good for multiple writes to the same line (in the same cache)

= Update-based:
= All sharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often
= Supports producer-consumer pattern well
= Many (local) writes may waste bandwidth!

m Hybrid forms are possible!

MESI Cache Coherence

= Most common hardware implementation of discussed requirements
aka. “lllinois protocol”

Each line has one of the following states (in a cache):

= Modified (M)
= Local copy has been modified, no copies in other caches
= Memory is stale

m Exclusive (E)
® No copies in other caches
= Memory is up to date

m Shared (S)
= Unmodified copies may exist in other caches
= Memory is up to date

= Invalid (1)
= Lineis notin cache

Terminology

m Clean line:

= Content of cache line and main memory is identical (also: memory is up to
date)

® Can be evicted without write-back
m Dirty line:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details

= Bus transaction:
= Asignal on the bus that can be observed by all caches
= Usually blocking

m Local read/write:
= Aload/store operation originating at a core connected to the cache

Transitions in response to local reads

m StateisM
= No bus transaction

m StateisE
= No bus transaction

m StateisS
= No bus transaction

m Stateis|
= Generate bus read request (BusRd)
May force other cache operations (see later)
= Other cache(s) signal “sharing” if they hold a copy
= |f shared was signaled, go to state S
= Otherwise, go to state E

m After update: return read value

Transitions in response to local writes

m StateisM
= No bus transaction

m StateisE
= No bus transaction
" GotostateM

m StateisS
® Line already local & clean
®* There may be other copies
= Generate bus read request for upgrade to exclusive (BusRdX*)
" GotostateM

m Stateis|
= Generate bus read request for exclusive ownership (BusRdX)
" GotostateM

Transitions in response to snooped BusRd

m StateisM
= Write cache line back to main memory
= Signal “shared”
" Gotostate$S

m StateisE

= Signal “shared”

" Go to state S and signal “shared”
m StateisS

= Signal “shared”
m Stateis|

" |Ignore

Transitions in response to snooped BusRdX

m StateisM
= Write cache line back to memory
= Discard lineand goto

m StateisE
= Discard lineand gotol

m StateisS
= Discard lineandgotol

m Stateis|
" |gnore

m BusRdX* is handled like BusRdX!

MESI State Diagram (FSM)

Small Exercise

M - : N u Initially: all in | state
AYAN
PriRdy
- \ \ . A
& [acion | P state | Pastate | P3state | Bus acton | Datarom |
\ P1 reads x
Miﬂd’huﬂ\
— |\ P2 reads x
E ~< \
Duahax| Busax AN | P1 writes x
PrRd \
Busfa- ll\ I P1 reads x
W \ | P3 writes x
V. |
- I
DuiRdX!rmh
~ /
P;Rdi< \ J /
1y
BusRdX/flush / /
ARy
e’
Small Exercise Optimizations?

m Initially: all in | state

[acion | P stste | P2 tate | astate | busaction | atarom
|

Plreadsx E | BusRd Memory
P2readsx S S | BusRd Memory
Plwritesx M | | BusRdX* Cache
P1 reads x M | | - Cache

P3 writesx | | M BusRdX Memory

m Class question: what could be optimized in the MESI protocol to
make a system faster?

Related Protocols: MOESI (AMD)

m Extended MESI protocol

Cache-to-cache transfer of modified cache lines
= Cache in M or O state always transfers cache line to requesting cache

= No need to contact (slow) main memory

= Avoids write back when another process accesses cache line
®* Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!

m Broadcasts updates in O state
= Additional load on the bus

MOESI State Diagram

Read Hit

Reset
INVD, WBINVD

Probe Wite Ht

Read Miss, Exclusive

Probe Read Hit Wite Ht

Probe Read Hit

Source: AMD64 Architecture Programmer’s Manual

Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)

= Owner (0): Modified Shared
= Exclusive right to make changes
= Other S copies may exist (“dirty sharing”)
= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):
= Same as MESI (one local copy, up to date memory)

(oY
= Shared (S): N \ @\: :
= Unmodified copy may exist in other caches

= Memory is up to date unless an O copy exists in another cache

= Invalid (1):
= Same as MESI

\) ’/// B

Related Protocols: MESIF (Intel)

= Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):
= Same as MESI (one local copy, up to date memory)

m Shared (S):
®* Unmodified copy may exist in other caches
= Memory is up to date unless an O copy exists in another cache

= Invalid (1):
= Same as MESI
m Forward (F):
= Special form of S state, other caches may have line in S

® Most recent requester of line is in F state
= Cache acts as responder for requests to this line

Multi-level caches

m Most systems have multi-level caches
= Problem: only “last level cache” is connected to bus or network
= Snoop requests are relevant for inner-levels of cache (L1)
= Modifications of L1 data may not be visible at L2 (and thus the bus)

= L1/L2 modifications
= On BusRd check if line is in M state in L1
It may be in EorSin L2!
= On BusRdX(*) send invalidations to L1
= Everything else can be handled in L2

m If L1 is write through, L2 could “remember” state of L1 cache line
= May increase traffic though

Directory-based cache coherence

= Snooping does not scale
® Bus transactions must be globally visible
= Implies broadcast

m Typical solution: tree-based (hierarchical) snooping
= Root becomes a bottleneck

m Directory-based schemes are more scalable
= Directory (entry for each CL) keeps track of all owning caches
® Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI ...

Basic Scheme

System with N processors P,

m For each memory block (size: cache
line) maintain a directory entry

= N presence bits
= Setif block in cache of P;
= 1dirty bit

m For each cache block
= 1 valid and 1 dirty bit

Presence bits Dirty bit m First proposed by Censier and
Feautrier (1978)

Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bit (in directory) is off
= Read from main memory
= Set presenceli]
= Supply data to reader

m If dirty bitis on
* Recall cache line from P; (determine by presence[])
= Update memory
= Unset dirty bit, block shared
= Set presenceli]
= Supply data to reader

Directory-based CC: Write miss

m P, intends to write, misses

m If dirty bit (in directory) is off
* Send invalidations to all processors P; with presencel[j] turned on
= Unset presence bit for all processors
= Set dirty bit
= Set presenceli], owner P,

m If dirty bitis on
* Recall cache line from owner P;
®= Update memory
= Unset presencelj]
= Set presencel[i], dirty bit remains set
= Supply data to writer

Discussion

m Scaling of memory bandwidth
= No centralized memory

= Directory-based approaches scale with restrictions
= Require presence bit for each cache
= Number of bits determined at design time
= Directory requires memory (size scales linearly)
= Shared vs. distributed directory

m Software-emulation
= Distributed shared memory (DSM)
= Emulate cache coherence in software (e.g., TreadMarks)
= Often on a per-page basis, utilizes memory virtualization and paging

Open Problems (for projects or theses)

m Tune algorithms to cache-coherence schemes
= What is the optimal parallel algorithm for a given scheme?
= Parameterize for an architecture

m Measure and classify hardware
= Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!
= RDMA consistency is barely understood!
= GPU memories are not well understood!
Huge potential for new insights!

= Can we program (easily) without cache coherence?
= How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?

42

|
eooRsj«—>{ | [T | |

e R

\
—> >
\ 4
A
<« |«

«—>{Goors|

[core | [core | eee [CORE | [coRE | .

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi , HPDC’13

44

T, RFO T., RFO
Ty, read Ty, read
(T, read)

R

(T, evict)
L.

TTET

(* b
N =
.
Invalid read R=278 ns U (T reao) [

Local read: R;= 8.6 ns
Remote read Ry =235 ns

45
Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

Single-Line Ping Pong
Thread 0

start timer

T = RL,SS + RR,S, + RR,M + Q,,//'ﬁ/RL +2Rg +0O

m Prediction for both in E state: 479 ns
= Measurement: 497 ns (0=18)

46

Multi-Line Ping Pong

= More complex due to prefetch

Amortization of
startup

Asymptotic Fetch
Latency for each cache
line (optimal
prefetch!)

Startup
overhead

47

Multi-Line Ping Pong

p 0 8
In=0-N+q—— ~| © average
N — model T
m E state: * rel. error =3
= 0=76ns 39 o
= g=1,521ns 3
=
= p=1,096ns % o
— ©v
m | state:
R%
= 0=95ns
" g=2,750ns o T % v #lo
" p=2,017ns 64 128 '~ 512 '~ 2048 = 8192

Size (Bytes)

Relative Error (%)

48

DTD Contention ®
8
21| © average o
model '
woll * el error L8~
—~ |8
£l 5
a »° T : =
() =c-np+b— —— 3 S a
Nih o o g
© Y ¥ =
m Estate: | %
= a=0ns o X
* b=320ns « 2
" ¢=56.2ns : :
o * * *lo
1 3 7 15 31 59
Number of Threads

49

