
Design of Parallel and High-Performance
Computing
Fall 2014
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Püschel

TAs: Timo Schneider, Arnamoy Bhattacharyya

Peer Quiz

 Instructions:

 Pick some partners (locally) and discuss each question for 3 minutes

 We then select a random student (team) to answer the question

 What is the top500 list? Discuss its usefulness (pro/con)!

 What should we change?

 What is the main limitation in single-core scaling today?

 i.e., why do cores not become much faster?

 What will be the next big problem/limit?

 What is the difference between UMA and NUMA architectures?

 Discuss which architecture is more scalable!

 Describe the difference between shared memory, partitioned global
address space, and distributed memory programming

 Name at least one practical example programming system for each

 Why do all of these models co-exist?

2

DPHPC Overview

3

Goals of this lecture

 Memory Trends

 Cache Coherence

 Memory Consistency

4

Memory – CPU gap widens

 Measure processor speed as “throughput”

 FLOPS/s, IOPS/s, …

 Moore’s law - ~60% growth per year

 Today’s architectures

 POWER7: 256 GFLOP/s – 128 GB/s memory bandwidth

 BG/Q: 205 GFLOPS/s – 42.6 GB/s memory bandwidth

 Trend: memory performance grows 10% per year

5

Source: Jack Dongarra

Source: John Mc.Calpin

Issues

 How to measure bandwidth?

 Data sheet (often peak performance, may include overheads)

Frequency times bus width: 51 GiB/s

 Microbenchmark performance

Stride 1 access (32 MiB): 32 GiB/s

Random access (8 B out of 32 MiB): 241 MiB/s

Why?

 Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

 How to measure Latency?

 Data sheet (often optimistic, or not provided)

<100ns

 Random pointer chase

110 ns with one core, 258 ns with 32 cores!

 6

Conjecture: Buffering is a must!

 Write Buffers

 Delayed write back saves memory bandwidth

 Data is often overwritten or re-read

 Caching

 Directory of recently used locations

 Stored as blocks (cache lines)

7

Cache Coherence

 Different caches may have a copy of the same memory location!

 Cache coherence

 Manages existence of multiple copies

 Cache architectures

 Multi level caches

 Multi-port vs. single port

 Shared vs. private (partitioned)

 Inclusive vs. exclusive

 Write back vs. write through

 Victim cache to reduce conflict misses

 …

8

Exclusive Hierarchical Caches

9

Shared Hierarchical Caches

10

Shared Hierarchical Caches with MT

11

Caching Strategies (repeat)

 Remember:

 Write Back?

 Write Through?

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation (updates are eventually visible to all readers)

 Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (later)

12

Write Through Cache

13

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

Write Back Cache

14

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later store X=2 from CPU1 lost

 Requires write serialization!

A simple (?) example

 Assume C99:

 Two threads:

 Initially: a=b=0

 Thread 0: write 1 to a

 Thread 1: write 1 to b

 Assume non-coherent write back cache

 What may end up in main memory?

15

struct twoint {

 int a;

 int b;

}

Cache Coherence Protocol

 Programmer can hardly deal with unpredictable behavior!

 Cache controller maintains data integrity

 All writes to different locations are visible

 Snooping

 Shared bus or (broadcast) network

 Cache controller “snoops” all transactions

 Monitors and changes the state of the cache’s data

 Directory-based

 Record information necessary to maintain coherence

 E.g., owner and state of a line etc.

16

Fundamental Mechanisms

Cache Coherence Parameters

 Concerns/Goals

 Performance

 Implementation cost (chip space)

 Correctness

 (Memory model side effects)

 Issues

 Detection (when does a controller need to act)

 Enforcement (how does a controller guarantee coherence)

 Precision of block sharing (per block, per sub-block?)

 Block size (cache line size?)

17

An Engineering Approach: Empirical start

 Problem 1: stale reads

 Cache 1 holds value that was already modified in cache 2

 Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update

 Incorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data

 Solution:

Disallow more than one modified copy

18

Cache Coherence Approaches

 Based on invalidation

 Broadcast all coherency traffic (writes to shared lines) to all caches

 Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches

 Simple implementation for bus-based systems

 Works at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

 Based on explicit updates

 Central directory for cache line ownership

 Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)

 Scalable but more complex/expensive

E.g., Intel Xeon Phi

 19

Source: Intel

Invalidation vs. update

 Invalidation-based:

 Only write misses hit the bus (works with write-back caches)

 Subsequent writes to the same cache line are local

  Good for multiple writes to the same line (in the same cache)

 Update-based:

 All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often

 Supports producer-consumer pattern well

 Many (local) writes may waste bandwidth!

 Hybrid forms are possible!

20

 Most common hardware implementation of discussed requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

 Modified (M)

 Local copy has been modified, no copies in other caches

 Memory is stale

 Exclusive (E)

 No copies in other caches

 Memory is up to date

 Shared (S)

 Unmodified copies may exist in other caches

 Memory is up to date

 Invalid (I)

 Line is not in cache

MESI Cache Coherence

21

Terminology

 Clean line:

 Content of cache line and main memory is identical (also: memory is up to
date)

 Can be evicted without write-back

 Dirty line:

 Content of cache line and main memory differ (also: memory is stale)

 Needs to be written back eventually

Time depends on protocol details

 Bus transaction:

 A signal on the bus that can be observed by all caches

 Usually blocking

 Local read/write:

 A load/store operation originating at a core connected to the cache

22

Transitions in response to local reads

 State is M

 No bus transaction

 State is E

 No bus transaction

 State is S

 No bus transaction

 State is I

 Generate bus read request (BusRd)

May force other cache operations (see later)

 Other cache(s) signal “sharing” if they hold a copy

 If shared was signaled, go to state S

 Otherwise, go to state E

 After update: return read value

23

Transitions in response to local writes

 State is M

 No bus transaction

 State is E

 No bus transaction

 Go to state M

 State is S

 Line already local & clean

 There may be other copies

 Generate bus read request for upgrade to exclusive (BusRdX*)

 Go to state M

 State is I

 Generate bus read request for exclusive ownership (BusRdX)

 Go to state M

24

Transitions in response to snooped BusRd

 State is M

 Write cache line back to main memory

 Signal “shared”

 Go to state S

 State is E

 Signal “shared”

 Go to state S and signal “shared”

 State is S

 Signal “shared”

 State is I

 Ignore

25

Transitions in response to snooped BusRdX

 State is M

 Write cache line back to memory

 Discard line and go to I

 State is E

 Discard line and go to I

 State is S

 Discard line and go to I

 State is I

 Ignore

 BusRdX* is handled like BusRdX!

26

MESI State Diagram (FSM)

27 Source: Wikipedia

Small Exercise

 Initially: all in I state

28

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

Small Exercise

 Initially: all in I state

29

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Memory

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory

Optimizations?

 Class question: what could be optimized in the MESI protocol to
make a system faster?

30

Related Protocols: MOESI (AMD)

 Extended MESI protocol

 Cache-to-cache transfer of modified cache lines

 Cache in M or O state always transfers cache line to requesting cache

 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line

 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

 Broadcasts updates in O state

 Additional load on the bus

31

MOESI State Diagram

32 Source: AMD64 Architecture Programmer’s Manual

Related Protocols: MOESI (AMD)

 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared

 Exclusive right to make changes

 Other S copies may exist (“dirty sharing”)

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI
33

Related Protocols: MESIF (Intel)

 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI

 Forward (F):

 Special form of S state, other caches may have line in S

 Most recent requester of line is in F state

 Cache acts as responder for requests to this line
34

Multi-level caches

 Most systems have multi-level caches

 Problem: only “last level cache” is connected to bus or network

 Snoop requests are relevant for inner-levels of cache (L1)

 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications

 On BusRd check if line is in M state in L1

It may be in E or S in L2!

 On BusRdX(*) send invalidations to L1

 Everything else can be handled in L2

 If L1 is write through, L2 could “remember” state of L1 cache line

 May increase traffic though

35

Directory-based cache coherence

 Snooping does not scale

 Bus transactions must be globally visible

 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping

 Root becomes a bottleneck

 Directory-based schemes are more scalable

 Directory (entry for each CL) keeps track of all owning caches

 Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

36

© Markus Püschel
Computer Science

Basic Scheme

 System with N processors Pi

 For each memory block (size: cache
line) maintain a directory entry

 N presence bits

 Set if block in cache of Pi

 1 dirty bit

 For each cache block

 1 valid and 1 dirty bit

 First proposed by Censier and
Feautrier (1978)

 37

Directory-based CC: Read miss

 Pi intends to read, misses

 If dirty bit (in directory) is off

 Read from main memory

 Set presence[i]

 Supply data to reader

 If dirty bit is on

 Recall cache line from Pj (determine by presence[])

 Update memory

 Unset dirty bit, block shared

 Set presence[i]

 Supply data to reader

38

Directory-based CC: Write miss

 Pi intends to write, misses

 If dirty bit (in directory) is off

 Send invalidations to all processors Pj with presence[j] turned on

 Unset presence bit for all processors

 Set dirty bit

 Set presence[i], owner Pi

 If dirty bit is on

 Recall cache line from owner Pj

 Update memory

 Unset presence[j]

 Set presence[i], dirty bit remains set

 Supply data to writer

39

Discussion

 Scaling of memory bandwidth

 No centralized memory

 Directory-based approaches scale with restrictions

 Require presence bit for each cache

 Number of bits determined at design time

 Directory requires memory (size scales linearly)

 Shared vs. distributed directory

 Software-emulation

 Distributed shared memory (DSM)

 Emulate cache coherence in software (e.g., TreadMarks)

 Often on a per-page basis, utilizes memory virtualization and paging

41

Open Problems (for projects or theses)

 Tune algorithms to cache-coherence schemes

 What is the optimal parallel algorithm for a given scheme?

 Parameterize for an architecture

 Measure and classify hardware

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!

 RDMA consistency is barely understood!

 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?

 How to fix the problems with inconsistent values?

 Compiler support (issues with arrays)?

42

Case Study: Intel Xeon Phi

43

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
44

Local read: RL= 8.6 ns
Remote read RR = 235 ns

Invalid read RI=278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”
45

 Prediction for both in E state: 479 ns

 Measurement: 497 ns (O=18)

Single-Line Ping Pong

46

 More complex due to prefetch

Multi-Line Ping Pong

Asymptotic Fetch
Latency for each cache

line (optimal
prefetch!)

Number
of CLs

Startup
overhead

Amortization of
startup

47

 E state:

 o=76 ns

 q=1,521ns

 p=1,096ns

 I state:

 o=95ns

 q=2,750ns

 p=2,017ns

Multi-Line Ping Pong

48

 E state:

 a=0ns

 b=320ns

 c=56.2ns

DTD Contention 

49

