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Peer Quiz 

 Instructions:  

 Pick some partners (locally) and discuss each question for 3 minutes 

 We then select a random student (team) to answer the question 

 What is the top500 list? Discuss its usefulness (pro/con)! 

 What should we change? 

 What is the main limitation in single-core scaling today? 

 i.e., why do cores not become much faster? 

 What will be the next big problem/limit? 

 What is the difference between UMA and NUMA architectures? 

 Discuss which architecture is more scalable! 

 Describe the difference between shared memory, partitioned global 
address space, and distributed memory programming 

 Name at least one practical example programming system for each 

 Why do all of these models co-exist? 
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DPHPC Overview 
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Goals of this lecture 

 Memory Trends 

 

 Cache Coherence 

 

 Memory Consistency 
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Memory – CPU gap widens 

 Measure processor speed as “throughput” 

 FLOPS/s, IOPS/s, … 

 Moore’s law - ~60% growth per year 

 

 

 

 

 Today’s architectures 

 POWER7: 256 GFLOP/s – 128 GB/s memory bandwidth 

 BG/Q: 205 GFLOPS/s – 42.6 GB/s memory bandwidth 

 Trend: memory performance grows 10% per year 
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Source: Jack Dongarra 

Source: John Mc.Calpin 

Issues 

 How to measure bandwidth? 

 Data sheet (often peak performance, may include overheads) 

Frequency times bus width: 51 GiB/s 

 Microbenchmark performance 

Stride 1 access (32 MiB): 32 GiB/s 

Random access (8 B out of 32 MiB): 241 MiB/s 

Why? 

 Application performance  

As observed (performance counters) 

Somewhere in between stride 1 and random access 

 How to measure Latency? 

 Data sheet (often optimistic, or not provided) 

<100ns 

 Random pointer chase 

110 ns with one core, 258 ns with 32 cores! 
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Conjecture: Buffering is a must! 

 Write Buffers 

 Delayed write back saves memory bandwidth 

 Data is often overwritten or re-read 

 Caching 

 Directory of recently used locations 

 Stored as blocks (cache lines) 
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Cache Coherence 

 Different caches may have a copy of the same memory location! 

 Cache coherence 

 Manages existence of multiple copies 

 Cache architectures 

 Multi level caches 

 Multi-port vs. single port 

 Shared vs. private (partitioned) 

 Inclusive vs. exclusive 

 Write back vs. write through 

 Victim cache to reduce conflict misses 

 … 
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Exclusive Hierarchical Caches 
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Shared Hierarchical Caches 
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Shared Hierarchical Caches with MT 
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Caching Strategies (repeat) 

 Remember: 

 Write Back? 

 Write Through? 

 

 Cache coherence requirements 

A memory system is coherent if it guarantees the following: 

 Write propagation (updates are eventually visible to all readers) 

 Write serialization (writes to the same location must be observed in order) 

Everything else: memory model issues (later) 
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Write Through Cache 
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1. CPU0 reads X from memory 
• loads X=0 into its cache 

2. CPU1 reads X from memory 
• loads X=0 into its cache 

3. CPU0 writes X=1 
• stores X=1 in its cache 
• stores X=1 in memory 

4. CPU1 reads X from its cache 
• loads X=0 from its cache 
Incoherent value for X on CPU1 

 
CPU1 may wait for update! 

Requires write propagation! 

Write Back Cache 
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1. CPU0 reads X from memory 
• loads X=0 into its cache 

2. CPU1 reads X from memory 
• loads X=0 into its cache 

3. CPU0 writes X=1 
• stores X=1 in its cache 

4. CPU1 writes X =2  
• stores X=2 in its cache 

5. CPU1 writes back cache line 
• stores X=2 in in memory 

6. CPU0 writes back cache line 
• stores X=1 in memory 
Later store X=2 from CPU1 lost 

 
 Requires write serialization! 

A simple (?) example 

 Assume C99: 

 

 

 Two threads: 

 Initially: a=b=0 

 Thread 0: write 1 to a 

 Thread 1: write 1 to b 

 

 Assume non-coherent write back cache 

 What may end up in main memory? 
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struct twoint { 

   int a; 

   int b; 

} 

Cache Coherence Protocol 

 Programmer can hardly deal with unpredictable behavior! 

 Cache controller maintains data integrity 

 All writes to different locations are visible 

 

 

 Snooping 

 Shared bus or (broadcast) network  

 Cache controller “snoops” all transactions 

 Monitors and changes the state of the cache’s data 

 Directory-based  

 Record information necessary to maintain coherence 

 E.g., owner and state of a line etc. 
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Fundamental Mechanisms 

Cache Coherence Parameters 

 Concerns/Goals 

 Performance 

 Implementation cost (chip space) 

 Correctness 

 (Memory model side effects) 

 

 Issues 

 Detection (when does a controller need to act) 

 Enforcement (how does a controller guarantee coherence) 

 Precision of block sharing (per block, per sub-block?) 

 Block size (cache line size?) 
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An Engineering Approach: Empirical start 

 Problem 1: stale reads 

 Cache 1 holds value that was already modified in cache 2 

 Solution: 

Disallow this state 

Invalidate all remote copies before allowing a write to complete 

 

 Problem 2: lost update 

 Incorrect write back of modified line writes main memory in different 
order from the order of the write operations or overwrites neighboring 
data 

 Solution: 

Disallow more than one modified copy 
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Cache Coherence Approaches 

 Based on invalidation 

 Broadcast all coherency traffic (writes to shared lines) to all caches 

 Each cache snoops 

Invalidate lines written by other CPUs 

Signal sharing for cache lines in local cache to other caches 

 Simple implementation for bus-based systems 

 Works at small scale, challenging at large-scale 

E.g., Intel Sandy Bridge 

 Based on explicit updates 

 Central directory for cache line ownership 

 Local write updates copies in remote caches 

Can update all CPUs at once 

Multiple writes cause multiple updates (more traffic) 

 Scalable but more complex/expensive 

E.g., Intel Xeon Phi 
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Source: Intel 

Invalidation vs. update 

 Invalidation-based: 

 Only write misses hit the bus (works with write-back caches) 

 Subsequent writes to the same cache line are local 

  Good for multiple writes to the same line (in the same cache) 

 

 Update-based: 

 All sharers continue to hit cache line after one core writes 

Implicit assumption: shared lines are accessed often 

 Supports producer-consumer pattern well 

 Many (local) writes may waste bandwidth! 

 

 Hybrid forms are possible! 
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 Most common hardware implementation of discussed requirements 

aka. “Illinois protocol” 

Each line has one of the following states (in a cache): 

 Modified (M) 

 Local copy has been modified, no copies in other caches 

 Memory is stale 

 Exclusive (E) 

 No copies in other caches 

 Memory is up to date 

 Shared (S) 

 Unmodified copies may exist in other caches  

 Memory is up to date 

 Invalid (I) 

 Line is not in cache 

 

 

MESI Cache Coherence 
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Terminology 

 Clean line: 

 Content of cache line and main memory is identical (also: memory is up to 
date) 

 Can be evicted without write-back 

 Dirty line: 

 Content of cache line and main memory differ (also: memory is stale) 

 Needs to be written back eventually 

Time depends on protocol details 

 Bus transaction: 

 A signal on the bus that can be observed by all caches 

 Usually blocking 

 Local read/write: 

 A load/store operation originating at a core connected to the cache 
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Transitions in response to local reads 

 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 State is S 

 No bus transaction 

 State is I 

 Generate bus read request (BusRd) 

May force other cache operations (see later) 

 Other cache(s) signal “sharing” if they hold a copy 

 If shared was signaled, go to state S 

 Otherwise, go to state E 

 After update: return read value 
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Transitions in response to local writes 

 State is M 

 No bus transaction 

 State is E 

 No bus transaction 

 Go to state M 

 State is S 

 Line already local & clean 

 There may be other copies 

 Generate bus read request for upgrade to exclusive (BusRdX*) 

 Go to state M 

 State is I 

 Generate bus read request for exclusive ownership (BusRdX) 

 Go to state M 
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Transitions in response to snooped BusRd  

 State is M 

 Write cache line back to main memory 

 Signal “shared” 

 Go to state S  

 State is E 

 Signal “shared” 

 Go to state S and signal “shared” 

 State is S 

 Signal “shared” 

 State is I 

 Ignore 
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Transitions in response to snooped BusRdX  

 State is M 

 Write cache line back to memory 

 Discard line and go to I 

 State is E 

 Discard line and go to I 

 State is S 

 Discard line and go to I 

 State is I 

 Ignore 

 

 BusRdX* is handled like BusRdX! 
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MESI State Diagram (FSM) 

27 Source: Wikipedia 

Small Exercise 

 Initially: all in I state 
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Action P1 state P2 state P3 state Bus action Data from 

P1 reads x 

P2 reads x 

P1 writes x 

P1 reads x 

P3 writes x 

Small Exercise 

 Initially: all in I state 
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Action P1 state P2 state P3 state Bus action Data from 

P1 reads x E I I BusRd Memory 

P2 reads x S S I BusRd Memory 

P1 writes x M I I BusRdX* Cache 

P1 reads x M I I - Cache 

P3 writes x I I M BusRdX Memory 

Optimizations? 

 Class question: what could be optimized in the MESI protocol to 
make a system faster? 
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Related Protocols: MOESI (AMD) 

 Extended MESI protocol 

 Cache-to-cache transfer of modified cache lines 

 Cache in M or O state always transfers cache line to requesting cache 

 No need to contact (slow) main memory 

 Avoids write back when another process accesses cache line 

 Good when cache-to-cache performance is higher than cache-to-memory 

E.g., shared last level cache! 

 Broadcasts updates in O state 

 Additional load on the bus 
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MOESI State Diagram 

 

32 Source: AMD64 Architecture Programmer’s Manual 

Related Protocols: MOESI (AMD) 

 Modified (M): Modified Exclusive 

 No copies in other caches, local copy dirty 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Owner (O): Modified Shared 

 Exclusive right to make changes 

 Other S copies may exist (“dirty sharing”) 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Exclusive (E): 

 Same as MESI (one local copy, up to date memory) 

 Shared (S): 

 Unmodified copy may exist in other caches 

 Memory is up to date unless an O copy exists in another cache 

 Invalid (I): 

 Same as MESI 
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Related Protocols: MESIF (Intel) 

 Modified (M): Modified Exclusive 

 No copies in other caches, local copy dirty 

 Memory is stale, cache supplies copy (reply to BusRd*) 

 Exclusive (E): 

 Same as MESI (one local copy, up to date memory) 

 Shared (S): 

 Unmodified copy may exist in other caches 

 Memory is up to date unless an O copy exists in another cache 

 Invalid (I): 

 Same as MESI 

 Forward (F): 

 Special form of S state, other caches may have line in S 

 Most recent requester of line is in F state 

 Cache acts as responder for requests to this line 
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Multi-level caches 

 Most systems have multi-level caches 

 Problem: only “last level cache” is connected to bus or network 

 Snoop requests are relevant for inner-levels of cache (L1) 

 Modifications of L1 data may not be visible at L2 (and thus the bus) 

 L1/L2 modifications 

 On BusRd check if line is in M state in L1 

It may be in E or S in L2! 

 On BusRdX(*) send invalidations to L1 

 Everything else can be handled in L2 

 If L1 is write through, L2 could “remember” state of L1 cache line 

 May increase traffic though 
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Directory-based cache coherence 

 Snooping does not scale 

 Bus transactions must be globally visible 

 Implies broadcast 

 Typical solution: tree-based (hierarchical) snooping 

 Root becomes a bottleneck 

 Directory-based schemes are more scalable 

 Directory (entry for each CL) keeps track of all owning caches 

 Point-to-point update to involved processors 

No broadcast 

Can use specialized (high-bandwidth) network, e.g., HT, QPI … 
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© Markus Püschel 
Computer Science 

Basic Scheme 

 System with N processors Pi 

 For each memory block (size: cache 
line) maintain a directory entry 

 N presence bits 

 Set if block in cache of Pi 

 1 dirty bit 

 

 For each cache block 

 1 valid and 1 dirty bit 

 

 First proposed by Censier and 
Feautrier (1978) 
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Directory-based CC: Read miss 

 Pi intends to read, misses  

 

 If dirty bit (in directory) is off 

 Read from main memory 

 Set presence[i] 

 Supply data to reader 

 If dirty bit is on 

 Recall cache line from Pj (determine by presence[]) 

 Update memory 

 Unset dirty bit, block shared 

 Set presence[i] 

 Supply data to reader 
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Directory-based CC: Write miss 

 Pi intends to write, misses  

 

 If dirty bit (in directory) is off 

 Send invalidations to all processors Pj with presence[j] turned on 

 Unset presence bit for all processors 

 Set dirty bit 

 Set presence[i], owner Pi 

 If dirty bit is on 

 Recall cache line from owner Pj 

 Update memory 

 Unset presence[j] 

 Set presence[i], dirty bit remains set 

 Supply data to writer 

39 

Discussion 

 Scaling of memory bandwidth 

 No centralized memory 

 Directory-based approaches scale with restrictions 

 Require presence bit for each cache  

 Number of bits determined at design time 

 Directory requires memory (size scales linearly) 

 Shared vs. distributed directory 

 

 Software-emulation 

 Distributed shared memory (DSM) 

 Emulate cache coherence in software (e.g., TreadMarks) 

 Often on a per-page basis, utilizes memory virtualization and paging 
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Open Problems (for projects or theses) 

 Tune algorithms to cache-coherence schemes 

 What is the optimal parallel algorithm for a given scheme? 

 Parameterize for an architecture 

 

 Measure and classify hardware  

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER 
Relaxed Memory Models” and have fun! 

 RDMA consistency is barely understood! 

 GPU memories are not well understood! 

Huge potential for  new insights! 

 

 Can we program (easily) without cache coherence? 

 How to fix the problems with inconsistent values? 

 Compiler support (issues with arrays)? 

 
42 

Case Study: Intel Xeon Phi 
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Communication? 

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 
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Local read: RL= 8.6 ns 
Remote read RR = 235 ns 

Invalid read RI=278 ns 

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system” 
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 Prediction for both in E state: 479 ns 

 Measurement: 497 ns (O=18) 

 

Single-Line Ping Pong 
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 More complex due to prefetch 

 

Multi-Line Ping Pong 

Asymptotic Fetch 
Latency for each cache 

line (optimal 
prefetch!) 

Number 
of CLs 

Startup 
overhead 

Amortization of 
startup 
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 E state: 

 o=76 ns 

 q=1,521ns 

 p=1,096ns 

 I state: 

 o=95ns 

 q=2,750ns 

 p=2,017ns 

Multi-Line Ping Pong 
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 E state: 

 a=0ns 

 b=320ns 

 c=56.2ns 

 

 

 

DTD Contention  
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