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Summary

Lecture overview

Review: α-β communication cost model

LogP model: short message broadcast

LogGP model: handling long messages

Algorithms for long-message broadcasts

Other types of collective communication

Bulk Synchronous Parallel (BSP) model

PGAS languages / one-sided communication

Communication-avoiding algorithms

Overview and final comments
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α-β Model Point-to-Point Messaging

A simple model for point-to-point messages

The cost of sending a message of size s bytes from one processor to any
other is

α + s · β
The latency (per message) cost is α, while the inverse bandwidth (per
byte) cost is β
What is the cost if the ith processor sends a message of size s to the
(i + 1)th processor for i ∈ [1, p]?

it depends on whether the messages are dependent!

the ’total work’ is p · (α + s · β)

the parallel execution (critical path) cost if the messages are sent
simultaneously is only α + s · β
the parallel execution (critical path) cost if the messages are sent in
sequence is p · (α + s · β)
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α-β Model Small-Message Broadcasts

Small message broadcasts in the α-β model

The cost of a binary tree broadcast of a message of size s is

2(log2(p+1)− 1) · (α + s · β)

The cost of a binomial tree broadcast of a message of size s is

log2(p+1) · (α + s · β)
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LogP Model Point-to-Point Messaging

The LogP model

The α-β model is simplistic in its representation of a point-to-point
message

assumes both sender and receiver block until completion

precludes overlap between multiple messages or between computation
and communication

The LogP model (Culler et al. 1996) enables modelling of overlap for the
transfer of a fixed-size message

L – network latency cost (processor not occupied)

o – sender/receiver sequential messaging overhead (processor
occupied)

g – inverse injection rate, i.e. gap between messages (processor not
occupied)

P – number of processors
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LogP Model Point-to-Point Messaging

Messaging in the LogP model
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LogP Model Small-Message Broadcasts

Small-message broadcasts in the LogP model

Same idea as binomial tree, forward message as soon as it is received, keep
forwarding until all nodes obtain it (Karp et al. 1993)
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LogP Model LogGP Extension

The LogGP model

The parameter g in the LogP model is associated with an implicit packet
size

this injection rate implies a fixed-sized packet can be sent anywhere
after a time interval of g

modern computer networks do not have a small fixed packet size and
achieve higher bandwidth for large messages

The LogGP model (Alexandrov et al. 1997) introduces another bandwidth
parameter G , which dictates the bandwidth achieved by large
point-to-point messages

g – gap; minimum time interval between consecutive message
transmissions

G – Gap per byte; time per byte for a long message
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LogP Model LogGP Extension

The LogGP model

Diagram taken from: Alexandrov, A., Ionescu, M. F., Schauser, K. E., and Scheiman, C. LogGP: incorporating long messages

into the LogP model–one step closer towards a realistic model for parallel computation. ACM SPAA, July 1995.
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Collectives Protocols for Large Messages Large-Message Broadcasts

Large-message broadcasts

Lets now consider broadcasts of a message of a large size s (we will
assume s ≥ P)

it is inefficient to send the entire message at once

pipelining the message is critical (recursive halving is good too)

the goal is to get as close to (in the α-β model sense) have a
bandwidth cost of s · β
binomial tree is very bad, root sends message log(p), i.e. the cost is
approximately

log(p) · s · β
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Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast

Send a fixed-size packet to left child then to right child (entire message of size s)

the LogP model has a fixed packet size kLogP associated with g and yields
the cost

TLogP
PBT ≈ log(P) · (L + 3 max(o, g)) + 2(s/kLogP) ·max(o, g)

in the LogGP model we can select a packet size k and obtain the cost

TLogGP
PBT (k) ≈ log(P) · (L + 3 max(o, g) + 2G ·k) + 2(s/k) · (max(o, g) + G ·k)

minimizing the packet size k, TLogGP
PBT (kLogGP

opt ) = mink TLogGP
PBT (k) (via e.g.

differentiation by k) we obtain the optimal packet size

kLogGP
opt =

√
s/ log(P) ·

√
max(o, g)

G

so the best packet size, depends not only on architectural parameters, but
also on dynamic parameters: the number of processors and message size
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Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast contd.

In LogP we obtained

TLogP
PBT ≈ log(P) · (L + 3 max(o, g)) + 2(s/kLogP) ·max(o, g)

In LogGP we obtained,

TLogGP
PBT (k) ≈ log(P) · (L + 3 max(o, g) + 2G · k) + 2(s/k) · (max(o, g) + G · k)

kLogGP
opt =

√
s/ log(P) ·

√
max(o, g)

G

in the α-β model for a packet size of k , we obtain the cost

Tα,β
PBT(k) ≈ 2(log(P) + s/k)(α + k · β)

with a minimal packet size of

kα,βopt =
√

s/ log(P) ·
√
α

β
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Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast conclusions

The LogP model is inflexible, while the LogGP and the α-β models
capture the key input and architectural scaling dependence

Tα,β
PBT(k) ≈ 2(log(P) + s/k)(α + k · β)

kα,βopt =
√

s/ log(P) ·
√
α

β

The minimized cost in the α-β model is

Tα,β
PBT(kα,βopt ) ≈ 2

(
log(P) +

√
s · log(P) ·

√
β

α

)
·
(
α +

√
s

log(P)
·
√
α · β

)

≈ 2 log(P) · α +
√

2s · log(P) ·
√
α · β + 2s · β

Q: Could we get rid of the factor of two constant in the O(s · β) cost?
A: Not so long as the root sends two copies of the whole message...
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Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double Tree (not the Hilton hotel chain, but still fancy)

Note that the leaves of a binary tree, (P − 1)/2 processors, send nothing, while
the internal nodes do all the work

Idea of Double Pipelined Binary Tree: use two binary trees, where every non-root
processor is a leaf in one and an internal node in the other, send half of the
message down each tree

Diagram taken from: Hoefler, Torsten, and Dmitry Moor. ”Energy, Memory, and Runtime Tradeoffs for Implementing Collective

Communication Operations.”
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Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double pipelined binary tree

The cost of the double pipelined binary tree is essentially the same as the
cost of a single pipelined binary tree with half the message size roughly
half the cost of a single pipelined binary tree

TDPBT ≈ 2 log(P) · α +
√

s · log(P) ·
√
α · β + s · β

for a sufficiently large message size (s) this is twice as fast as a single
pipelined binary tree
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Collectives Protocols for Large Messages Other Collectives

Other types of collective communication

We can classify collectives into four categories

One-to-All: Broadcast, Scatter

All-to-One: Reduce, Gather

All-to-One + One-to-All: Allreduce (Reduce+Broadcast), Allgather
(Gather+Broadcast), Reduce-Scatter (Reduce+Scatter), Scan

All-to-All: All-to-all

MPI (Message-Passing Interface) provides all of these as well as variable
size versions (e.g. (All)Gatherv, All-to-allv), see online for specification of
each routine
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Collectives Protocols for Large Messages Other Collectives

Tree collectives

We have demonstrated how (double/pipelined) binary trees and binomial trees
can be used for broadcasts

A reduction may be done via any broadcast tree with the same
communication cost, with reverse data flow

Treduce = Tbroadcast + cost of local reduction work

Scatter is strictly easier than broadcast, pipeline half message to each child in a
binary tree

Tscatter ≈ 2 log(P) · α + s · β

A gather may be done via the reverse of any scatter algorithm:

Tgather = Tscatter

All-to-One + One-to-All collectives can be done via two trees, but is this most
efficient? What about All-to-All collectives?
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allgather (recursive doubling)
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Cost of butterfly Allgather

The butterfly has log(p) levels. The size of the message doubles at each
level until all s elements are gathered, so the total cost is

Tallgather = α · log(p) + β ·
log(p)∑

i=1

s/2i = α · log(p) + β · s

The geometric summation in the cost is typical of butterfly algorithms and
critical to their efficiency

no pipelining necessary to get rid of log(p) factor on bandwidth cost!
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce-Scatter (recursive halving)

Treduce−scatter = Tallgather + cost of local reduction work
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce

Tallreduce = Treduce−scatter + Tallgather
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce: note recursive structure of butterfly

Its possible to do Scan (each processor ends up with a unique value of a
prefix sum rather than the full sum) in a similar fashion, but also with

operator application done additionally during recursive doubling (Allgather)
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Scatter

Question: Which tree is this equivalent to?
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast

ETH Zürich, 9.12.2014, 263-2800-00L Distributed-Memory Models and Algorithms 27/ 54

Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast

Tbroadcast = Tscatter + Tallgather
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Gather

Question: Which other butterfly collective can utilize Gather as a
subroutine?
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather
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Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly All-to-All

Note that the size of the message stays the same at each level

Tall−to−all = α · log(p) + β ·
log(p)∑

i=1

s = α · log(p) + β · s · log(p)

Its possible to do All-to-All in less bandwidth cost (as low as β · s by
sending directly to targets) at the cost of more message (as high as α · p if
sending directly)
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BSP Model Introduction

BSP model definition

The Bulk Synchronous Parallel (BSP) model (Valiant 1990) is a
theoretical execution/cost model for parallel algorithms

execution is subdivided into supersteps, each associated with a global
synchronization

within each superstep each processor can send and receive up to h
messages (called an h-relation)

the cost of sending or receiving h messages of size m is h ·m · ĝ
the total cost of a superstep is the max over all processors at that
superstep

when h = 1 the BSP model is closely related to the α-β model with
β = ĝ and LogGP mode with G = ĝ

we will focus on a variant of BSP with h = p and for consistency refer
to ĝ as β and the cost of a synchronization as α
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BSP Model Introduction

Synchronization vs latency

By picking h = p, we allow a global barrier to execute in the same time as
the point-to-point latency

this abstraction is good if the algorithm’s performance is not expected
to be latency-sensitive

messages become non-blocking, but progress must be guaranteed by
barrier

collectives can be done in linear bandwidth cost with O(1) supersteps

enables high-level algorithm development: how many collective
protocols does the algorithm need to execute?

global barrier may be a barrier of a subset of processors, if BSP is
used recursively
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BSP Model Introduction

Nonblocking communication

The paradigm of sending non-blocking messages then synchronizing later
is sensible

MPI provides non-blocking ’I(send/recv)’ primitives that may be
’Wait’ed on in bulk (these are slightly slower than blocking primitives,
due to buffering)

MPI and other communication frameworks also provide one-sided
messaging primitives which are zero-copy (no buffering) and very
efficient

one-sided communication progress must be guaranteed by a barrier on
all or a subset of processors (or MPI Win Flush between a pair)
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BSP Model Collective Communication

(Reduce-)Scatter and (All)Gather in BSP

When h = p all discussed collectives that require a single butterfly can be
done in time Tbutterfly = α + s · β i.e. they can all be done in one
superstep

Scatter: root sends each message to its target (root incurs s · β send
bandwidth)

Reduce-Scatter: each processor sends its portion to every other
processor (every processor incurs s · β send bandwidth)

Gather: send each message to root (root incurs s · β receive
bandwidth)

Allgather: each processor sends its portion to every other processor
(every processor incurs s · β send and receive bandwidth)

when h < p, we could perform the above algorithms using a butterfly with
’radix’=h (number of neighbors at each butterfly level) in time
Tbutterfly = logh(p) · α + s · β
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BSP Model Collective Communication

Other collectives in BSP

The Broadcast, Reduce, and Allreduce collectives may be done as
combinations of collectives in the same way as with Butterfly algorithms,
using two supersteps

Broadcast done by Scatter then Allgather

Reduce done by Reduce-Scatter then Gather

Allreduce done by Reduce-Scatter then Allgather

Sign of a good model: simpler, yet preserves qualitative results

However, (bad sign) BSP with h = p can do all-to-all in O(s) bandwidth
and O(1) supersteps (as cheap as other collectives), when h < p, the
logarithmic factor on the bandwidth is recovered
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BSP Model PGAS Models

Systems for one-sided communication

BSP employs the concept of non-blocking communication, which presents
practical challenges

to avoid buffering or additional latency overhead, the communicating
processor must know be aware of the desired buffer location of the
remote processor

if the location of the remote buffer is known, the communication is
called ’one-sided’

with network hardware known as Remote Direct Memory Access
(RDMA) one-sided communication can be accomplished without
disturbing the work of the remote processor

One-sided communication transfers are commonly be formulated as

’Put’ – send a message to a remote buffer

’Get’ – receive a message from a remote buffer
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BSP Model PGAS Models

Partitioned Global Address Space (PGAS)

PGAS programming models facilitate non-blocking remote memory access

they allow declaration of buffers in a globally-addressable space,
which other processors can access remotely

Unified Parallel C (UPC) is a compiler-based PGAS language that
allows direct indexing into globally-distributed arrays (Carlson et al
1999)

Global Arrays (Nieplocha et al 1994) is a library that supports a
global address space via a one-sided communication layer (e.g.
ARMCI, Nieplocha et al 1999)

MPI supports one-sided communication via declaration of ’windows’
that declare remotely-accessible buffers
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Communication-Avoiding Algorithms Matrix Multiplication

Matrix multiplication

Matrix multiplication of n-by-n matrices A and B into C , C = A · B is
defined as, for all i , j ,

C [i , j ] =
∑

k

A[i , k] · B[k , j ]

A standard approach to parallelization of matrix multiplication is
commonly referred to as SUMMA (Agarwal et al 1995, Van De Geijn et al
1997), which uses a 2D processor grid, so blocks Alm, Blm, and Clm are
owned by processor P[l ,m]

SUMMA variant 1: iterate for k = 1 to
√

p and for all i , j ∈ [1,
√

p]

broadcast Aik to P[i , :]
broadcast Bkj to P[:, j ]
compute Cij = Cij + Aik · Bkj with processor P[i , j ]
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Communication-Avoiding Algorithms Matrix Multiplication

SUMMA algorithm

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

TSUMMA =
√

p ·
(

2 log(p) · α +
2n2

p
· β
)

= 2
√

p · log(p) · α +
2n2

√
p
· β
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Communication-Avoiding Algorithms Matrix Multiplication

3D Matrix multiplication algorithm

Reference: Agarwal et al 1995 and others

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

T3D−MM = 3 log(p) · α +
3n2

p2/3
· β
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Communication-Avoiding Algorithms LU Factorization

LU factorization

The LU factorization algorithm provides a stable (when combined with
pivoting) replacement for computing the inverse of a n-by-n matrix A,

A = L · U

where L is lower-triangular and U is upper-triangular is computed via
Gaussian elimination, for k = 1 to n,

set L[k , k] = 1 and U[k, k : n] = A[k, k : n]

divide L[k+1 : n, k] = A[k+1 : n, k]/U[k , k]

update Schur complement A[k + 1 : n, k + 1 : n] = A[k + 1 : n, k + 1 :
n]− L[k+1 : n, k] · U[k , k+1 : n]

this algorithm can be blocked analogously to matrix multiplication
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Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L₀₀

U₀₀
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Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L

U
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Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L

U

S=A-LU
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Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization
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Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization

L

U
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Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization

L

U

S=A-LU
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Communication-Avoiding Algorithms Recursive Algorithms

Recursive matrix multiplication

Now lets consider a recursive parallel algorithm for matrix multiplication

[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[

B11 B12

B21 B22

]

C11 = A11 · B11 + A12 · B21

C21 = A21 · B11 + A22 · B21

C12 = A11 · B12 + A12 · B22

C22 = A12 · B21 + A22 · B22

This requires 8 recursive calls to matrix multiplication of n/2-by-n/2
matrices, as well as matrix additions at each level, which can be done in
linear time
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Communication-Avoiding Algorithms Recursive Algorithms

Recursive matrix multiplication: analysis

If we execute all 8 recursive multiplies in parallel with p/8 processors, we
obtain a cost recurrence of

TMM(n, p) = TMM(n/2, p/8) + O

(
n2

p
· β
)

+ O(α)

The bandwidth cost is dominated by the base cases, where it is
proportionate to

(
n/2log8(p)

)2
= (n/plog8(2))2 = (n/p1/3)2 = n2/p2/3

for a total that we have seen before (3D algorithm)

TMM(n, p) = O

(
n2

p2/3
· β
)

+ O(log(p) · α)

ETH Zürich, 9.12.2014, 263-2800-00L Distributed-Memory Models and Algorithms 51/ 54

Communication-Avoiding Algorithms Recursive Algorithms

Recursive LU factorization

LU factorization has the form
[

A11 A12

A21 A22

]
=

[
L11 L12

0 L22

]
·
[

U11 0
U21 U22

]

and can be computed recursively via

[L11,U11] = LU(A11)

L21 = A21 · U−1
11

U12 = L−1
11 · A12

[L22,U22] = LU(A22 − L21 · U12)

The inverses L−1
11 and U−1

11 may be obtained as part of the recursion in the
first step (see Tiskin 2002 for details). There are two recursive calls to LU
and 3 matrix multiplications needed at each step
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Communication-Avoiding Algorithms Recursive Algorithms

Recursive LU factorization: analysis

The two recursive calls within LU factorization must be done in sequence,
so we perform them with all the processors. We have to also pay for the
cost of matrix multiplication at each level

TLU(n, p) = 2TLU(n/2, p) + O(TMM(n, p))

= 2TLU(n/2, p) + O

(
n2

p2/3
· β + log(p) · α

)

with base-case cost (sequential execution)

TLU(n0, p) = O(n2
0 · β + log(p) · α)

the bandwidth cost goes down at each level and we can execute the
base-case sequentially when n0 = n/p2/3, with a total cost of

TLU(n, p) = O

(
n2

p2/3
· β
)

+ O(p2/3 · log(p) · α)
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Overview

Conclusion and summary

Summary:

important parallel communication models: α-β, LogP, LogGP, BSP

collective communication: binomial trees are good for small-messages,
pipelining and/or butterfly needed for large-messages

collective protocols provide good building blocks for parallel
algorithms

recursion is a thematic approach in communication-efficient
algorithms

Next semester:

Consider taking ”Research Topics in Software Engineering” next
semester, it will have nothing to do with software engineering and lots
to do with theory of parallel computation!
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Backup slides
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