
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Lock-Free and Distributed Memory

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

 Final project presentation: Monday 12/15 during last lecture

 Send slides to Timo by 12/15, 11am

 12 minutes per team (hard limit)

 Rough guidelines:

Summarize your goal/task

Related work (what exists, literature review!)

Describe techniques/approach (details!)

Final results and findings (details)

Pick one presenter (you may also switch but keep the time in mind)

2

3

KAUST – King Abdullah University of Science and Technology

Internships are for students in their last year of bachelor or for master students.
They are 3 to 6 month long. Students will receive the following:
 Academic credit
 Monthly living allowance between $800 and $1200 (based upon field of research)
 Round-trip airfare to/from city of departure-Jeddah (KAUST)
 Health insurance
 Private bedroom & bath in a shared residential suite
 Visa fees (Students must have valid passport)
 Access to community recreational resources
 Social and cultural activities

If interested: http://vsrp.kaust.edu.sa/Pages/Internships.aspx
(look for Prof. David Keyes)

Review of last lecture

 Abstract models

 Amdahl’s and Gustafson’s Law

 Little’s Law

 Work/depth models and Brent’s theorem

 I/O complexity and balance (Kung)

 Balance principles

 Scheduling

 Greedy

 Random work stealing

 Balance principles

 Outlook to the future

 Memory and data-movement will be more important

4

DPHPC Overview

5

Goals of this lecture

 Finish lock-free tricks

 List example but they generalize well

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Distributed memory

 Models and concepts

 Designing (close-to) optimal communication algorithms

6

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

7

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

8

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

9

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

10

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

11

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

12

typedef struct {
 int key;
 node *next;
 lock_t lock;
} node;

Hand-over-Hand (fine-grained) locking

13

a b c

Hand-over-Hand (fine-grained) locking

14

a b c

Hand-over-Hand (fine-grained) locking

15

a b c

Hand-over-Hand (fine-grained) locking

16

a b c

Hand-over-Hand (fine-grained) locking

17

a b c

Removing a Node

18

a b c d

remove(b)

Removing a Node

19

a b c d

remove(b)

Removing a Node

20

a b c d

remove(b)

Removing a Node

21

a b c d

remove(b)

Removing a Node

22

a b c d

remove(b)

Removing a Node

23

a c d

remove(b)
Why lock target node?

Concurrent Removes

24

a b c d

remove(c)
remove(b)

Concurrent Removes

25

a b c d

remove(b)
remove(c)

Concurrent Removes

26

a b c d

remove(b)
remove(c)

Concurrent Removes

27

a b c d

remove(b)
remove(c)

Concurrent Removes

28

a b c d

remove(b)
remove(c)

Concurrent Removes

29

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 30

Concurrent Removes

30

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Concurrent Removes

31

a b c d

remove(b)
remove(c)

Uh, Oh

32

a c d

remove(b)
remove(c)

Uh, Oh

33

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking

34

Hand-Over-Hand Again

35

a b c d

remove(b)

Hand-Over-Hand Again

36

a b c d

remove(b)

Hand-Over-Hand Again

37

a b c d

remove(b)

Hand-Over-Hand Again

38

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

39

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

40

a c d

remove(b)

Removing a Node

41

a b c d

remove(b)
remove(c)

Removing a Node

42

a b c d

remove(b)
remove(c)

Removing a Node

43

a b c d

remove(b)
remove(c)

Removing a Node

44

a b c d

remove(b)
remove(c)

Removing a Node

45

a b c d

remove(b)
remove(c)

Removing a Node

46

a b c d

remove(b)
remove(c)

Removing a Node

47

a b c d

remove(b)
remove(c)

Removing a Node

48

a b c d

remove(b)
remove(c)

Removing a Node

49

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

50

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

51

a b c d

Wait!
remove(c)

Removing a Node

52

a b d

Proceed

to

remove(b)

Removing a Node

53

a b d

remove(b)

Removing a Node

54

a b d

remove(b)

Removing a Node

55

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

56

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

57

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

58

Optimistic: Traverse without Locking

59

b d e a

add(c) Aha!

Optimistic: Lock and Load

60

b d e a

add(c)

Optimistic: Lock and Load

61

b d e a

add(c)

c

What could go wrong?

62

b d e a

add(c) Aha!

What could go wrong?

63

b d e a

add(c)

What could go wrong?

64

b d e a

remove(b)

What could go wrong?

65

b d e a

remove(b)

What could go wrong?

66

b d e a

add(c)

What could go wrong?

67

b d e a

add(c)

c

What could go wrong?

68

d e a

add(c) Uh-oh

Validate – Part 1

69

b d e a

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

70

b d e a

add(c) Aha!

What Else Could Go Wrong?

71

b d e a

add(c)

add(b’)

What Else Could Go Wrong?

72

b d e a

add(c)

add(b’) b’

What Else Could Go Wrong?

73

b d e a

add(c)
b’

What Else Could Go Wrong?

74

b d e a

add(c)

c

Validate Part 2
(while holding locks)

75

b d e a

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!

76

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

77

typedef struct {
 int key;
 node *next;
 lock_t lock;
 boolean valid;
} node;

Lazy Removal

78

a a b c d

c

Lazy Removal

79

a a b d

Present in list

c

Lazy Removal

80

a a b d

Logically deleted

Lazy Removal

81

a a b c d

Physically deleted

Lazy Removal

82

a a b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

83

Business as Usual

84

a b c

Business as Usual

85

a b c

Business as Usual

86

a b c

Business as Usual

87

a b c

remove(b)

Business as Usual

88

a b c

a not

marked

Business as Usual

89

a b c

a still

points

to b

Business as Usual

90

a b c

Logical

delete

Business as Usual

91

a b c

physical

delete

Business as Usual

92

a b c

Summary: Wait-free Contains

93

a 0 0 0 a b c 0 e 1 d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

94

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

95

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

96

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

97

Problem…

98

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(3) Physical

Removal 0 d

(2) Node

added

The Solution: Combine Mark and Pointer

99

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0 d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

100

Removing a Node

101

a b d

remove

b

remove

c

c

Removing a Node

102

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

103

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

104

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

105

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

106

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

107

Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies
lock-free)

 Was our lock-free list also wait-free?

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

108

Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve
the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

109

Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

110

Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

111

Atomic Registers

 Theorem *Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each
write)

112

Atomic Registers

 Theorem *Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer

Science” (Herlihy, Shavit)
  We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed

computing!

113

Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

114

Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

115

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
 proposed[tid] = v;
 if(CAS(thread, first, tid))
 return v; // I won!
 else
 return proposed[thread]; // thread won
}

Now you know everything 

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

116

Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a
process after all arrived)

117

Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems

118

asymptotic limit

Quick Example

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) =

 Class question: Do you know a faster method to accomplish the
same?

119

k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k?



 Independent of P, α, βs? Really?

120

Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

121

Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/Exscan, …

 Implementations of those (check current MPI libraries )

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

125

HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

126

Network Destination Source

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

 127

The LogP Model

128

Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

129

Simplifications

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

130

Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

131

Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

132

Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

133

Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the
LogP Model”

134

Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives
exactly once

135

P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

136
[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory
concepts → Partitioned Global Address Space (PGAS)

137

Partitioned Global Address Space

 Two developments:

1. Cache coherence becomes more expensive

May react in software! Scary for industry ;-)

2. Novel RDMA hardware enables direct access to remote memory

May take advantage in software! An opportunity for HPC!

 Still ongoing research! Take nothing for granted 

 Very interesting opportunities

 Wide-open research field

 Even more thesis ideas on next generation parallel programming

 I will introduce the concepts behind the MPI-3.0 interface

 It’s nearly a superset of other PGAS approaches (UPC, CAF, …)

138

One-sided Communication

 The basic idea of one-sided communication models is to decouple
data movement with process synchronization

 Should be able move data without requiring that the remote process
synchronize

 Each process exposes a part of its memory to other processes

 Other processes can directly read from or write to this memory

139

Process 1 Process 2 Process 3

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Process 0

Private

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Global

Address

Space
Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Two-sided Communication Example

140

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

One-sided Communication Example

141

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

What we need to know in RMA

 How to create remote accessible memory?

 Reading, Writing and Updating remote memory

 Data Synchronization

 Memory Model

142

Creating Public Memory

 Any memory used by a process is, by default, only locally accessible

 X = malloc(100);

 Once the memory is allocated, the user has to make an explicit MPI
call to declare a memory region as remotely accessible

 MPI terminology for remotely accessible memory is a “window”

 A group of processes collectively create a “window”

 Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory without
explicitly synchronizing with the target process

143

Remote Memory Access

144 144

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

Basic RMA Functions

 MPI_Win_create – exposes local memory to RMA operation by other
processes in a communicator
 Collective operation

 Creates window object

 MPI_Win_free – deallocates window object

 MPI_Put – moves data from local memory to remote memory

 MPI_Get – retrieves data from remote memory into local memory

 MPI_Accumulate – atomically updates remote memory using local
values
 Data movement operations are non-blocking

 Data is located by a displacement relative to the start of the window

 Subsequent synchronization on window object needed to ensure
operation is complete

145 145

Window creation models

 Four models exist

 MPI_WIN_CREATE

You already have an allocated buffer that you would like to make
remotely accessible

 MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

 MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

 MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer

146

Data movement: Get

 Move data to origin, from target

 Separate data description triples for origin and target

147

Origin

Process

Target

Process
RMA

Window

Local

Buffer

MPI_Get(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

Data movement: Put

 Move data from origin, to target

 Same arguments as MPI_Get

148

Target

Process
RMA

Window

Local

Buffer
Origin

Process

MPI_Put(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

Atomic Data Aggregation: Accumulate

 Atomic update operation, similar to a put
 Reduces origin and target data into target buffer using op argument as

combiner

 Predefined ops only, no user-defined operations

 Different data layouts between
target/origin OK
 Basic type elements must match

 Op = MPI_REPLACE
 Implements f(a,b)=b

 Atomic PUT

149

Target

Process
RMA

Window

Local

Buffer

+=

Origin

Process

MPI_Accumulate(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Atomic Data Aggregation: Get Accumulate

 Atomic read-modify-write
 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
 Predefined ops only

 Result stored in target buffer

 Original data stored in result buf

 Different data layouts between
target/origin OK
 Basic type elements must match

 Atomic get with MPI_NO_OP

 Atomic swap with MPI_REPLACE

150

Target

Process
RMA

Window

Local

Buffer

+=

Origin

Process

MPI_Get_accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, void *result_addr,
 int result_count, MPI_Datatype result_dtype,
 int target_rank, MPI_Aint target_disp,
 int target_count, MPI_Datatype target_dype,
 MPI_Op op, MPI_Win win)

Atomic Data Aggregation: CAS and FOP

 CAS: Atomic swap if target value is equal to compare value

 FOP: Simpler version of MPI_Get_accumulate

 All buffers share a single predefined datatype

 No count argument (it’s always 1)

 Simpler interface allows hardware optimization

151

MPI_Compare_and_swap(void *origin_addr,
 void *compare_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Op op, MPI_Win win)

RMA Synchronization Models

 RMA data access model

 When is a process allowed to read/write remotely accessible memory?

 When is data written by process X available for process Y to read?

 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:

 Fence (active target)

 Post-start-complete-wait (generalized active target)

 Lock/Unlock (passive target)

 Data accesses occur within “epochs”

 Access epochs: contain a set of operations issued by an origin process

 Exposure epochs: enable remote processes to update a target’s window

 Epochs define ordering and completion semantics

 Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs

152

Fence: Active Target Synchronization

 Collective synchronization model

 Starts and ends access and exposure
epochs on all processes in the window

 All processes in group of “win” do an
MPI_WIN_FENCE to open an epoch

 Everyone can issue PUT/GET
operations to read/write data

 Everyone does an MPI_WIN_FENCE to
close the epoch

 All operations complete at the second
fence synchronization

153

Fence Fence

Get

Target Origin

Fence Fence

MPI_Win_fence(int assert, MPI_Win win)

PSCW: Generalized Active Target
Synchronization

 Like FENCE, but origin and target
specify who they communicate with

 Target: Exposure epoch

 Opened with MPI_Win_post

 Closed by MPI_Win_wait

 Origin: Access epoch

 Opened by MPI_Win_start

 Closed by MPI_Win_compete

 All synchronization operations may
block, to enforce P-S/C-W ordering

 Processes can be both origins and
targets

154

Start

Complete

Post

Wait

Get

Target Origin

MPI_Win_post/start(MPI_Group, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

Lock/Unlock: Passive Target Synchronization

 Passive mode: One-sided, asynchronous communication

 Target does not participate in communication operation

 Shared memory-like model

155

Active Target Mode Passive Target Mode

Lock

Unlock

Get Start

Complete

Post

Wait

Get

Passive Target Synchronization

 Begin/end passive mode epoch

 Target process does not make a corresponding MPI call

 Can initiate multiple passive target epochs top different processes

 Concurrent epochs to same process not allowed (affects threads)

 Lock type

 SHARED: Other processes using shared can access concurrently

 EXCLUSIVE: No other processes can access concurrently

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

156

Advanced Passive Target Synchronization

 Lock_all: Shared lock, passive target epoch to all other processes

 Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

 Flush: Remotely complete RMA operations to the target process

 Flush_all – remotely complete RMA operations to all processes

 After completion, data can be read by target process or a different process

 Flush_local: Locally complete RMA operations to the target process

 Flush_local_all – locally complete RMA operations to all processes

157

MPI_Win_lock_all(int assert, MPI_Win win)
MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
MPI_Win_flush_all/flush_local_all(MPI_Win win)

Which synchronization mode should I use, when?

 RMA communication has low overheads versus send/recv

 Two-sided: Matching, queueing, buffering, unexpected receives, etc…

 One-sided: No matching, no buffering, always ready to receive

 Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

 Active mode: bulk synchronization

 E.g. ghost cell exchange

 Passive mode: asynchronous data movement

 Useful when dataset is large, requiring memory of multiple nodes

 Also, when data access and synchronization pattern is dynamic

 Common use case: distributed, shared arrays

 Passive target locking mode

 Lock/unlock – Useful when exclusive epochs are needed

 Lock_all/unlock_all – Useful when only shared epochs are needed

158

MPI RMA Memory Model
 MPI-3 provides two memory models:

separate and unified

 MPI-2: Separate Model

 Logical public and private copies

 MPI provides software coherence between
window copies

 Extremely portable, to systems that don’t
provide hardware coherence

 MPI-3: New Unified Model

 Single copy of the window

 System must provide coherence

 Superset of separate semantics

E.g. allows concurrent local/remote access

 Provides access to full performance potential
of hardware

159

Public
Copy

Private
Copy

Unified
Copy

MPI RMA Memory Model (separate windows)

 Very portable, compatible with non-coherent memory systems

 Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

load store store

X X

160

X

MPI RMA Memory Model (unified windows)

 Allows concurrent local/remote accesses

 Concurrent, conflicting operations don’t “corrupt” the window

 Outcome is not defined by MPI (defined by the hardware)

 Can enable better performance by reducing synchronization

161

Unified
Copy

Same source

Same epoch Diff. Sources

load store store

?

That’s it folks

 Thanks for your attention and contributions to the class 

 Good luck (better: success!) with your project

 Don’t do it last minute!

 Same with the final exam!

 Di 21.01., 09:00-11:00 (watch date and room in edoz)

 Do you have any generic questions?

 Big picture?

 Why did we learn certain concepts?

 Why did we not learn certain concepts?

 Anything else (comments are very welcome!)
162

