
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Lock-Free and Distributed Memory

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

 Final project presentation: Monday 12/15 during last lecture

 Send slides to Timo by 12/15, 11am

 12 minutes per team (hard limit)

 Rough guidelines:

Summarize your goal/task

Related work (what exists, literature review!)

Describe techniques/approach (details!)

Final results and findings (details)

Pick one presenter (you may also switch but keep the time in mind)

2

3

KAUST – King Abdullah University of Science and Technology

Internships are for students in their last year of bachelor or for master students.
They are 3 to 6 month long. Students will receive the following:
 Academic credit
 Monthly living allowance between $800 and $1200 (based upon field of research)
 Round-trip airfare to/from city of departure-Jeddah (KAUST)
 Health insurance
 Private bedroom & bath in a shared residential suite
 Visa fees (Students must have valid passport)
 Access to community recreational resources
 Social and cultural activities

If interested: http://vsrp.kaust.edu.sa/Pages/Internships.aspx
(look for Prof. David Keyes)

Review of last lecture

 Abstract models

 Amdahl’s and Gustafson’s Law

 Little’s Law

 Work/depth models and Brent’s theorem

 I/O complexity and balance (Kung)

 Balance principles

 Scheduling

 Greedy

 Random work stealing

 Balance principles

 Outlook to the future

 Memory and data-movement will be more important

4

DPHPC Overview

5

Goals of this lecture

 Finish lock-free tricks

 List example but they generalize well

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Distributed memory

 Models and concepts

 Designing (close-to) optimal communication algorithms

6

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

7

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

8

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

9

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

10

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

11

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

12

typedef struct {
 int key;
 node *next;
 lock_t lock;
} node;

Hand-over-Hand (fine-grained) locking

13

a b c

Hand-over-Hand (fine-grained) locking

14

a b c

Hand-over-Hand (fine-grained) locking

15

a b c

Hand-over-Hand (fine-grained) locking

16

a b c

Hand-over-Hand (fine-grained) locking

17

a b c

Removing a Node

18

a b c d

remove(b)

Removing a Node

19

a b c d

remove(b)

Removing a Node

20

a b c d

remove(b)

Removing a Node

21

a b c d

remove(b)

Removing a Node

22

a b c d

remove(b)

Removing a Node

23

a c d

remove(b)
Why lock target node?

Concurrent Removes

24

a b c d

remove(c)
remove(b)

Concurrent Removes

25

a b c d

remove(b)
remove(c)

Concurrent Removes

26

a b c d

remove(b)
remove(c)

Concurrent Removes

27

a b c d

remove(b)
remove(c)

Concurrent Removes

28

a b c d

remove(b)
remove(c)

Concurrent Removes

29

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 30

Concurrent Removes

30

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Concurrent Removes

31

a b c d

remove(b)
remove(c)

Uh, Oh

32

a c d

remove(b)
remove(c)

Uh, Oh

33

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

 hand-over-hand locking

34

Hand-Over-Hand Again

35

a b c d

remove(b)

Hand-Over-Hand Again

36

a b c d

remove(b)

Hand-Over-Hand Again

37

a b c d

remove(b)

Hand-Over-Hand Again

38

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

39

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

40

a c d

remove(b)

Removing a Node

41

a b c d

remove(b)
remove(c)

Removing a Node

42

a b c d

remove(b)
remove(c)

Removing a Node

43

a b c d

remove(b)
remove(c)

Removing a Node

44

a b c d

remove(b)
remove(c)

Removing a Node

45

a b c d

remove(b)
remove(c)

Removing a Node

46

a b c d

remove(b)
remove(c)

Removing a Node

47

a b c d

remove(b)
remove(c)

Removing a Node

48

a b c d

remove(b)
remove(c)

Removing a Node

49

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

50

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

51

a b c d

Wait!
remove(c)

Removing a Node

52

a b d

Proceed

to

remove(b)

Removing a Node

53

a b d

remove(b)

Removing a Node

54

a b d

remove(b)

Removing a Node

55

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

56

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

57

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

58

Optimistic: Traverse without Locking

59

b d e a

add(c) Aha!

Optimistic: Lock and Load

60

b d e a

add(c)

Optimistic: Lock and Load

61

b d e a

add(c)

c

What could go wrong?

62

b d e a

add(c) Aha!

What could go wrong?

63

b d e a

add(c)

What could go wrong?

64

b d e a

remove(b)

What could go wrong?

65

b d e a

remove(b)

What could go wrong?

66

b d e a

add(c)

What could go wrong?

67

b d e a

add(c)

c

What could go wrong?

68

d e a

add(c) Uh-oh

Validate – Part 1

69

b d e a

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

70

b d e a

add(c) Aha!

What Else Could Go Wrong?

71

b d e a

add(c)

add(b’)

What Else Could Go Wrong?

72

b d e a

add(c)

add(b’) b’

What Else Could Go Wrong?

73

b d e a

add(c)
b’

What Else Could Go Wrong?

74

b d e a

add(c)

c

Validate Part 2
(while holding locks)

75

b d e a

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!

76

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

77

typedef struct {
 int key;
 node *next;
 lock_t lock;
 boolean valid;
} node;

Lazy Removal

78

a a b c d

c

Lazy Removal

79

a a b d

Present in list

c

Lazy Removal

80

a a b d

Logically deleted

Lazy Removal

81

a a b c d

Physically deleted

Lazy Removal

82

a a b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

83

Business as Usual

84

a b c

Business as Usual

85

a b c

Business as Usual

86

a b c

Business as Usual

87

a b c

remove(b)

Business as Usual

88

a b c

a not

marked

Business as Usual

89

a b c

a still

points

to b

Business as Usual

90

a b c

Logical

delete

Business as Usual

91

a b c

physical

delete

Business as Usual

92

a b c

Summary: Wait-free Contains

93

a 0 0 0 a b c 0 e 1 d

Use Mark bit + list ordering
1. Not marked in the set
2. Marked or missing not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

94

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

95

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

96

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

97

Problem…

98

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(3) Physical

Removal 0 d

(2) Node

added

The Solution: Combine Mark and Pointer

99

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0 d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific

 Option 2:
 Use Double CAS (or CAS2)

CAS of two noncontiguous locations

 Well, not many machines support it

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

100

Removing a Node

101

a b d

remove

b

remove

c

c

Removing a Node

102

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

103

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

104

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

105

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

106

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice)

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

107

Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies
lock-free)

 Was our lock-free list also wait-free?

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

108

Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve
the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

109

Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

110

Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

111

Atomic Registers

 Theorem *Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each
write)

112

Atomic Registers

 Theorem *Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer

Science” (Herlihy, Shavit)
 We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed

computing!

113

Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

114

Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

115

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
 proposed[tid] = v;
 if(CAS(thread, first, tid))
 return v; // I won!
 else
 return proposed[thread]; // thread won
}

Now you know everything

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

116

Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a
process after all arrived)

117

Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems

118

asymptotic limit

Quick Example

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) =

 Class question: Do you know a faster method to accomplish the
same?

119

k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k?

 Independent of P, α, βs? Really?

120

Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?

 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

121

Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/Exscan, …

 Implementations of those (check current MPI libraries)

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

125

HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

126

Network Destination Source

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

 127

The LogP Model

128

Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

129

Simplifications

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

130

Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

131

Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

132

Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

133

Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the
LogP Model”

134

Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives
exactly once

135

P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

136
[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory
concepts → Partitioned Global Address Space (PGAS)

137

Partitioned Global Address Space

 Two developments:

1. Cache coherence becomes more expensive

May react in software! Scary for industry ;-)

2. Novel RDMA hardware enables direct access to remote memory

May take advantage in software! An opportunity for HPC!

 Still ongoing research! Take nothing for granted

 Very interesting opportunities

 Wide-open research field

 Even more thesis ideas on next generation parallel programming

 I will introduce the concepts behind the MPI-3.0 interface

 It’s nearly a superset of other PGAS approaches (UPC, CAF, …)

138

One-sided Communication

 The basic idea of one-sided communication models is to decouple
data movement with process synchronization

 Should be able move data without requiring that the remote process
synchronize

 Each process exposes a part of its memory to other processes

 Other processes can directly read from or write to this memory

139

Process 1 Process 2 Process 3

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Process 0

Private

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Global

Address

Space
Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Two-sided Communication Example

140

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

One-sided Communication Example

141

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

What we need to know in RMA

 How to create remote accessible memory?

 Reading, Writing and Updating remote memory

 Data Synchronization

 Memory Model

142

Creating Public Memory

 Any memory used by a process is, by default, only locally accessible

 X = malloc(100);

 Once the memory is allocated, the user has to make an explicit MPI
call to declare a memory region as remotely accessible

 MPI terminology for remotely accessible memory is a “window”

 A group of processes collectively create a “window”

 Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory without
explicitly synchronizing with the target process

143

Remote Memory Access

144 144

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

Basic RMA Functions

 MPI_Win_create – exposes local memory to RMA operation by other
processes in a communicator
 Collective operation

 Creates window object

 MPI_Win_free – deallocates window object

 MPI_Put – moves data from local memory to remote memory

 MPI_Get – retrieves data from remote memory into local memory

 MPI_Accumulate – atomically updates remote memory using local
values
 Data movement operations are non-blocking

 Data is located by a displacement relative to the start of the window

 Subsequent synchronization on window object needed to ensure
operation is complete

145 145

Window creation models

 Four models exist

 MPI_WIN_CREATE

You already have an allocated buffer that you would like to make
remotely accessible

 MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

 MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

 MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer

146

Data movement: Get

 Move data to origin, from target

 Separate data description triples for origin and target

147

Origin

Process

Target

Process
RMA

Window

Local

Buffer

MPI_Get(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

Data movement: Put

 Move data from origin, to target

 Same arguments as MPI_Get

148

Target

Process
RMA

Window

Local

Buffer
Origin

Process

MPI_Put(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Win win)

Atomic Data Aggregation: Accumulate

 Atomic update operation, similar to a put
 Reduces origin and target data into target buffer using op argument as

combiner

 Predefined ops only, no user-defined operations

 Different data layouts between
target/origin OK
 Basic type elements must match

 Op = MPI_REPLACE
 Implements f(a,b)=b

 Atomic PUT

149

Target

Process
RMA

Window

Local

Buffer

+=

Origin

Process

MPI_Accumulate(void * origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Atomic Data Aggregation: Get Accumulate

 Atomic read-modify-write
 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
 Predefined ops only

 Result stored in target buffer

 Original data stored in result buf

 Different data layouts between
target/origin OK
 Basic type elements must match

 Atomic get with MPI_NO_OP

 Atomic swap with MPI_REPLACE

150

Target

Process
RMA

Window

Local

Buffer

+=

Origin

Process

MPI_Get_accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, void *result_addr,
 int result_count, MPI_Datatype result_dtype,
 int target_rank, MPI_Aint target_disp,
 int target_count, MPI_Datatype target_dype,
 MPI_Op op, MPI_Win win)

Atomic Data Aggregation: CAS and FOP

 CAS: Atomic swap if target value is equal to compare value

 FOP: Simpler version of MPI_Get_accumulate

 All buffers share a single predefined datatype

 No count argument (it’s always 1)

 Simpler interface allows hardware optimization

151

MPI_Compare_and_swap(void *origin_addr,
 void *compare_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
 MPI_Datatype datatype, int target_rank,
 MPI_Aint target_disp, MPI_Op op, MPI_Win win)

RMA Synchronization Models

 RMA data access model

 When is a process allowed to read/write remotely accessible memory?

 When is data written by process X available for process Y to read?

 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:

 Fence (active target)

 Post-start-complete-wait (generalized active target)

 Lock/Unlock (passive target)

 Data accesses occur within “epochs”

 Access epochs: contain a set of operations issued by an origin process

 Exposure epochs: enable remote processes to update a target’s window

 Epochs define ordering and completion semantics

 Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs

152

Fence: Active Target Synchronization

 Collective synchronization model

 Starts and ends access and exposure
epochs on all processes in the window

 All processes in group of “win” do an
MPI_WIN_FENCE to open an epoch

 Everyone can issue PUT/GET
operations to read/write data

 Everyone does an MPI_WIN_FENCE to
close the epoch

 All operations complete at the second
fence synchronization

153

Fence Fence

Get

Target Origin

Fence Fence

MPI_Win_fence(int assert, MPI_Win win)

PSCW: Generalized Active Target
Synchronization

 Like FENCE, but origin and target
specify who they communicate with

 Target: Exposure epoch

 Opened with MPI_Win_post

 Closed by MPI_Win_wait

 Origin: Access epoch

 Opened by MPI_Win_start

 Closed by MPI_Win_compete

 All synchronization operations may
block, to enforce P-S/C-W ordering

 Processes can be both origins and
targets

154

Start

Complete

Post

Wait

Get

Target Origin

MPI_Win_post/start(MPI_Group, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

Lock/Unlock: Passive Target Synchronization

 Passive mode: One-sided, asynchronous communication

 Target does not participate in communication operation

 Shared memory-like model

155

Active Target Mode Passive Target Mode

Lock

Unlock

Get Start

Complete

Post

Wait

Get

Passive Target Synchronization

 Begin/end passive mode epoch

 Target process does not make a corresponding MPI call

 Can initiate multiple passive target epochs top different processes

 Concurrent epochs to same process not allowed (affects threads)

 Lock type

 SHARED: Other processes using shared can access concurrently

 EXCLUSIVE: No other processes can access concurrently

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

156

Advanced Passive Target Synchronization

 Lock_all: Shared lock, passive target epoch to all other processes

 Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

 Flush: Remotely complete RMA operations to the target process

 Flush_all – remotely complete RMA operations to all processes

 After completion, data can be read by target process or a different process

 Flush_local: Locally complete RMA operations to the target process

 Flush_local_all – locally complete RMA operations to all processes

157

MPI_Win_lock_all(int assert, MPI_Win win)
MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
MPI_Win_flush_all/flush_local_all(MPI_Win win)

Which synchronization mode should I use, when?

 RMA communication has low overheads versus send/recv

 Two-sided: Matching, queueing, buffering, unexpected receives, etc…

 One-sided: No matching, no buffering, always ready to receive

 Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

 Active mode: bulk synchronization

 E.g. ghost cell exchange

 Passive mode: asynchronous data movement

 Useful when dataset is large, requiring memory of multiple nodes

 Also, when data access and synchronization pattern is dynamic

 Common use case: distributed, shared arrays

 Passive target locking mode

 Lock/unlock – Useful when exclusive epochs are needed

 Lock_all/unlock_all – Useful when only shared epochs are needed

158

MPI RMA Memory Model
 MPI-3 provides two memory models:

separate and unified

 MPI-2: Separate Model

 Logical public and private copies

 MPI provides software coherence between
window copies

 Extremely portable, to systems that don’t
provide hardware coherence

 MPI-3: New Unified Model

 Single copy of the window

 System must provide coherence

 Superset of separate semantics

E.g. allows concurrent local/remote access

 Provides access to full performance potential
of hardware

159

Public
Copy

Private
Copy

Unified
Copy

MPI RMA Memory Model (separate windows)

 Very portable, compatible with non-coherent memory systems

 Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

load store store

X X

160

X

MPI RMA Memory Model (unified windows)

 Allows concurrent local/remote accesses

 Concurrent, conflicting operations don’t “corrupt” the window

 Outcome is not defined by MPI (defined by the hardware)

 Can enable better performance by reducing synchronization

161

Unified
Copy

Same source

Same epoch Diff. Sources

load store store

?

That’s it folks

 Thanks for your attention and contributions to the class

 Good luck (better: success!) with your project

 Don’t do it last minute!

 Same with the final exam!

 Di 21.01., 09:00-11:00 (watch date and room in edoz)

 Do you have any generic questions?

 Big picture?

 Why did we learn certain concepts?

 Why did we not learn certain concepts?

 Anything else (comments are very welcome!)
162

