Design of Parallel and High-Performance

Computing
Fall 2014
Lecture: Introduction

Instructor: Torsten Hoefler & Markus Puschel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Goals of this lecture

m Motivate you!

m What is parallel computing?
= And why do we need it?

m What is high-performance computing?
" What's a Supercomputer and why do we care?

m Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

Let us assume ...

m .. you were to build a machine like this ...

m .. we know how each part works

Source: wikipedia

® There are just many of them!
® Question: How many calculations per second are needed to emulate a brain?

Calculations per Second per $1,000

Exponential Growth of Computing

Twentieth through twenty first century

1 060 _ Logarithmic Plot
1055 ol
0% - Science

. # Researchers Simulate Mouse Brain on
10 Computer

40 IMichael Hoffman [Blog) - April 30, 2007 5:57 PIM
107 -
107
10™

All Human Brains
1028 - LRTETRRTET
10% -
1075 | NP \ M One Human Brain 2
1020 R\ \ A S One Mouse Brain____ | __
.y 200 ..:.... s
O
e i
o"

5 SrlY
10~ _E1®™e
107

T T T T T T T T T]
1900 1920 1940 1960 1980 2000 2020 2040 xﬂ) 2080 2100

Source: www.singularity.com Year

Can we do this today?

Flops (floating point operations)

0000010100101 0000}
JNNNOI00I0I00N00, .JOD1I0TT
10032201010} v\‘El 11

1@31‘ S "ly}:])ogé.é
.) B oot
Growth in oid ot bo
B U
Supercomputer Power O
21 Logarithmic Plot
10 =
20
100 =
19 " Required for Human Brain Neural
10 = Simulation for Uploading (2025) ——=—
18 -
10 -
5 e
10" =
. Required for Human Brain | ~ P
16 -
10 = Functional Simulation (2013) ———— 1 Exaflop . 2022 .
15 -
19 g Blue Gene/P MDGrape 3 based
14 — ASCI Purple Blue Gene/L .
10 - 2.~
= Earth Simulator SX-8 Tlanhe 2’ 55 PF (2013)
13 = Columbia
10 E ASCI White
102 a ASCI Red ASCI Red Trendline
= Num.
= Wind Tunnel CP-PACS/2048 —O— Planned
10” . SR2201/1024
E Num. Wind Tunnel
10 - CM-5/1024
10 1 1 1 [1 1 1 1 1
1990 1995 2000 2005 2010 2015 2020 2025 2030
Doubling time = 1.2 years Year

Source: www.singularity.com

Blue Waters, ~13 PF (2012)

Human Brain — No Problem!

®m ... hotso fast, we need to understand how to program those
machines ...

Human Brain — No Problem!

Simulating 1 second of human brain activity
takes 82,944 processors

Ryan Whitwam o tpm | 21 Comments

Scooped!

The brain is a deviously complex

Share This Article biological computing device that even
the fastest supercomputers in the

w436 123 e 108 24 world fail to emulate. Well, that's not

FlLice W Tweet 228 g 1 St entirely true anymore. Researchers at

the Okinawa Institute of Technology

Graduate University in Japan and

Forschungszentrum Julich in Germany have managed to simulate a single second of human

brain activity in a very, very powerful computer. Source: extremetech.com 7

) U)})m

mmmmmnmmmnmnmmmmm

(o

Other problem areas: Scientific Computing

m Most natural sciences are simulation driven or are moving towards
simulation

= Theoretical physics (solving the Schrodinger equation, QCD)
= Biology (Gene sequencing)

= Chemistry (Material science)

= Astronomy (Colliding black holes)

= Medicine (Protein folding for drug discovery)

= Meteorology (Storm/Tornado prediction)

= Geology (QOil reservoir management, oil exploration)

®= and many more ... (even Pringles uses HPC)

Other problem areas: Commercial Computing

m Databases, data mining, search
" Amazon, Facebook, Google

m Transaction processing
= Visa, Mastercard

m Decision support
m Stock markets, Wall Street, Military applications

m Parallelism in high-end systems and back-ends
= Often throughput-oriented

= Used equipment varies from COTS (Google) to high-end redundant
mainframes (banks)

Other problem areas: Industrial Computing

m Aeronautics (airflow, engine, structural mechanics,
electromagnetism)

m Automotive (crash, combustion, airflow)

m Computer-aided design (CAD)

m Pharmaceuticals (molecular modeling, protein folding, drug design)
m Petroleum (Reservoir analysis)

m Visualization (all of the above, movies, 3d)

What can faster computers do for us?

m Solving bigger problems than we could solve before!

= E.g., Gene sequencing and search, simulation of whole cells, mathematics
of the brain, ...

" The size of the problem grows with the machine power
- Weak Scaling

m Solve today’s problems faster!

= E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars,
weapons, ...)

= The machine power grows with constant problem size

- Strong Scaling

High-Performance Computing (HPC)

m a.k.a. “Supercomputing”

»”
!

m Question: define “Supercomputer

High-Performance Computing (HPC)

a.k.a. “Supercomputing”

Question: define “Supercomputer”!

= “A supercomputer is a computer at the frontline of contemporary processing
capacity--particularly speed of calculation.” (Wikipedia)

= Usually quite expensive (Ss and kWh) and big (space)

HPC is a quickly growing niche market
= Not all “supercomputers”, wide base
® |mportant enough for vendors to specialize
= Very important in research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”

“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”

“Microsoft: Delivering High Performance Computing to the Masses”

The Top500 List

m A benchmark, solve Ax=b
= As fast as possible! = as big as possible ©
= Reflects some applications, not all, not even many
® Very good historic data!

m Speed comparison for computing centers, states, countries, nations,
continents ®

= Politicized (sometimes good, sometimes bad)
" Yet, fun to watch

The Top500 List (June 2014)

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)
o Mational Super Computer Tianhe-2 (MilkyWay-2) - TH-I'"'B- 3120000 338627 549024 17808
Center in Guangzhou FEF Cluster, Intel Xeon E5-2692 12C
China 2.200GHz, TH Express-2, Intel Xeon
Fhi 3151P
MUDT
9 DOESSC/Oak Ridge Mational Titan - Cray K7 |, Opteron 6274 16C 560640 175900 271125 B209
Laboratory 2.200GHz, Cray Gemini interconnect,
United States MWIDIA K20
Cray Inc.
e DOEMMSALLML Sequoia - BlueGene/Q, Fower BAQC 1572864 171732 201327 7890
Inited States 16C 1.60 GHz, Custom
B
a RIKEN Advanced Institute for K computer, SFARCES WIlifx 705024 105100 112804 12660
Computational Science (AICS) 2.0GHz, Tofu interconnect
Japan Fujitsu
a DOESSClArgonne Mational Mira - BlueGene/Q, Power BQAC 16C 786432 BL8E.E 100B6.3 3945
Laboratory 1.60GHz, Custom
Lnited States [BM
G Swiss Mational Piz Daint - Cray XC30, Xeon E5- 115984 EB271.0 77889 2325
Supercomputing Centre 2670 8C 2.600GHz, Aries
(CSCE) interconnect | NYIDIA K20x
Switzerland Cray Inc.
o Texas Advanced Computing Stampede - PowerEdge CE220, 462462 5168.1 85201 4510
Center/Univ. of Texas ¥eon E5-2680 BC 2. ¥00GHz,
Inited States Infiniband FOR, Intel Xeon Phi SE10F
Dell
a Forschungszentrum Juelich JUQUEEN - BlueGene/Ql, Fower 458752 5008.9 5872.0 2301

F7TN

ECil 16 1 EOOCH=. TSt

16

P|z Daint @ CSCS

March 19, 2013
Swiss 'GPU Supercomputer' Will Be Fastest
in Europe

Tiffany Trader
Page: 1|2

The NVIDIA GPU Technology Conference is in full-swing today in San Jose, Calif. The
annual event kicked off this morning with a keynote from NVIDIA CEO Jen-Hsun Huang,
who revealed that the Swiss National Supercomputing Center (CSCS) is building Europe's
fastest GPU-accelerated supercomputer, an extension of a Cray system that was
announced last year.

As Cray Vice President, Storage & Data Management Barry Bolding told HPCwire, this will
be the first Cray supercomputer equipped with Intel Xeon processors and NVIDA GPUs.

CSCS is part of ETH Zurich, one of the top universities in the world and the alma mater of
Albert Einstein. The supercomputing center installed phase one of its shiny new Cray
XC30 back in December 2012.

18

Blue Waters in 2009

agine you’re designi S500 M
supercomputer, and all you have is:

This is why you need to understand
performance expectations well!

Blue Waters in 2012

History and Trends

162 PFlop/s
100 Pflop/s
17.6 PFlop/s
10 Pflop/s _ o
1 Pflop/s SUM
100 Tflop/s
=1 S
10 Tflop/s 76.5 TFlop/s
6-8 years
1 Tflop/s s a Single GPU/MIC Card
1.17 TFlop/s
N=500

100 Gflop/s 4 My Laptop (70 Gflop/s))

59.7 GFlop/s) Al
10 Gflop/s

My iPad2 & iPhone 4s (1.02 Gflop/s)

1 Gflop/s _+_
log /s
100 Mflop/s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012

Source: Jack Dongarra

21

High-Performance Computing grows quickly

m Computers are used to automate many tasks

m Still growing exponentially

The
= New uses discovered continuously Economist |
IDC, 2007: “The overall HPC server market grew The data deluge
by 15.5 percent in 2007 to reach 5116 billion [] AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to 554.4”

IDC, 2009: “expects the HPC technical server
market to grow at a healthy 7% to 8% yearly
rate to reach revenues of $13.4 billion by 2015.”

“The non-HPC portion of the server market was

NG s EE ey es s wsesErE
actually down 20.5 per cent, to $34.6bn” WMME == 8RR RSN SE SRS

Source: The Economist

22

How to increase the compute power?

Clock Speed:
10000 -
_. 1000 &
S &
=
> 100 <><>
£
c
8 8086 @
o 10
g 1?08 ¢ % 9 6Pentium®
S 400 8085 386
W 286 3486 Processors
8080 <
1 [[[[: [[[[: [[[[: [[[[:
1970 1980 1990 2000 2010

Source: Intel®

How to increase the compute power?

Not an option anymore!

CloclSpeetr

10000 -
_. 1000 &
S <
=
"; 100 <>
E <
c
8 8086 Q
o 10
g 1?08 ¢ % Q@ Z;Pentium‘@
S 400 8085 386
q).(g-@ 286 <486 Processors
8080 <
1 [[[[: [[[[: [[[[: [[[[:
1970 1980 1990 2000 2010

Source: Intel®

s Law

vioore

Ay Microprocessor Transistor Counts 1971-2011 & Moore’s Law

gors 0N 8
- “hed “Moore’s Law." H

istor sizes have
B ON & single ¢ 16-Core SPARC T3
‘ Six-Core Core i7
7% electronics Six-Core Xeon 7400
| 2,600,000,000 7 . s @10-Core Xeon Westmere-EX
L ompany. Wi Dual-Core ltanium 2@ @ g—cocrie P0W1E§67
8 h AMD K10 gaeore 2wl
Rtoste 1,000,000,000 POWERS® g O VS B ST Tule
Moore's Itanium 2 with 9MB cache @ "._ Six-Core Opteron 2400
AMD K10 Core i7 (Quad)
Core 2 Duo
Itanium 2 @ Cell
100,000,000 AMD K8
@®Bart
Pentium 4 arion @ Atom
AMD K7
@ AMD Ké-1ll
= curve shows transistor AMD K6
C -) 'l "
S 10,000,000 count doubling every $rernopium i
8 two years @ AMD K
— Pentium
@]
%)
- 1,000,000
()
c
©
I_
100,000
10,000
25300 -
| I I I 1
1971 1980 1990 2000 2011

Source: Wikipedia
Date of introduction 25

A more complete view

10

7

Intel 48-Core NVIDIA

- AMD 4-Core prototype Kepler GPU
Opteron = TR

_ Intel _ : »

- Pentium 4 Id
: : ..__,____..-/

DEC Alpha
21264 .
MIPS R2K —— =

Transistors
(thousands)

Parallel
Performance

| .Sequé.n.tial
Performance

Frequency
(MHz)

2 Typical Power
(Watts)

T——_Number of

Cores

homogeneous hel:erogeneous

1975 1980 1985 1990 1995 2000 2005 2010 2015

witz, F. Labonte, O. Shacham. K. Olukotun, L. Hammond

Data partially collected by M. Hore

26

So how to invest the transistors?

m Architectural innovations
= Branch prediction, Tomasulo logic/rename register, speculative execution,

= Help only so much ®

m What else?
= Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell
B.E., GPUs, MIC
= We call this “cores” these days
= Also, more intelligent devices or higher bandwidths (e.g., DMA controller,
intelligent NICs)

Source: IBM Source: NVIDIA Source: Intel

27

Towards the age of massive parallelism

m Everything goes parallel
= Desktop computers get more cores
2,4,8, soon dozens, hundreds?
= Supercomputers get more PEs (cores, nodes)
> 3 million today
> 50 million on the horizon
>1 billion in a couple of years (after 2020)

m Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
Al starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
Al is executed while A2 is running
Usually requires separate resources!

Goals of this lecture

m Motivate you!

m What is parallel computing?
= And why do we need it?

m What is high-performance computing?
" What's a Supercomputer and why do we care?

m Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

Granularity and Resources

Activities Parallel Resource

» Micro-code instruction ® |nstruction-level parallelism

" Pipelining
= VLIW

= Superscalar

30

Resources and Programming

Parallel Resource Programming
® |nstruction-level parallelism = Compiler
= Pipelining = (inline assembly)
= VLIW ® Hardware scheduling

= Superscalar

31

o
W

2b22b12 b33b23b13

.
m Systolic Array

" Data-stream driven (data counters) sutitn . |

Historic Architecture Examples -

" Multiple streams for parallelism
= Specialized for applications (reconfigurable) i H H

Source: ni.com

m Dataflow Architectures

= No program counter, execute instructions when all input arguments are

available
" Fine-grained, high overheads ((a + b) * (¢ +d))
Example: compute f = (a+b) * (c+d) abd a b ¢ d
Vo gl L
S ADD AD
ADD
m arc

/ i Source: isi.edu

actor

32

Von Neumann Architecture

m Program counter = Inherently serial!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore

(fault tolerance) (ubiquituous)

Parallel Architectures 101

UMA
core core core core
I | I I
cache cache cache cache
memory

Today’s laptops

TDM
coreI corel corel core/lne':wo rk
| | |
cache cache cache cache
imemo mnemor memeory| Imemory|

Yesterday’s clusters

m ... and mixtures of those

NUMA

coreI COI'9| corel coreI

cache] cache

memory memory

Today’s servers

RDMA
COI'E| core core COFE| network
—F—F 1% coene
| * | * L ™

memory| memory| memory| memory|

Today’s clusters

34

Programming Models :

1 2 3
m Shared Memory Programming (SM/UMA) @ @ @
= Shared address space

" |mplicit communication memen
" Hardware for cache-coherent remote memory access o
= Cache-coherent Non Uniform Memory Access (cc NUMA) 1 2 3
m (Partitioned) Global Address Space (PGAS)
"= Remote Memory Access memory
= Remote vs. local memory (cf. ncc-NUMA) s
0 1 2 3
m Distributed Memory Programming (DM)
= Explicit communication (typically messages)
® Message Passing
memony| fnemony| fmemoryl fmemor

DM 35

Shared Memory Machines

m Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?

Source: IBM

36

Shared Memory Machines

m Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, I/O and PEs

Often used if PE is the most expensive part
. . Source: IBM
Bandwidth scales with P

PE Cost scales with P, Question: what about network cost?

Answer: Cost can be cut with multistage connections (butterfly)
= “Minicomputer” — bus-based connection

All traditional SMP systems

High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)
Low cost, extensible

IMC -Memory
Controller

Shared Memory Machine Abstractions

Any PE can access all memory

" Any I/O can access all memory (maybe limited)

OS (resource management) can run on any PE

Can run multiple threads in shared memory
Used since 40+ years

Communication through shared memory

Load/store commands to memory controller
Communication is implicit

Requires coordination

Coordination through shared memory

Complex topic
Memory models

000 ¢

memory

UMA

Shared Memory Machine Programming

m Threads or processes

Communication through memory

m Synchronization through memory or OS objects

Lock/mutex (protect critical region)

Semaphore (generalization of mutex (binary sem.))
Barrier (synchronize a group of activities)

Atomic Operations (CAS, Fetch-and-add)
Transactional Memory (execute regions atomically)

m Practical Models:

Posix threads

MPI-3

OpenMP

Others: Java Threads, Qthreads, ...

000 ¢

memory

UMA

An SMM Example: Compute Pi

m Using Gregory-Leibnitz Series:

" |terations of sum can be computed in parallel
= Needs to sum all contributions at the end

3.3
3.2] 1 ~
| ‘ |||—| ||_|_|'IIIL‘I'|FJ|L‘| 00
5 1l IR
; n
- 10 20 30 40 50
Source: mathworld.wolfram.com

40

Pthreads Compute Pi Example

int main(int argc, char *argv[])

{

// definitions ...
thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t));
resultarr= (double*)malloc(nthreads * sizeof(double));

for (i=0; i<nthreads; ++i) {
int ret = pthread_create(&thread_arr[i], NULL,
compute_pi, (void*) i);
}
for (i=0; i<nthreads; ++i) {
pthread_join(thread_arr[i], NULL);
}
pi =0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

int n=10000;
double *resultarr;
int nthreads;

void *compute_pi(void *data) {
inti, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (j=0; j<n; ++j) {
h =1.0/(double) n;
sum =0.0;
for (i = myid + 1; i <= n; i += nthreads) {
x =h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}
mypi = h * sum;
}
resultarr[myid] = mypi;

}

Additional comments on SMM

m OpenMP would allow to implement this example much simpler (but
has other issues)

m Transparent shared memory has some issues in practice:
® False sharing (e.g., resultarr([])
® Race conditions (complex mutual exclusion protocols)
= Little tool support (debuggers need some work)

m Achieving performance is harder than it seems!

Distributed Memory Machine Programming

. o . . 0 1 2 3
m Explicit communication between PEs
" |Message passing or channels
m Only local memory access, no direct access to

remOte memory memory| memory, memory memory|
" No shared resources (well, the network) DM

m Programming model: Message Passing (MPI, PVM)
= Communication through messages or group operations (broadcast,
reduce, etc.)

= Synchronization through messages (sometimes unwanted side effect) or
group operations (barrier)

= Typically supports message matching and communication contexts

DMM Example: Message Passing

0 1 2 3
Match Receive Yt P | | | |
|

Addess Y

Send X, Q,t

memory| memoryj] memory memory

Addess X DM

Local pocess
addess space

Local pocess
addess space

Process P Process Q

Source: John Mellor-Crummey

= Send specifies buffer to be transmitted

m Recv specifies buffer to receive into

= Implies copy operation between named PEs
m Optional tag matching

m Pair-wise synchronization (cf. happens before)

44

DMM MPI Compute Pi Example - . = &

int main(int argc, char *argv[]) { § g g
// definitions
MPL_Init(&argc,&argv); | | |
MPI_Comm_size(MPI_COMM_WORLD, &numprocs); nemory] fmemony] | fmemory fmemory
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
DM

double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double)n;
sum = 0.0;
for (i=myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}
t+=MPI_Wtime();

if (!myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPIL_Finalize();

DMM Example: PGAS

m Partitioned Global Address Space
® Shared memory emulation for DMM
Usually non-coherent
= “Distributed Shared Memory”
Usually coherent

m Simplifies shared access to distributed data
® Has similar problems as SMM programming
= Sometimes lacks performance transparency

Local vs. remote accesses

m Examples:
= UPC, CAF, Titanium, X10, ...

memory

PGAS

46

How to Tame the Beast?

m How to program large machines?

m No single approach, PMs are not converging yet
= MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), ...

m Architectures converge

® General purpose nodes connected by general purpose or specialized
networks

® Small scale often uses commodity networks
® Specialized networks become necessary at scale

m Even worse: accelerators (not covered in this class, yet)

47

Practical SMM Programming: Pthreads

Covered in example, small set of functions for thread creation and management

User-level Threads

Practical SMM Programming: OpenMP

Source: OpenMP.org

m Fork-join model

master thread " - s 1
_____ BFE el ' - 2 i :_’ threads “a
" threads E
;! . threads .
parallel region parallel region parallel region
m Types of constructs:
l master thread l master thread l master thread
FORK FORK FORK
| | | | + Tasks
JOIN JOIN JOIN
l masfer thread l masfter thread l masfter thread Source: Blaise Barney, LLNL

OpenMP General Code Structure

#include <omp.h>

main () {
int varl, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband
}

// Resume serial code

Source: Blaise Barney, LLNL

Practical PGAS Programming: UPC

m PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3

b

Shared
c[0], c[4],.. c[1], c[5]... c[2], c[B]... c[3], c[7],-.
a a a a

Private

m Many helper library functions
= Collective and remote allocation
= Collective operations

m Complex consistency model

Practical DMM Programming: MPI-1

MPI_COMM_WORLD

© © o
C C ©
¢
C C
C
C
o ooo group1 group2 e o o
(9]

(06 °
© N
Q\/ﬁe communications o/g

Collection of 1D address spaces

Helper Functions

OO ©
/

LY,
broadcast
AR AN L
3
gather
0 1 2 3
(0,0) ©0,1) 02 | 03
4 5 6 7
(1,0) @y | o | @3
8 9 10 11
(2,0) ey | e | 23
12 13 14 15
(30 G | G | 33)

reduction

many more
(>600 total)

Source: Blaise Barney, LLNL 52

Complete Six Function MPI-1 Example

#include <mpi.h>

int main(int argc, char **argv) {

}

int myrank, sbuf=23, rbuf=32;
MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

MPI_Send(&sbuf, /* message buffer */
1, /* one data item */
MPI_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */
MPI_COMM_WORLD); /* default communicator */
} else {

MPI_Recv(&rbuf, MPI_DOUBLE, 0,99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

MPI_Finalize();

MPI-2/3: Greatly enhanced functionality

m Support for shared memory in SMM domains@ @ @ % @ @ @ @

m Support for Remote Memory Access Programming

Direct use of RDMA
Essentially PGAS

memory

memory

UMA

sy

UMA

0 1 2 3

m Enhanced support for message passing communication
= Scalable topologies

More nonblocking features

... many more

0 1 2 3
fnemory] memor -nemor,i -nemoryl
DM

54

MPI: de-facto large-scale prog. standard

Using MPI
Portable Parallel Programming
with the Message-Passing Interface

third edition

William Gropp

Ewing Lusk

Anthony Skjellum

Basic MPI

Using Advanced MPI
Modern Features of the

Message-Passing Interface

William Gropp

Torsten Hoefler

Rajeev Thakur

Ewing Lusk

Advanced MPI, including MPI-3

To appear at SC14 (11/17/2014) 55

Accelerator example: CUDA

Hierarchy of Threads

Ha =t Do
Grid 1 Source: NVIDIA
threadtp [o[7]]s[][]7] T D I S R |
e * oo | G Complex Memory Model
k E:lncﬁf,’ Biock “.
: I I GPU Grid

I

fleoat ®x = input|threadID]:

-
F— o
1 Grid 2
float ¥ = func(x); - il a

- =
-

sutput[thraadID] = y: oy " |5 L. \ Block (0, 0) Block (1, 0)
. 2 . ’ v
Block(1, 1]

DAY 101372011730

| EENE EETRETE
mmu]rmm

AN @00

Emmm) e W

Thread (0, 0) | Thread (1, 0) | Thread (0, 0) Thread (1, 0)

Simple Architecture E 200 1 2 R 2 1 T

L

Local Local Local Local
Kepler Block T — Memory Memory Memory Memory
Diagram - =

i | Global
* 8 SMX § i CPU +—r
* 1536 CUDA Cores

¢ 8 Geometry Units
* 4 Raster Units

¢ 128 Texture Units il
¢ 32 ROP units
* 256-bit GDDR5 —

Accelerator example: CUDA

Host Code
#define N 10 The Kernel
int main(void) {
int a[N], b[N], c[N]; __global__ void add(int *a, int *b, int *c) {
int *dev_a, *dev_b, *dev_gc; int tid = blockldx.x;
// allocate the memory on the GPU // handle the data at this index
cudaMalloc((void**)&dev_a, N * sizeof(int)); if (tid < N)
cudaMalloc((void**)&dev_b, N * sizeof(int)); c[tid] = a[tid] + b[tid];
cudaMalloc((void**)&dev_c, N * sizeof(int)); }

// fill the arrays 'a' and 'b' on the CPU

for (int i=0; i<N; i++) { a[i] = -i; b[i] =i *i; }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
add<<<N,1>>>(dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
// free the memory allocated on the GPU

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev c);

OpenACC / OpenMP 4.0

m Aims to simplify GPU programming

m Compiler support
= Annotations!

#define N 10
int main(void) {
int a[N], b[N], c[N];
#pragma acc kernels
for (inti=0;i<N;++i)
c[i] = a[i] + b[i];
}

More programming models/frameworks

m Not covered:
= SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
= Directives: OpenHMPP, PVM, ...
® PGAS: Coarray Fortran (Fortran 2008), ...
= HPCS: IBM X10, Fortress, Chapel, ...
® Accelerator: OpenCL, C++AMP, ...

m This class will not describe any model in more detail!
" There are too many and they will change quickly (only MPI made it >15 yrs)

m No consensus, but fundamental questions remain:
"= Data movement
= Synchronization
= Memory Models
= Algorithmics
= Foundations

Goals of this lecture

m Motivate you!

m What is parallel computing?
= And why do we need it?

m What is high-performance computing?
" What's a Supercomputer and why do we care?

m Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

Architecture Developments

J,{: 33 ',',N »

<1999 '00-05 '06-12 1320 >2020
distributed large cache- large cache- coherent and non- largely non-
memory coherent multicore coherent multicore coherent coherent
machlne§ _ machines machines manycore accelerators and
communicating communicating communicating accelerators and multicores
through through coherent through coherent multicores communicating
messages memory access memory access communicating through remote

and messages and remote direct through memory direct memory
memory access access and remote

access

direct memory
access

AMD Buldozer

Sources: various vendors

Case Study 1: IBM POWER7 IH (BW)

Blue Waters System

Building Block
SuperNode
(1024 cores) 5 IIIIIIIIT‘_IHIIIIII:'?J
5 TUYTTN - YUY M
Drawer 5 ||||||||f‘E§"um|n|—ﬂ Near-line Storage
(256 Cores) 5 [TTTITUIN | T -
A TN On-line Storage
SMP node
(32 cores)
P7 Chip
(8 cores) | mmE

Source: IBM/NCSA

62

POWERY7 Core

- Execution Units
= 2 Fixed point units
= 2 Load store units
4 Double precision floating point

1 Branch

1 Condition register

1 Vector unit

1 Decimal floating point unit
6 wide dispatch

Recovery Function Distributed
1,2,4 Way SMT Support

Out of Order Execution

32KB |-Cache

32KB D-Cache

256KB L2
= Tightly coupled to core

Source: IBM/NCSA

63

POWER?7 Chip (8 cores)

Quad-chip MCM
m Base Technology

= 45 nm, 576 mm?2
= 1.2 B transistors

m Chip =

= 8cores e

= 4 FMAs/cycle/core — é%gl'a’ ‘

= 32 MB L3 (private/shared) gL Sl TULE ,

= Dual DDR3 memory = — ot v
128 GiB/s peak bandwidth == === BB T
(1/2 byte/flop) o 5, ek AR :

= Clock range of 3.5 — 4 GHz | e — VT T [

S : IBM/NCSA
ource 64

Quad Chip Module (4 chips)

32 cores

= 32 cores*8 F/lcore*4 GHz=1TF

4 threads per core (max)

= 128 threads per package

4x32 MiB L3 cache
= 512 GB/s RAM BW (0.5 B/F)

800 W (0.8 W/F)

Source: IBM/NCSA

8c uP

N O < T

A Clk Gr

B Clk Grp

C Clk Grp

D Clk Grp

A CIk Grp

o S—
B Clk Grp
o S—
C Clk Grp
-
o S—

D Clk Grp

MC 1

X >» < 0

P7-3

8c uP

< 0O X >

8c uP

P7-1

A Clk Grp

MC O

——
B Clk Grp

e —
C Clk Grp

—
D Clk Grp

A Clk Grp
—
< B Clk Grp
—

C CIk Grp

-
—

D Clk Grp

Adding a Network Interface (Hub)

m Connects QCMto PCl-e s G e
o] ey
—= p7.0 p7-1 [* = = [T e
= Two 16x and one 8x PCl-e slot = | e =
. D W
L = =l
m Connects 8 QCM's via low - c c
latency, high bandwidth, Wy "o 2
copper fabric. L L
G C © 5
" Provides a message passing o . g
mechanism with very i R .
- . o (Mem]Jj=—3
high bandwidth i e M P7-2
S [Mem Jl—xH =
: . & [Wem | 8c uP 8c uP
= Provides the lowest possible
latency between 8 QCM's ;PO
mhan BE W owowowowmowm kR x
H\ O

Source: IBM/NCSA
66

1.1 TB/s POWER7 IH HUB

m 192 GB/s Host Connection
m 336 GB/s to 7 other local nodes
m 240 GB/s to local-remote nodes
m 320 GB/s to remote nodes
m 40 GB/s to general purpose I/O
m cf. “The PERCS interconnect” @Hotl’10

Source: IBM/NCSA

L local
HUB To HUB Copper Board Wiring

< o
&

& a
[
[

PX0 Bus
PX1Bus

nooom

XGT———-

«——— Hot Plug Ctl

XgT——— -

«—— Hot Plug Ctl

x0T
9T

LLO Bus-#——38-

PCI-E
10 PHY
PCI-E
10 PHY

Copper 88—
LL1 Bus-——88
Copper 88—

LL2 Bus<#——88B
Copper 8B——|

LL3 Bus——8——|
Copper 88———|

Torrent

El-3 PHYs

LL4 Bus-4——s8B-
Copper 88—

LL5 Bus-——388-
Copper 88—

LL6 Bus<#——s8B
Copper 8B———|

Diff PHYs

Ex———|

24
L remote
Buses

LRO Bus ~#——6x

[J
LR23 Bus «#—6x

Optical

L remote
4 Drawer Interconnect to Create a Supernode
Optical

., TMPD-B

<« o & g
S o o @ &
mmmmm
EEEEE

D-

~~~~~

Diff PHYs

o]

12C_0 + Int

e o o
28
12C
12C

12C_27 + Int

12x—= DO Bus
Optical

17}
©
83

D Bus
Interconnect of Supernodes

o
o

12x——>»= D15 Bus
2 Optical

67

To Optical
Modules

Optical



64/40 Optical

64140 Optical

AUri-1, 49914 ¥0g'2
S3|NpoN dNH
wojj no-uey [eondo

BUNINIU-ZN
60NNIA-LN

BUNINIUYIN
B60NNIC-9N

CTNIA-9N
N

BUNINIU~SIN
60NNIC-SN

CTNINIA-SN
N

BUNWIUTN
60WINId-YN

BUNINIU-CIN
60NNIA-ZN

CTWIG-ZN

BUNAWIU-LN
60NINIA-TN

CTNWIG-TN

BUNINIUUN
60NNIC-ON

CTWNIA-ON
€T d-ON
2

P7-1 [P7-3 P7-1 P7-3 P7-1 [P7-3

P7-1 [P7-3

@
e
o
-
e
o

P7-1 P7-3 P7-1 P7-3

P7-1 [P7-3

OOWINIC-LN
A HOEE_D.NZ

‘ 90WINIG-LN
LOWWIQ-ZN

00AWIG-9N
A TOWINIG-ON

‘ 90NINIG-9
LOWINIG-ON

00WWIG-SN
A TOWWIA-SN

‘ 90WINIG-SN
LOWINIQ-GN

‘ 90WINIA-¥N
LOAWIG-YN
00AWIG-EN

A TOWIWIG-EN

‘ 90WINIG-EN
LOWIIG-EN

00AWIG-¢N
A TOWIIA-ZN

‘ 90NWIA-¢N
LOWINIG-ZN

O00AWIG-TN
A TOWIWIG-TN

‘ 90WINIA-TN
LONWIGQ-TN
00AWIG-ON

A TONWIG-ON

‘ 90WINIG-ON
LOWNIG-ON

P7 IH Drawer

8 nodes

32 chips

256 cores

First Level Interconnect

> L-Local

»>HUB to HUB Copper Wiring

> 256 Cores

68

Source: IBM/NCSA



POWER7 IH Drawer @ SC09




P7 I H S u p e r n O d e 2" Level Interconnect (1,024 cores) 2" Level Interconnect (1,024 cares)

Second Level Interconnect

=Optical ‘L-Remote’ Links from HUB

=4 drawers

UB UB.
5 6 7
—
=1,024 Cores R
’ alrialeizlz
6 6. |5 |4 {3 (2 [

‘D-Link’ D-Link: D-Link' ‘D-Link'
64/40 Optical 64/40 Optical 64140 Optical 64/40 Optical

00000000 00000000

4.6 TB/s

467 BW of 1150
Bisection BW
Super Node 10G-E ports
a -
(32 Nodes / 4 CEC) T R R AR T [T R R R T
o 64/40 Optical . [&( |&|.(& & IS &) |8 |#] |& ] £l € (&) 18 64/40 Optical. 64/40 Optical |&{ €] [€].|8] |& ] (e, ] " e 64/40 Optical
B-Link’ b |a8](a8{ hetl A hd o] B2 F 8 1714e] 18] (4] [3] 2 "D-Link® 'D-Link! | [pe] [ hl fta {o] B2 F|8] [7] [6): (8] 14 43] (2] [+ D-Link'
» g g
: :
: :
E 5
3 H AL ISR E RS 24 B
N e CE— s LT L HOHH HOH 0 T = =/} = ) A i,
’ —" N— —
o UB U HUB HUB HUB UB UB Ui UB U HUB HUB HUB UB UB Ui
- - = 0 1 2 3 4 5 6 0 1 2 3 4 5 6
—

2" Level Interconnect (1,024 cores) 2" Level Interconnect (1,024 cores)
Source: IBM/NCSA 70



Case Study 2: IBM Blue Gene/Q packaging

2. Module 3. Compute Card
Single Chip One single chip module,
_ 16 GB DDR3 Memoh 4. Node Card
1. Chip 16 g 32 Compute Cards,
16 cores ~ \ : ‘ Optical Modules, Link Chips, Torus

—

16 5b. I/0O Drawer
8 1/0 Cards

8 PCle Genz2 slots 2 Midplanes
1,2 or 41/0 Drawers

5a. Midplane
16 Node Cards

—
——
e
-
=
-
-

AR R

16384

8192
Source: IBM, SC10



Blue Gene/Q Compute Chlp

System-on-a-Chip design : integrates processors, 360 mm? Cu-45 technology (SOI)
memory and networklng logic into a single chip = ~1.47 B transistors

LR ] BT R R BT KL R R e R 16 user + 1 service processors
&3 ® plus 1 redundant processor

= all processors are symmetric

® each 4-way multi-threaded

" 64 bits PowerISA™

®"1.6 GHz
T = = L11/D cache = 16kB/16kB
A WG T S = L1 prefetch engines

| i 06 N
= each processor has Quad FPU

(4-wide double precision, SIMD)
® peak performance 204.8 GFLOPS@55W

m Central shared L2 cache: 32 MB
= eDRAM

= multiversioned cache/transactional
memory/speculative execution.

"= supports atomic ops

oa

H RN
ia
!
]
I! -
B L
e

mm]iem

m Dual memory controller
" 16 GB external DDR3 memory
" 1.33Gb/s
= 2 * 16 byte-wide interface (+ECC)

@

=

e

+.Serdes - . . .
m Chip-to-chip networking
® Router logic integrated into BQC chip.

Source: IBM, PACT'11



R R T NC T B T e =

ocam BN

Blue Gene/Q Network

m On-chip external network
m Message Unit
m Torus Switch
m Serdes
m Everything!
m Only 55-60 W per node
m Top of Green500 and
GreenGraph500

P}H' L2 ‘r
F Hil 07 HH

X
b
a
r

S
w
i

it

C
h

~_Serdes -

Source: IBM, PACT'11

73



Case Study 3: Cray Cascade (XC30)

m Biggest current installation at CSCS! ©
= >2k nodes

m Standard Intel x86 Sandy Bridge Server-class CPUs
~~ m‘r“r“r“r“rtt‘rl‘h‘h‘lt‘lt‘l':'lt'r:_ ~

/HUUHHUHHMHUHNM*

o o o b S St S Sl S St Sl S

‘jhhhhhhhhthmmmr

backplanes
connected with

~~~~~~

copper cables in a

group:
“Black Network”

. \v-: s': t :,t‘,vt‘,v:', Z‘y:‘r.‘r_‘ |

‘—., \
o 5\
. .ﬁ.. . . ﬁ = ﬁ E =.'= . é"ﬁ\'ﬁ
{
‘,
~]

SATY
R R R

{0 3ig s Optical cables
) o - : interconnect
ﬁhhhhﬁﬁﬁhhh,
, \ l\ (| - 1| \ groups

“Blue Network”

. - e b _~ .,,. .,,_ ...,_

S Bob Al Cray E E E E

Aries connected by

x
4 nodes connect backplane
to a single Aries “Green Network”

74

Cray Cascade Network Topology

m All-to-all connection among groups (“blue network”)

Group 0 Group 1 Group 2 Group 3 Group 4

Source: Bob Alverson, Cray

m What does that remind you of?

Group 5

Group 6

75

Goals of this lecture

m Motivate you!

m What is parallel computing?
= And why do we need it?

m What is high-performance computing?
" What's a Supercomputer and why do we care?

m Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

DPHPC Lecture

m You will most likely not have access to the largest machines
= But our desktop/laptop will be a “large machine” soon
= HPC is often seen as “Formula 1” of computing (architecture experiments)

m DPHPC will teach you concepts!
" Enable to understand and use all parallel architectures
®" From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI — same concepts, different syntax
= No particular language (but you should pick/learn one for your project!)

Parallelism is the future:

WE NEED TO FINISH YOUR
PROGRAM TWICE AS FAST,
SO TM ADDING A PERSON
TO HELP YOU.

YOU MIGHT NEED
TO TRAIN HIM

Img. (HYC)

TELL ME AGAIN

A LITTLE BEFORE : WJHAT THE BIG
HES PRODUCTIVE.

GLOWING
THING I5.

Faature Syndica

]

o\

G Arpag E-mail; SCOTTADAMS®ACL.COM

J-F @ 1995 Unitad

77

Related classes in the SE focus

m 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2015
Lecturer: Prof. M. Vechev

m 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-

springl4/course.html
Spring 2015
Lecturer: Prof. M. Pueschel

m This list is not exhaustive!

78

http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html

DPHPC Overview

DPHPC\
2 IocTIity Egralle\lism
s | - \
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
Qe , cache coherency ,
o | |
P memory | distributed |
o models ' algorithms '
S
= locks group commu-
& lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law ,

| |
2 : memory o PRAM - LogP :
@) | I I |
: o

I/O complexity

balance principles | balance principles Il
Little's Law scheduling

