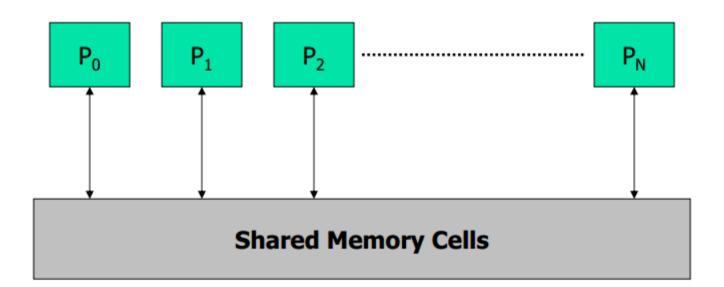
Tutorial 10 – PRAM

Arnamoy Bhattacharyya
SPCL

PRAM (Parallel RAM)



Strengths of PRAM

- Natural extension of RAM
- It is simple and easy to understand
 - Removes communication and synchronization issues
- Can be used as a benchmark
 - If algorithm fails on PRAM then too bad
- It is useful to reason (specially with increasing shared memory machines)

Memory Classifications

- PRAMs are classified based on their Read/Write abilities
 - Exclusive Read (ER) all processors can simultaneously read from distinct memory locations
 - Exclusive Write (EW) all processors can simultaneously write to distinct memory locations
 - Concurrent Read (CR) All processors can simultaneously read from any memory location
 - Concurrent Write (CW) All processors can write to any memory location

Concurrent Write (CW)

- What value gets written finally?
 - Priority CW processors have priority based on which write value is decided
 - Common CW multiple processors can simultaneously write only if values are same
 - Arbitrary/Random CW any one of the values are randomly chosen

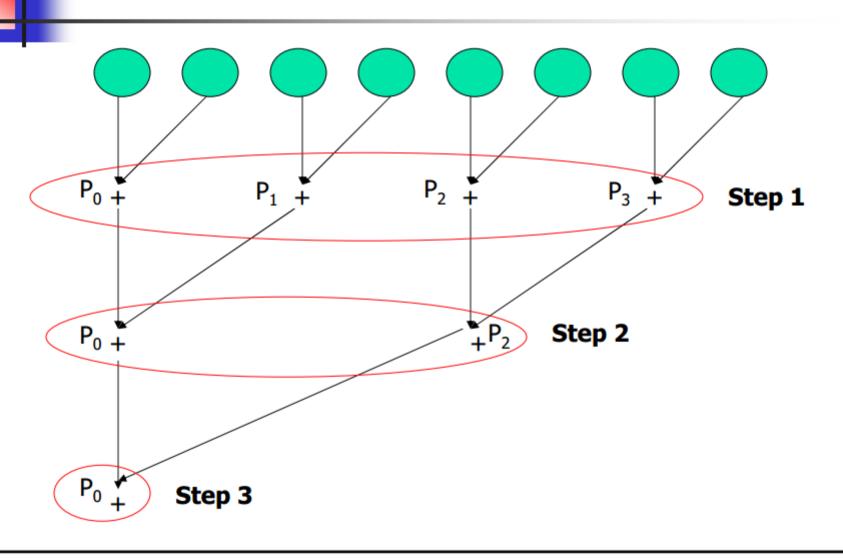
Strength of PRAM models

Model A is computationally stronger
 (>=) than model B iff any algorithm written for B will run unchanged on A

An initial example

- How do you add N numbers residing in memory location M[0,1, ..., N]
- Serial Algorithm = O(N)
- PRAM Algorithm using N processors P₀, P₁, P₂, ..., P_N????

Parallel Addition



Parallel Addition

- log(n) steps=time needed
- n/2 processors needed
- Speed-up = n/log(n)
- Efficiency = 1/log(n)
- Applicable for other operations too
 - +, *, <, >, == etc.

Example 2 (complicating things)

- **p** processor PRAM with *n* numbers (p ≤ n)
- Does x exist within the n numbers?
- P₀ contains x and finally P₀ has to know
- Algorithm
 - Inform everyone what x is
 - Every processor checks [n/p] numbers and sets a flag
 - Check if any of the flags are set to 1

Example 2 (complicating things)

- Inform everyone what x is
- Every processor checks [n/p] numbers and sets a flag
- Check if any of the flags are set to 1

- log(p)
- n/p
- log(p)

- **1**
- n/p
- log(p)

- 1
- n/p
- 1

EREW

CREW

CRCW (common)

Example 3 Compute OR

- Initially
 - table A contains values 0 and 1
 - output contains value 0

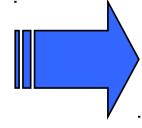
for each
$$1 \le i \le 5$$
 do in parallel if $A[i] = 1$ then output=1;

 The program computes the "Boolean OR" of A[1], A[2], A[3], A[4], A[5]

Example 4 Pascal's Triangle

 Assume initially table A contains [0,0,0,0,0,1] and we have the parallel program

for each
$$1 \le i \le 5$$
 do in parallel $A[i]$; $= A[i] + A[i+1]$



then the consecutive values of the tables A (in parallel step 0, 1, 2, 3, 4, 5) correspond to the Pascal triangle, the nonzero elements in the n-th row are

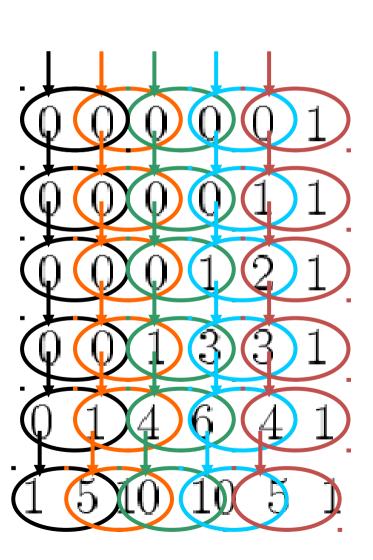
$$\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots \binom{n}{n}$$
 for $n = 0, 1, 2, 3, 4, 5, 6$.

Example 4 Pascal's Triangle

$$\binom{n}{0}, \ \binom{n}{1}, \ \binom{n}{2}, \ \dots \binom{n}{n}$$
 for $n = 0, 1, 2, 3, 4, 5, 6$.

PRAM CREW

for each $1 \le i \le 5$ do in parallel A[i]; = A[i] + A[i+1]



Finding Maximum: CRCW Algorithm

Given n elements A[0, n-1], find the maximum.

With n² processors, each processor (i,j) compare A[i] and A[j], for 0 i, j n-1.

```
FAST-MAX(A):
                                                               A[j]
        n length[A]
                                                         5 6 9 2 9 m
        for i 0 to n-1, in parallel
             do m[i] true
                                                       5 F TT FT
        for i 0 to n-1 and j
                           0 to n-1, in parallel
                                                       6 F FT FT
             do if A[i] < A[i]
                                                 A[i]
                then m[i]
                          false
                                                       9|FFFFFT
        for i 0 to n-1, in parallel
    7.
                                                       2|TTTFT|
             do if m[i] =true
               then max
                          A[i]
                                                       9 F F F F F T
        return max
    10.
                                                                max=9
```

The running time is O(1).

Note: there may be multiple maximum values, so their processors Will write to max concurrently. Its $work = n^2 \times O(1) = O(n^2)$.