Tutorial 10 — PRAM

Arnamoy Bhattacharyya
SPCL

*Some slides are taken from http://cseweb.ucsd.edu/groups/csag/html/teaching/cse160s05/lectures/Lecturel2.pdf



* PRAM (Parallel RAM)

Shared Memory Cells




i Strengths of PRAM

= Natural extension of RAM

= It is simple and easy to understand

= Removes communication and
synchronization issues

= Can be used as a benchmark
=« If algorithm fails on PRAM then too bad

= It is useful to reason (specially with
increasing shared memory machines)




i Memory Classifications

= PRAMs are classified based on their Read/Write
abilities
= Exclusive Read (ER) — all processors can
simultaneously read from distinct memory locations

=« Exclusive Write (EW) — all processors can
simultaneously write to distinct memory locations

« Concurrent Read (CR) — All processors can
simultaneously read from any memory location

=« Concurrent Write (CW) — All processors can write to
any memory location




i Concurrent Write (CW)

= What value gets written finally?

= Priority CW — processors have priority
based on which write value is decided

« Common CW — multiple processors can
simultaneously write only if values are
same

= Arbitrary/Random CW — any one of the
values are randomly chosen




i Strength of PRAM models

= Model A is computationally stronger
(>=) than model B /fany algorithm
written for B will run unchanged on A

Priority >= Arbitrary >= Common >= CREW >= EREW

Most , Least
powerful powerful
Least Most

realistic realistic




i An initial example

= How do you add N numbers residing in
memory location M[O0,1, ..., N]

= Serial Algorithm = O(N)

= PRAM Algorithm using N processors Py,
PPy, PL2?22




i Parallel Addition

s

Pn + P; Step 1

Pn “P,) Step2

Pol ) Step3




i Parallel Addition

= log(n) steps=time needed

= N/2 processors needed

s Speed-up = n/log(n)

= Efficiency = 1/log(n)

= Applicable for other operations too
s +, *, <, >, == elc.




i Example 2 (complicating things)

s p processor PRAM with 7 numbers (p < n)
= Does x exist within the 7 numbers?
= P, contains x and finally P, has to know

o Algorlthm
« Inform everyone what xis

« Every processor checks [n/p] nhumbers and
sets a flag

= Check if any of the flags are set to 1




i Example 2 (complicating things)

Inform everyone what xis

= Every processor checks [n/p] numbers

and sets a flag

= Check if any of the flags are set to 1

= log(p) s 1

= N/p = n/p

= log(p) = log(p)
EREW CREW

w1

= n/p
a1

CRCW
(common)




Example 3 Compute OR

* |nitially
- table A contains values O and 1
— output contains value O

for each 1 <12 <5 do in parallel
if Ali] = 1 then output=1;

* The program computes the “Boolean OR” of
A[1], Al2], A[3], Al4], A[5]



Example 4 Pascal's Triangle

* Assume initially table A contains [0,0,0,0,0,1] and we
have the parallel program

for each 1 <7 < 5 do m parallel
Alil; = Ald] + Al + 1]

then the consecutive values of the tables A (in parallel
|| step 0, 1, 2, 3, 4, 5) correspond to the Pascal triangle,
the nonzero elements in the n-th row are

) () @) - ()

forn = 0,1,2,3,4,5,6.




Example 4 Pascal's Triangle

o) (D) @) - ()

torn = 0,1,2,3,4,5,6.

QOOOQ L

PRAM CREW

for each 1 <1 <5 do 1n parallel
Ali]; = Ali] + Ali + 1]




Given n elements A[Q, n-1], find the maximum.

Finding Maximum: CRCW Algorithm

With n2 processors, each processor (i,j) compare Ali] and A[j], for 0 1|, j

FAST-MAX(A):

R T T

(=
e

n length[A]
fori 0Oton-1,in parallel

do m[i] true
Oton-1and]
do if Ali] < A[j]
then m(i] false
0 to n-1, in parallel
do if m[i] =true
then max  Ali]
returm max

fori 0 to n-1, in parallel

fori

The running time is O(1).
Note: there may be multiple maximum values, so their processors
Will write to max concurrently. Its work = n? x O(1) =0(n?).

Alj]
56929

n-1.

Ali]

O N O gy U

F A B
| ol -0 il
FEE BE
i b g Il -l
FFEFFEEF

e B s B B s s s

max=9




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Example CRCW-PRAM
	Example CREW-PRAM
	Pascal triangle
	Slide 15

