
OpenMP Tutorial

Arnamoy Bhattacharyya

Scalable Parallel Computing Laboratory

ETH Zurich

Oct 2, 2014

OpenMP is an API for Parallel Programming

First developed by the OpenMP Architecture Review Board (1997),
now a standard

Designed for shared memory multiprocessors

Consists:

1.Set of compiler directives
2.Library functions
3.Environment variables

NOT a language

OpenMP vs MPI

Pros:
• considered by some to be easier to program and debug (compared to
MPI)
• data layout and decomposition is handled automatically by directives.
• unified code for both serial and parallel applications: OpenMP constructs
are treated as comments when sequential compilers are used.
• original (serial) code statements need not, in general, be modified when
parallelized with OpenMP. This reduces the chance of inadvertently
introducing bugs and helps maintenance as well.
• both coarse-grained and fine-grained parallelism are possible

Cons:
• currently only runs efficiently in shared-memory multiprocessor platforms
• requires a compiler that supports OpenMP.
• lacks fine-grained mechanisms to control thread-processor mapping.
• synchronization between subsets of threads is not allowed.
• mostly used for loop parallelization

Pros and Cons of MPI

Pros
• does not require shared memory architectures which are more
expensive than distributed memory architectures
• can run on both shared memory and distributed memory
architectures
• highly portable with specific optimization for the implementation on
most hardware

Cons
• requires more programming changes to go from serial to parallel
version
• can be harder to debug

OpenMP is based on Fork/Join model

When program starts, one Master thread

Master thread executed sequential portion of the program

At the beginning of parallel region, master thread forks new threads

All the threads together now forms a “team”

At the end of the parallel region, the forked threads die

Picture!!

Special Features of OpenMP

Parallelism can be added incrementally

Sequential program is a special case of
multi-threaded program

Demo of Hello World OpenMP

#pragma omp parallel

printf(“Hello world\n”);
MPI_Init (&argc, &argv);/* starts MPI */

printf("Hello world \n”);

MPI_Finalize();

gcc -fopenmp args
icc -openmp args

http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

For Loop:

#pragma omp parallel
#pragma omp for

for(.....)

For Loop:

#pragma omp parallel for

for(.....)

Tells the compiler that the for loop “immediately” following has to be executed
in parallel

The number of loop iterations MUST be computable at runtime

Loop must not contain break, return or exit

Loop must not contain goto label outside of the loop

For Loop:

int first, *marked, prime, size;

#pragma omp parallel for

for(i = first; i <size; i+=prime)
marked[i] = 1;

Threads are assigned an independent set of iterations

Thread must wait at the end of the construct

Loops are not enough. Sometimes we may need a BLOCK of code to
Be executed in parallel

 #pragma omp parallel
{

doSomeWork(res,M);
doSomeMoreWork(res,M);

}

The for pragma can be used inside a block of code that is marked with
parallel pragma

#pragma omp parallel
{

doSomeWork(res,M);
#pragma omp for
{

for(i<-1....M)
res[i] = huge();

}
doSomeMoreWork(res,M);

}

There is implicit barrier at the end of the for loop

Most of the time OpenMP is used in case of loops

You have to make sure that the consistency of the program remains.

main() {
int i, j, k;
float **a, **b;

for(k=0; k<N;k++)
for(i=0;i<N;i++)

for(j=0; j<N;j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

}

Which Loop to execute in parallel?

Loop carried dependence

Can be executed in parallel

Can be executed in parallel

Floyd's algorithm to solve all-pair shortest path problem

There is overhead at every instance of fork-join

#pragma omp parallel for
for(....)

We want to maximize the amount of work that is done for each fork join

We parallelize the middle loop for maximum gain.

main() {
int i, j, k;
float **a, **b;

for(k=0; k<N;k++)
#pragma omp parallel for
for(i=0;i<N;i++)

for(j=0; j<N;j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

}

But 'j' is shared, which might
cause problem

main() {
int i, j, k;
float **a, **b;

for(k=0; k<N;k++)
#pragma omp parallel for private(j)
for(i=0;i<N;i++)

for(j=0; j<N;j++)
a[i][j] = MIN(a[i][j], a[i][k]+a[k][j]);

}

Tells the compiler to make the listed variables private
To each thread

Dot Product

float dot_product(float *a, float * b, int N)
{

float sum = 0.0;

#pragma omp parallel for private(sum)

for(int i=0; i<N; i++)
sum += a[i]*b[i];

}

Why the private clause will not work in this example?

We will use reduction

reduction(op:list)

A PRIVATE copy of each list variable is created and initialized depending
On the “op”

The copies are updated by threads

At the end of construct, local copies are combined through 'op' into
A single value and then combined with the original SHARED variable
Value.

float dot_product(float *a, float * b, int N)
{

float sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for(int i=0; i<N; i++)

sum += a[i]*b[j];
}

Local copy of sum in each thread

All local copies are combined at the end and stored in shared copy

http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

static long num_rects = 100000;
double step;
int main ()
{

 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_rects;

 for (i=0;i< num_rects; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);

 }
 pi = step * sum;

}

What variables can be shared?

num_rects, step

What variables needs to be private?

x, i

static long num_rects = 100000;
double step;
int main ()
{

 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_rects;

 for (i=0;i< num_rects; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);

 }
 pi = step * sum;

}

What variables are reduced?

sum

static long num_rects = 100000;
double step;
int main ()
{

 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_rects;

 for (i=0;i< num_rects; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);

 }
 pi = step * sum;

}

static long num_rects = 100000;
double step;
int main ()
{

int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_rects;

#pragma omp parallel for private(x) reduction(+:sum)
 for (i=0;i< num_rects; i++){

 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);

 }
 pi = step * sum;

}

Synchronization

Barrier

Lock

Ordered

Synchronization: Barrier

Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id);
}

omp_lock_t writelock;
omp_init_lock(&writelock);

#pragma omp parallel for
for (i = 0; i < x; i++)
{
 // some stuff

 omp_set_lock(&writelock);
 // one thread at a time stuff
 omp_unset_lock(&writelock);

 // some stuff
}
omp_destroy_lock(&writelock);

Synchronization:Locks

Synchronization:Ordered

used when part of the loop must execute in serial order

#pragma omp parallel for private(myval) ordered
{
 for(i=1; i<=n; i++){
 myval = do_lots_of_work(i);
 #pragma omp ordered
 {
 printf("%d %d\n", i, myval);
 }
 }
}

https://hpcforge.org/plugins/mediawiki/wiki/pracewp8/images/6/68/XeonPhi.pdf

https://hpcforge.org/plugins/mediawiki/wiki/pracewp8/images/6/68/XeonPhi.pdf

Xeon Phi vs. GPUs"

There are some similarities between Xeon Phi and GPUs"
•   Both require a host CPU"
•   Communicate with the host CPU via PCI"
•   Very fast at data-parallel computational tasks (like many of those we tackle in HPC)"
•   Very slow at other tasks!"
•   Allow the host CPU to “offload” work to the device"

But with some interesting differences"
•   Based on x86 architecture"
•   OpenMP code for x86 can be compiled to run with little or no modification."
•   Offer some useful alternatives to offload operation (ssh, native, MPI)"

Some interesting new Pragmas for OpenMP

OpenMP 4.0 for Devices

#pragma omp simd [clauses]

Single threaded loop with vector instructions

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

SIMD loop clauses:

safelen(length)

Number of loop iterations that can be executed in SIMD mode
Without dependence violation

for(i = 0; i < 2000; i++)
{

if(i <200)
arr[i] = val;

else
arr[i] = arr[i-1] + 1;

}

safelen(200)

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

Parallelize and vectorize at the same time:

#pragma omp for simd

1. Distribute the loop iterations across thread teams
2. Subdivide loop chunks to fit a vector register

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

Coprocessor execution

Transfer Control/ data from the host to the device (coprocessor)

#pragma omp target [data] [clause]

Clauses can be:

device(scalar integer expression)
map(alloc | to | from | tofrom : list)

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

Affinity matters:

Thread affinity in OpenMP 4.0

Concept of places:
1. Set of threads running on one or more processors
2. Can be defined by user
3. Pre-defined places available

threads: one place per hyperthread
cores: One place exists per physical core

sockets: One place per processor package

And affinity policies:
spread: spread openmp threads evenly among the places
close: pack threads close to the Master thread in a place
master: Collocate threads with the Master thread

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

https://software.intel.com/en-us/articles/openmp-40-for-simd-and-affinity-features-with-intel-xeon-processors-and-intel-xeon-phi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

