
Message Passing InterfaceMessage Passing Interface

DPHPC2014

Timo Schneider <timos@inf.ethz.ch>

mailto:timos@inf.ethz.ch

MPI (Message Passing Interface)
• A standard message passing specification for the vendors to implement

• Context: distributed memory parallel computers
– Each processor has its own memory and cannot access the memory of other

processors
– Any data to be shared must be explicitly transmitted from one to another

• Most message passing programs use the single program multiple data
(SPMD) model
– Each processor executes the same set of instructions
– Parallelization is achieved by letting each processor operation a different piece of

data
– MIMD (Multiple Instructions Multiple Data)

SPMD example
main(int argc, char **argv){

if(process is assigned Master role){
 /* Assign work and coordinate workers and collect results */
 MasterRoutine(/*arguments*/);
 } else { /* it is worker process */
 /* interact with master and other workers. Do the work and

send results to the master*/
 WorkerRoutine(/*arguments*/);
 }
}

Why MPI?
• Small

– Many programs can be written with only 6 basic functions

• Large
– MPI’s extensive functionality from many functions

• Scalable
– Point-to-point communication

• Flexible
– Don’t need to rewrite parallel programs across platforms

Communicator
• An identifier associated with a group of processes

– Each process has a unique rank within a specific
communicator from 0 to (nprocesses-1)

– Always required when initiating a communication by calling
an MPI function

• Default: MPI_COMM_WORLD
– Contains all processes

• Several communicators can co-exist
– A process can belong to different communicators at the

same time

Hello World
#include "mpi.h”

int main(int argc, char *argv[]) {

int nproc, rank;

MPI_Init (&argc,&argv); /* Initialize MPI */

MPI_Comm_size(MPI_COMM_WORLD,&nproc); /* Get Comm Size*/

MPI_Comm_rank(MPI_COMM_WORLD,&rank); /* Get rank */

printf(“Hello World from process %d\n”, rank);

MPI_Finalize(); /* Finalize */

return 0;

}

How to compile…
• Need to tell the compiler where to find the MPI include

files and how to link to the MPI libraries.
• Fortunately, most MPI implementations come with

scripts that take care of these issues:
– mpicc mpi_code.c –o a.out

• Two widely used (and free) MPI implementations
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich)
– OPENMPI (http://www.openmpi.org)

Blocking Message Passing
• The call waits until the data transfer is done

– The sending process waits until all data are transferred to the
system buffer

– The receiving process waits until all data are transferred from the
system buffer to the receive buffer

– Buffers can be freely reused

Blocking Message Send
MPI_Send (void *buf, int count, MPI_Datatype dtype, int dest, int tag,

MPI_Comm comm);

• buf Specifies the starting address of the buffer.
• count Indicates the number of buffer elements
• dtype Denotes the datatype of the buffer elements
• dest Specifies the rank of the destination process in the group

associated with the communicator comm

• tag Denotes the message label
• comm Designates the communication context that identifies a group of

processes

Blocking Message Send

Standard (MPI_Send)
The sending process returns when the system can
buffer the message or when the message is received
and the buffer is ready for reuse.

Buffered (MPI_Bsend) The sending process returns when the message is
buffered in an application-supplied buffer.

Synchronous (MPI_Ssend)
The sending process returns only if a matching receive
is posted and the receiving process has started to
receive the message.

Ready (MPI_Rsend) The message is sent as soon as possible.

Blocking Message Receive
MPI_Recv (void *buf, int count, MPI_Datatype dtype, int source, int tag,

MPI_Comm comm, MPI_Status *status);

• buf Specifies the starting address of the buffer.
• count Indicates the number of buffer elements
• dtype Denotes the datatype of the buffer elements
• source Specifies the rank of the source process in the group associated

with the communicator comm

• tag Denotes the message label
• comm Designates the communication context that identifies a group of

processes

• status Returns information about the received message

Example (from http://mpi.deino.net/mpi_functions/index.htm)

…
if (rank == 0) {
 for (i=0; i<10; i++) buffer[i] = i;
 MPI_Send(buffer, 10, MPI_INT, 1, 123, MPI_COMM_WORLD);
} else if (rank == 1) {
 for (i=0; i<10; i++) buffer[i] = -1;
 MPI_Recv(buffer, 10, MPI_INT, 0, 123, MPI_COMM_WORLD, &status);
 for (i=0; i<10; i++)

 if (buffer[i] != i)
 printf("Error: buffer[%d] = %d but is expected to be %d\n", i, buffer[i], i);
 }
…

Non-blocking Message Passing
• Returns immediately after the data transferred is

initiated
• Allows to overlap computation with communication
• Need to be careful though

– When send and receive buffers are updated before the
transfer is over, the result will be wrong

Non-blocking Message Passing
MPI_Isend (void *buf, int count, MPI_Datatype dtype, int dest, int tag,

MPI_Comm comm, MPI_Request *req);

MPI_Irecv (void *buf, int count, MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Request *req);

MPI_Wait(MPI_Request *req, MPI_Status *status);

• req Specifies the request used by a completion routine when
called by the application to complete the send operation.

Blocking MPI_Send MPI_Bsend MPI_Ssend MPI_Rsend MPI_Recv

Non-blocking MPI_Isend MPI_Ibsend MPI_Issend MPI_Irsend MPI_Irecv

Non-blocking Message Passing
…
right = (rank + 1) % nproc;
left = rank - 1;
if (left < 0) left = nproc – 1;
MPI_Irecv(buffer, 10, MPI_INT, left, 123, MPI_COMM_WORLD, &request);
MPI_Isend(buffer2, 10, MPI_INT, right, 123, MPI_COMM_WORLD,

&request2);
MPI_Wait(&request, &status);
MPI_Wait(&request2, &status);
…

How to execute MPI codes?
• The implementation supplies scripts to launch the MPI parallel

calculation
– mpirun –np #proc a.out
– mpiexec –n #proc a.out

• A copy of the same program runs on each processor core
within its own process (private address space)

• Communication
– through the network interconnect
– through the shared memory on SMP machines

Collective communications
• A single call handles the communication between all

the processes in a communicator

• There are 3 types of collective communications
– Data movement (e.g. MPI_Bcast)
– Reduction (e.g. MPI_Reduce)
– Synchronization (e.g. MPI_Barrier)

Synchronization
• int MPI_Barrier(MPI_Comm comm)

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[]) {
 int rank, nprocs;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Barrier(MPI_COMM_WORLD);
 printf("Hello, world. I am %d of %d\n", rank, nprocs);
 MPI_Finalize();
 return 0;
}

Homework
• Find an iterative method to calculate Pi (if you cannot find one

read http://en.wikipedia.org/wiki/Monte_Carlo_method)
• Write a sequential version in C
• Write a parallel version using MPI (based on seq. Code)

