spcl.inf.ethz.ch

ETHzirich o T e e T ¥ @spol_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session 2
Advanced MPI Concepts L s

... gy, SRR S e TS spcl.inf.ethz.ch
ETHzurich 4@’ W @spcl_eth

Recap

= MPIlis awidely used API to support message passing for HPC

= We saw that six functions are enough to write useful parallel
programs in SPMD style
= MPI_Init() / MPI_Finalize() --- required for initialization
= MPI_Send() / MPIl_Recv() --- actually sending messages
= MPI_Comm_rank() / MPI_Comm_size() --- Who am 1?

= We also looked at MPI collectives, e.g., MPI_Bcast()

= If six functions are enough, why are there ~300 in the standard?

= Optimization: Try to implement your own broadcast — should be hard to
beat MPI performance.

= Convenience: Do you really want to do this? Do you have too much time?

» Performance Portability: Do you think your Broadcast will also be fast on a
different cluster, which uses a different network?

o <y A : spcl.inf.ethz.ch
ETH:zurich e /&&z' W @spcl_eth

Homework — Pi1 with MPI

= |dea: Circle with radius 1, in the middle of a rectangle with side
length 2.

N

= Areaof circle segment is: (Pi*r*2)/4
= Areaof dark rectangleis: r*2
= Pi=4*Areaofcircle/Area of rectangle

= (Get the ratio of areas by putting many points randomly inside
the rectangle, and count how many are inside vs. outside of the
circle.

= Pointp =(x,y), if x*2+y*2 <=1 it is in the circle (hit) otherwise
not (miss)

- . oy A : spcl.inf.ethz.ch
ETH ziirich 3 TN Y

Homework — Pi1 with MPI

= Each MPI rank simulates some point throws, in the end they are
added together

= Use MPI_Comm_size() to find out how many throws each ranks
should do (to get to a predefined total)

= Assign num_iters % commsize to some rank (are there better
ways?)

= Collect hits/misses in two variables

= Use MPI_Reduce() to get the sum of all hits

- . I o (S L ey | spcl.inf.ethz.ch
ETH:zurich o P S 54 /\@J 3 @spcl_eth

Today — “Advanced” MPI features

Looking at those serves two purposes:

= Telling you that they exist, so use it in your project (if suitable) to
get good performance

= The focus today is on concepts not so much on details, so not
every argument of every function will be explained

= The ideas behind them are important, so even if you don’t use
MPI you know where there might be some potential for
optimization

= MPI Datatypes
= Non-blocking collectives
= MPIlone sided

. Y S B CANE spcl.inf.ethz.ch
ETHzurich | , [@J W @spcl_eth

MPI| Datatypes — Basic Types

= Basic Types: MPL_INT, MPI_CHAR, MPI_FLOAT, MPI_DOUBLE ...

= Usethem (and the count argument) to send the corresponding
types in C. Avoid MPI_BYTE if possible

= Now assume we have a 2D matrix of N*N doubles in C
= C does not have multi-dimensional arrays built in

= Can emulate it using 1D array.
mat[i,j] = m[i*N+j] (row major layout) or
mat[i, j] = m[j*N+i] (column major layout)

double* m = malloc(N*N*sizeof(double));

/[fill with random data
for (int i=0; I<N; i++)

for (int j=0; I<N; i++)
m[i*N+j] = rand();

oo g < cnmne. L SIPGENC L S e TS spcl.inf.ethz.ch
ETH:zurich R o e /\@J 3 @spcl_eth

MPI Datatypes — Small messages

= Now we want to send a column of our matrix stored in row-major
layout to another process

for (int row=0; i<N; i++)
MPI_Send(&m[row*N+col], 1, MPI_DOUBLE, peer, tag, comm);

= This will send N separate small messages

= Each message has to be matched by the receiver, and usually
there is some overhead when sending small messages (i.e.,
minimum packet size on the network)

= So this will give bad performance! Do NOT do this!

. SR T R e AN spcl.inf.ethz.ch
ETH:zurich : 7” ' Z\@J y @spcl_eth

MPI| Datatypes — Manual Packing

So how about packing the column data into a send buffer?

double* buf = malloc(N*sizeof(double));
for (int row=0; i<N; i++) {

sendbuf[row] = m[row*N+col];
}

MPI1_Send(buf, 1, MPI_DOUBLE, peer, tag, comm);

Works better in many cases
Sadly, many people do this in real applications

We added an extra copy of our data! Copying is not free!
But what if your network is very good with small messages?

Maybe a hybrid approach would be best, i.e., send in chunks of
100 doubles? Or 5007

Idea: Let MPI decide how to handle this!

oo g < rngys SIS S S spcl.inf.ethz.ch
ETH:zurich T e s /\@J 3 @spcl_eth

MPI| Datatypes — Type creation

= We need to tell MPI how the data is laid out

= MPI_Type vector(count, blocklen, stride, basetype, newtype) will
create a new datatype, which consists of count instances of
blocklen times basetype, with a space of stride in between.

stride = 4

“HEE EEE EEE EEE R

blocklen = 1

= Before a new type can be used it has to be committed with
MPI_Type commit(MPIl_Datatype* newtype)

MPI_Datatype newtype,

MPI_Type vector(N, blocklen, N, MPI_DOUBLE, &newtype);
MPI_Type_ commit(&newtype);

MPI_Send(m, 1, newtype, peer, tag, comm);

. . Sy g , spcl.inf.ethz.ch
ETH ziirich 3 TN Y

MPI| Datatypes — Composable

= MPI Datatypes can are composable! - So you can create a vector
of a vector datatype! (Useful for 3D matrices!)

= The MPI_Type_vector() is not the only type creation function
= MPI_Type indexed() allows non-uniform strides
= MPI_Type_struct() allows to combine different datatypes into one “object”
= See MPI standard for complete list/definition if you need them!

spcl.inf.ethz.ch

ETHziirich Y N5 w @spcl_eth

Datatypes - Performance

Manual Packing MPI Datatypes

500 - 500 -
“"'a-' Test Name .a' Test Name
@ 400 = MILC_su3_zd @ 400 = MILC_su3_zd
= AANAS_LU_x S ZANAS_LU_x
- ~+~SPECFEM3D_cm = ~+SPECFEM3D_cm
B 300 . > Traditional Ping—-Pong = 300 - < Traditional Ping-Pong
& ' ©WRF_x_vec = <WRF_x_vec
k- WRF_y_vec % /WRF_y_vec
c 200- c 200- —
M © Q‘\—-—‘L
m o <>

100 100 */_\F

0 50K 100K 150K 0 50K 100K 150K
Datasize [Byte] Datasize [Byte]

Schneider/Gerstenberger: Application-oriented ping-pong benchmarking: how
to assess the real communication overheads

o <y S : spcl.inf.ethz.ch
ETH:zurich e /&&z' W @spcl_eth

Nonblocking Collectives

= We saw nonblocking versions of Send and Receive last week

= They allow us to do something useful (computation) while we
wait for data to be transmitted

= MPI also defines nonblocking collectives

= Example: MPI _lalltoall(void* senbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, MPI_Datatype recvtype,
MPI_Comm comm, MPI_Request * request)

= Same as MPI_Alltoall, except for the request handle!

= We can use MPI_Test() / MPI_Wait() / MP1_Waitall() on this
handle, just as we did with nonblocking point-to-point
communication

= Many MPI implementations do not progress if you do not call
MPI functions, i.e., MPI_Test()!

o . nyy ST e, spcl.inf.ethz.ch
ETH:zurich T e s /\@J 3 @spcl_eth

MPI-3 One-sided

= Message passing is not the only programming model supported
by MPI

= Since MPI version two it also supports one-sided
communication, so only one process has to “do something” to
transfer data

= The one-sided interface changed substantially in MPI-3, be
aware of this when searching for documentation on your own

= Make sure you are using an MPI implementation which supports
MPI-3 if you want to use the features described here, i.e., Open
MPI does not!

.. T S B TN spcl.inf.ethz.ch
ETHzurich : - [\Qi%’ ¥ @spcl_eth

Benefits of the one-sided programming model

= The semantics of message passing imply

» Messages are either buffered at the receiver until matching receive is
called, this means the entire message has to be copied

= Or sender waits until the receiver has called a matching receive, this
means time is “wasted” where nothing is transmitted even though the data
Is available

* |[ncoming messages need to be matched against “posted” receives. This is
often implemented by traversing a queue of messages / stored receive info

= Most of this is done in software on the CPU

= Most modern network cards support RDMA (Remote direct
memory access)
» Data can be transferred to a remote memory address
» The remote node does not need to do anything

= The one-sided (or RMA) programming model is a better match

for modern hardware, and gets rid of some of the overheads of
message passing

= Butis often harder to program

o : I e spcl.inf.ethz.ch
ETH:zurich X S / 7 _Ax ¥ @spcl_eth

&%
Transport Layer Y /x
1600- ® FOMPI MPI1-3.0 N
ACray UPC oo /
— ™ Cray MPI-1 N
Iz NI
Q /
e, / |
L oo /‘
S, 800- D m
3 f’__d.y y, g
: i ~
m ~
£ o
<
o 400- o\ Q*
Q do a0
a7
"S'* - :,
—
L
2 | . | .
007 624 4096 16384 65536

Number of Processes

Gerstenberger/Besta/Hoefler: Enabling Highly-Scalable Remote Memory Access
Programming with MPI-3 One Sided

o s G s , spcl.inf.ethz.ch
ETH ziirich e TN Y

MPI| One-Sided Concepts - Window

= Datais transferred with Get() and Put() calls

= Before we can access the memory of a remote node, this node
has to expose a memory region

= In MPI terms such aregion is called an MPI_Window

= We can either create a window from already allocated/used
memory
MPI_Win_create(void* base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPIl_Win* win)

= Or let MPI allocate new memory for us (use this if you have a
choice)
MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, void** baseptr, MPI_Win* win)

= Window creation is collective!
= Third option: attach memory to an existing window (slow)

e - P 7 spcl.inf.ethz.ch
ETH ziirich e TN Y

MP| One-Sided Concepts - Synchronization

= MPI RMA defines “epochs”

= Before communicating we open an epoch

= Then we use Put()/Get()

= Then we close the epoch

= Only now can we safely access the data in our window!

. By T S R T spcl.inf.ethz.ch
ETHzurich . - [\Qi%’ ¥ @spcl_eth

MPI| One-Sided — Fence Synchronization

= The simplest way to open/close an epoch is with
MPI_Fence(int assert, MPl_Win win)

= A fence closes the previously opened epoch (if there was one)
and opens a new one in a single call

MPI_Win win;
int data,
If (rank == 0) data = 42;
MPI_Win_create(&data, sizeof(int), 1, MPI_INFO_NULL, comm, &win);
MPI_Win_fence(0, win);
if (rank = 0)
MPI_Get(&data, 1, MPI_INT, O, 0, 1, MPI_INT, &win);
MPI_Win_fence(0, win);
MPI_Win_free(&win);

. R }' e T spcl.inf.ethz.ch
ETHzurich fdﬁ’ W @spcl_eth

MPI| One-Sided — Post/Start/Complete/Wait

= While easy to program, sometimes fence synchronization does
too much

= |t synchronizes the window for all ranks in the communicator

» |t does not differentiate between origin (caller of put/get) and target (peer in
those calls) processes

= Often as expensive as doing an MPI_Batrrier()

= MPI_Win_start() / MPI_Win_complete() start and end an epoch on
the origin

= MPIL_Win_post() / MPI_Win_wait() start and end an epoch on the
target

= start/post call take not only the window, but also an MPI_Group
argument, this specifies which ranks are included in the
communication

= Groups can be created/manipulated by the MPI_Group_XXX()
and MPI_Comm_group() functions

oo g < cnmne. L SIPGENC L S e TS spcl.inf.ethz.ch
ETH:zurich o P S 54 /\@J 3 @spcl_eth

MPI One-Sided - Lock/Unlock

= In fence and PSCW synchronization, the target plays an active
role, i.e., calls a synchronization function

= Therefore these modes are called “Active Target Mode”

= There is also a “Passive Target Mode” where the target does not
need to do anything

= MPI _Win lock all() allows us to access the window of all other ranks (cf.
Fence)

= MPI _Win lock() allows us to access the window of a specific rank (cf.
PSCW)

= Locks can be shared or exclusive
= Epoch opened with lock/lock_all is closed via unlock/unlock_all

= |n passive target mode we can also use MPI Win flush() to finish
all outstanding operations to a specific target rank

