
Design of Parallel and
High Performance Computing
Fall 2013
About projects

Instructors: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AA

© Markus Püschel
Computer Science

Project: Rules

 Count 50% of the grade (work, presentation, report)

 Teams of two

 Important: organize yourselves

 Topic: Some suggestions in a minute

 Timeline:

 End Oct: Present your project in recitations

 Late Nov/early Dec: Possibly progress presentations

 Last week of class: Final project presentations

 Report:

 6 pages

 template provided

 due January

© Markus Püschel
Computer Science

Projects: Performance Optimization

 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 Requirements:

 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research

 Not sorting or anything that is mainly sorting

© Markus Püschel
Computer Science

Example From Before

© Markus Püschel
Computer Science

Example From Before

Project Proposals

Advisor: Torsten Hoefler

TA: Timo Schneider

© Markus Püschel
Computer Science

Parallel Priority Queue (I)

 Maintain a collection of data items, identified by a key.
Finding the k smallest items (with the k smallest keys)
should be supported on O(k) time. Finding any item by
key should also be supported.

Required Operations

 queue_t init()

 void insert(queue_t q, void* data, uint64_t key)

 void*find(queue_t q, uint64_t key)

 void delete(queue_t q, uint64_t key)

 void*pop_front(queue_t q) // returns smallest element

 void finalize(queue_t q)

© Markus Püschel
Computer Science

Parallel Priority Queue (II)

 Requirements contd.

 Multiple threads will be accessing the queue simultaneously (with all
operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:

 Experiment with different locking strategies and compare the
performance

 Pay attention to larger number of threads

© Markus Püschel
Computer Science

Collective Communications
 Assume P threads in shared memory

 Each thread p has:

 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:

 i.e., all oj,p are identical on all p

 Tips:

 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

© Markus Püschel
Computer Science

Parallel BFS

 Generate an ER graph G(n,p) given n and p

 Perform a breath first search from n/2 vertices

 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform
the BFS as fast as possible

© Markus Püschel
Computer Science

Parallel Graph Algorithms

 Many more!

 Connected Components (CC)

 SSSP

 APSP (maybe too simple, looks like MatVec)

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others

 A* search

 Various ML and AI algorithms (only nontrivial ones)

© Markus Püschel
Computer Science

Schedule

 Some recitations will be used to demonstrate concepts in practice

 E.g., OpenMP basics, MPI basics, …

 We will discuss “how to measure and report performance”

 This is a complex topic often done wrong

