Design of Parallel and

High Performance Computing
Fall 2013
About projects

Instructors: Torsten Hoefler & Markus Plschel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Project: Rules

= Count50% of the grade (work, presentation, report)

m Teams of two
= |mportant: organize yourselves

Topic: Some suggestionsin a minute

m Timeline:
= End Oct: Present your project in recitations
= Late Nov/early Dec: Possibly progress presentations
= Last week of class: Final project presentations

= Report:

= 6 pages

= template provided

= dueJanuary

Projects: Performance Optimization

= Pick an important algorithm/application
m Develop a parallel implementation that scales well on multicore

= Includes thorough benchmarking and experimental evaluation

= Requirements:
= No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research
= Not sorting or anything that is mainly sorting

Example From Before

Best algorithms for different input sizes

T

— Bitonic Mergesort SSE

— LSD Radixsort

— Parallel Bitonic Mergesort SSE (16)

3 Parallel Radixsort (8)

— Parallel Radixsort SSE (4)
tbb::parallel_sort

Runtime (nanoseconds per element)

16 18

Input size

Example From Before

= Uses our fastest implementations depending
on input size and adapts #threads accordingly

Bitonic LSD Parallel Radixsort Parallel Parallel Bitonic
Mergesort SSE Radixsort with SSE Radixsort Mergesort SSE

[N I S Y S Y Y [[[[I Y I |
28 210 212 214 216 218 220 222 224 226

Input Size

Project Proposals

Advisor: Torsten Hoefler
TA: Timo Schneider

Parallel Priority Queue (l)

= Maintain a collection of data items, identified by a key.
Finding the k smallest items (with the k smallest keys)
should be supported on O(k) time. Finding any item by
key should also be supported.

Required Operations
m queue_t init()
void insert(queue_t g, void* data, uint64_t key)

void*find(queue_t g, uint64_t key)
void delete(queue_t q, uint64_t key)
void*pop_front(queue_t q) // returns smallest element

void finalize(queue_t q)

Parallel Priority Queue (Il)

= Requirements contd.
= Multiplethreads will be accessing the queue simultaneously (with all
operations)

= Code may be written in C/C++ (gcc inlineassembly is allowed ;-))
u Tips:

= Experiment with different locking strategies and compare the
performance

= Pay attention to larger number of threads

Collective Communications

m Assume P threadsin shared memory

m Each thread p has:
= asetofinputelements i, (0<j<n-1)

= aset of output elements o, , (0sj<n-1)

= The post-condition (result) is:
. P . .
Oj,p = Zp:l ijp(0 < j <n)

= i.e,alloj,are identicalon all p
u Tips:
= Use the memory hierarchy and CC protocols (inline assembly is allowed!)

= First optimizesmall n, then large n

Parallel BFS

m Generate an ER graph G(n,p) givenn and p

m Performa breath first search fromn/2 vertices
= Print the average maximum distance for any vertex

= Yourimplementation should exploit all available cores and perform
the BFS as fast as possible

Parallel Graph Algorithms

= Many more!
= Connected Components (CC)

= SSSP
= APSP (maybe too simple, looks like MatVec)
= Minimum spanningtree (MST)
= Vertex coloring
= Strongly connected components
= . pick oneand enjoy!
m Others
= A*search

= Various ML and Al algorithms (only nontrivial ones)

Schedule

= Some recitations will be used to demonstrate concepts in practice
= E.g., OpenMP basics, MPI basics, ...

= We will discuss “how to measure and report performance”
= Thisisa complex topic often done wrong

