
Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 4
Out: 2013-10-24

Revision: 1

Locks

Simple Spin Lock

Prove that the lock given below violates one or more of the neccessary lock properties. Use sequential consistency.

v o l a t i l e i n t l o c k = 0 ;

void l o c k () {
whi le (l o c k != 0) {/∗w a i t h e r e ∗/}
l o c k = 1 ;

}

void u n l o c k () { l o c k = 0 ; }

Give an alternative for a two thread lock. Prove (using sequential consistency) that it provides mutual exclusion
and deadlock freedom.

Simple Spin Lock Solution

We are testing if this lock provides mutual exclusion. If not, both processes will be in the critical region at the
same time. For this the following sequences of reads and writes must happen:

A : R(lock, 0)→W (lock, 1)→ Thread A is in CR now
B : R(lock, 0)→W (lock, 1)→ Thread B is in CR now

It is easy to see that it is possible to build a sequentially consistent interleaving of those operations:

RA(lock, 0)→ RB(lock, 0)→WA(lock, 1)→WB(lock, 1)→ Thread A and B are in CR now.

The Peterson lock (given below) provides mutual exclusion and deadlock freedom (tid is the thread id, which can
be 0 or 1, so each thread can identify the other thread as 1-tid).

f l a g [t i d] = 1 ;
v i c t i m = t i d ;
whi le (f l a g [1− t i d] && (v i c t i m == t i d)) {} ;
// CR
f l a g [t i d] = 0 ;

Mutual Exclusion

We are testing if this lock provides mutual exclusion. If not, both processes will be in the critical region at the
same time. For this the following sequences of reads and writes must happen:

0 : W (flag[0], 1)→W (victim, 0)→ R(flag[1])→ R(victim)→ CR0 (1)
1 : W (flag[1], 1) →W (victim, 1)→ R(flag[0])→ R(victim)→ CR1 (2)

Assume that thread 0 was the last thread to write into victim:

W1(victim, 1)→W0(victim, 0) (3)

This implies that thread 0 reads victim as 0. Therefore, to enter the critical section, it must have read flag[1] as 0.

W0(victim, 0)→ R0(flag[1], 0) (4)

1

Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 4
Out: 2013-10-24

Revision: 1

If we combine the equations 2-4 we get

W1(flag[1], 1)→W1(victim, 1)→W0(victim, 0)→ R0(flag[1], 0)

This is a contradiction, as want[1] is set to 1 and later observed to be 0, with no other writes in between.

Deadlock Free

Suppose the given lock is not deadlock free, both processes are spinning in the while loop. For that to happen flag[0]
and flag[1] must both be one. Victim must always be zero for process zero, and one for process one. Since victim
is not written to by any of the processes, this is impossible, as it can not have two different values simultaneously.

Filter Lock

Prove that the filter lock (given below) provides mutual exclusion for n threads. Use sequential consistency.

v o l a t i l e i n t l e v e l [n] = { 0 , 0 , . . . , 0 } ;
v o l a t i l e i n t v i c t i m [n] ;

void l o c k () {
f o r (i n t l =1; l<n ; l ++) {

l e v e l [t i d] = l ;
v i c t i m [l] = t i d ;
whi le ((∃k != t i d) (l e v e l [k] >= l && v i c t i m [l] == t i d)) {} ;

}
}

void u n l o c k () { l e v e l [t i d] = 0 ; }

Mutual Exclusion

We will proof that for 0 ≤ j ≤ n there are at most n-j threads at level j. We do that by induction.

For j=0, the base case, this is trivially true.

For the induction step the induction hypothesis implies that there are at most n-j+1 threads at level j-1. To show
that at least one thread cannot progress to level j, we argue by contradiction: assume there are n-j+1 threads at
level j. Let A be the last thread at level j to write to victim[j]. Because A is last, for any other B at level j:

WB(victim[j])→WA(victim[j])

From the code we see that B writes level[B] before it writes victim[j]

WB(level[B] = j)→WB(victim[j])→WA(victim[j])

also from the code we see that A reads level[B] after writing to victim[j]

WB(level[B] = j)→WB(victim[j])→WA(victim[j])→ RA(level[B])

Because B is at level j, every time A reads level[B], it observes a value greater than or equal to j, implying that A
could not have completed the waiting loop, a contradiction.

2

Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 4
Out: 2013-10-24

Revision: 1

Deadlock Freedom

We argue by reverse induction on the levels. The base case, level n 1, is trivial, because it contains at the most
one thread. For the induction hypothesis, assume that every thread that reaches level j + 1 or higher, eventually
enters (and leaves) its critical section.

Suppose A is stuck at level j. Eventually, by the induction hypothesis, there are no threads at higher levels. Once
A sets level[A] to j, then any thread at level j 1 that subsequently reads level[A] is prevented from entering level
j. Eventually, no more threads enter level j from lower levels. All threads stuck at level j are in the waiting loop at
Line 17, and the values of the victim and level fields no longer change.

We now argue by induction on the number of threads stuck at level j. For the base case, if A is the only thread
at level j or higher, then clearly it will enter level j + 1. For the induction hypothesis, we assume that fewer than
k threads cannot be stuck at level j. Suppose threads A and B are stuck at level j. A is stuck as long as it reads
victim[j] = A, and B is stuck as long as it reads victim[j] = B. The victim field is unchanging, and it cannot be
equal to both A and B, so one of the two threads will enter level j + 1, reducing the number of stuck threads to k
- 1, contradicting the induction hypothesis.

Bakery Lock

Prove that the bakery lock (given below) provides mutual exclusion for n threads. Use sequential consistency.

v o l a t i l e i n t f l a g [n] = {0 , 0 , . . . , 0} ;
v o l a t i l e i n t l a b e l [n] = {0 , 0 , . . . , 0 } ;
void l o c k () {

f l a g [t i d] = 1 ;
l a b e l [t i d] = max (l a b e l [0] , . . . , l a b e l [n−1]) + 1 ;
whi le ((∃k != t i d) (f l a g [k] && (l a b e l [k] , k) � (l a b e l [t i d] , t i d))) {} ;

}

p u b l i c void u n l o c k () { f l a g [t i d] = 0 ; }

Note: (a,b) � (c,d) behaves like a < c, unless a=c, in which case it becomes b < d.

Suppose the algorithm does not provide mutual exclusion. Let A and B be two threads concurrently in the critical
section. Let labelingA and labelingB be the last respective sequences of acquiring new labels prior to entering the
critical section (line 5). Suppose that (label[A], A) � (label[B], B). When B successfully completed the test in its
waiting section, it must have read that flag[A] was false or that (label[B], B) � (label[A], A). However, for a given
thread, its tid is fixed and its label[] values are strictly increasing, so B must have seen that flag[A] was false. It
follows that

labelingB → RB(flag[A])→WA(flag[A])→ labelingA

which contradicts the assumption that (label[A], A) � (label[B], B).

3

Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 4
Out: 2013-10-24

Revision: 1

Better than Dijkstra?

The following is an excerpt of the journal “Communications of the ACM”, Vol. 9, No. 1, page 45, 1966. Does the
given algorithm ensure mutual exclusion?

Better than Dijkstra Solution

We will try to solve this problem in an automated fashion. For this we will use the model checker SPIN
(www.spinroot.com). Therefore we translate the program to something SPIN understands (a PROMELA model).
Lets translate the original program into something more readable first. Note that b and k have been renamed to
want and turn. The outer loop has been removed.

want [i] := t r u e ;
C1 : i f (t u r n != i) {

whi le (want [1− i]) {}
t u r n := i ;
go to C1

}
e l s e {

c r i t i c a l s e c t i o n ;
want [i] := 0 ;
r e m a i n d e r o f program ;

}

4

Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 4
Out: 2013-10-24

Revision: 1

If we inspect the program, we might eventually conclude, that the following sequentially consistent interleaving
exists, where both processes end up in the critical region:

W1(want[1] = 1) → R1(turn = 0) → R1(want[0] = 0) → W0(want[0] = 1) → R0(turn = 0) → CR0 →
W1(turn = 1)→ R1(turn = 1)→ CRB

But let us see how we can get such a counterexample in a computer assisted manner. A PROMELA model for the
above program could look like this (note that a statement like (!want[1-i]) blocks until it becomes true):

b o o l want [2] ; b o o l t u r n ; b y t e c nt ;

p r o c t y p e P(b o o l i) {
want [i] = 1 ;
do
: : (t u r n != i) −>

(! want [1− i]) ; /∗ b l o c k s u n t i l t r u e ∗/
t u r n = i

: : (t u r n == i) −> break
od ;
/∗ c r i t i c a l s e c t i o n ∗/
cn t = cn t +1; a s s e r t (c nt == 1) ; cn t = cnt −1;
want [i] = 0

}

i n i t { run P(0) ; run P(1) }

SPIN will then translate this specification into the following automata

and try all possible interleavings for the two instances of this automata, one with i=0 and one with i=1. If it does
not find a assertion violation this is proof that there is none, however in this case SPIN gives the following trace
which violates our assertion of only one thread beeing in the critical section at a time (cnt == 1):

p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 1) [want [i] = 1]
pr oc 2 (P) m u t u a l e x c l . pml (s t a t e 2) [((t u r n != i))]
p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 3) [(! (want [(1− i)]))]
p r oc 1 (P) m u t u a l e x c l . pml (s t a t e 1) [want [i] = 1]
pr oc 1 (P) m u t u a l e x c l . pml (s t a t e 5) [((t u r n==i))]
p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 4) [t u r n = i]
p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 5) [((t u r n==i))]
p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 11) [cn t = (cn t +1)]
p r oc 2 (P) m u t u a l e x c l . pml (s t a t e 12) [a s s e r t ((cnt==1))]
p r oc 1 (P) m u t u a l e x c l . pml (s t a t e 11) [cn t = (cn t +1)]
s p i n : m u t u a l e x c l . pml : 1 7 , E r r o r : a s s e r t i o n v i o l a t e d

5

