Design of Parallel and High Performance Computing

HS 2013 Homework 4
Markus Plischel, Torsten Hoefler Out: 2013-10-24
Department of Computer Science Revision: 1
ETH Zurich

Locks

Simple Spin Lock

Prove that the lock given below violates one or more of the neccessary lock properties. Use sequential consistency.

volatile int lock = 0;

void lock () {
while(lock !'= 0) {/*xwait herex/}
lock = 1;

}
void unlock() { lock = 0; }

Give an alternative for a two thread lock. Prove (using sequential consistency) that it provides mutual exclusion
and deadlock freedom.

Filter Lock

Prove that the filter lock (given below) provides mutual exclusion for n threads. Use sequential consistency.

volatile int level[n] = {0,0,...,0};
volatile int victim[n];

void lock () {
for (int 1=1; I<n; I4++4) {
level [tid] = I;
victim[|] = tid;
while ((3k !'= tid) (level[k] >= | && victim[|] = tid)) {};
}
}

void unlock() { level[tid] = 0; }

Bakery Lock

Prove that the bakery lock (given below) provides mutual exclusion for n threads. Use sequential consistency.

volatile int flag[n] = {0, 0, ..., 0};
volatile int label[n] = {0, 0, ...,0};
void lock() {
flag[tid] = 1;
label [tid] = max(label[0], ...,label[n=1]) + 1;

while ((3k !'= tid)(flag[k] && (label[k],k) <« (label[tid],tid))) {};
}

public void unlock() { flag[tid] = 0; }

Note: (a,b) <« (c,d) behaves like a < ¢, unless a=c, in which case it becomes b < d.

Design of Parallel and High Performance Computing

HS 2013 Homework 4
Markus Plischel, Torsten Hoefler Out: 2013-10-24
Department of Computer Science Revision: 1
ETH Zurich

Better than Dijkstra?

The following is an excerpt of the journal “Communications of the ACM"”, Vol. 9, No. 1, page 45, 1966. Does the
given algorithm ensure mutual exclusion?

Womments on a Problem in Concurrent
Programming Control

Dear Editor:

I would like to corament on Mr. Dijkstra’s solution [Solution
of a problem in coneurrent programming control. Comm ACM &
{(Sept. 1965), 569] to a messy problem that is hardly academic. We
are using it now on a multiple computer complex.

When there are only two computers, the algorithm may be
simplified to the following:

Boolean array 6(0; 1) integer k, 7, J,
comment This is the program for computer 4, which may be
either 0 or 1, computer 5 # 7 is the other one, 1 or 0;
C0: b (1) := false;
Cl: if k # i then begin
C2: if not b(j) then go to ('2;
else kb := 7; go to (1 end;
else critical seetion,
b(i) := true;
remainder of program;
go to C0;
end

Mr. Dijkstra has come up with a clever solution to a really
practical problem.

