
Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 3
Out: 2013-10-17

Revision: 1

Linearizability

Exercise 1

For the following history of a shared register with the operations write(x)/void and read()/x answer the questions
below.

B: r.write(1)
A: r.read()
C: r.write(2)
A: r:1
B: r:void
C: r:void
B: r:read()
B: r:1
A: q.write(3)
C: r.read()
A: q:void

• What is H|B?

• What is H|r?

• Turn H into a complete subhistory H ′.

• Is H ′ sequential?

• Is H ′ well-formed?

• Is H ′ linearizable? If yes, prove it!

• If the first two events are swapped, is the resulting history equivalent to H?

Exercise 2

In the following history, do the marked method executions overlap? Or does the method invocation denoted by
bold events precede the one which is underlined?

A: q.enq(x)
B: q.enq(y)
A: q:void
B: q:void
B: q.deq()
A: q.deq()
B: q:x

Exercise 3

Is the following history of a fifo queue with the operations enq(x)/void deq()/x linearizable? If yes, prove it! Is it
sequentially consistent?

1



Design of Parallel and High Performance Computing
HS 2013
Markus Püschel, Torsten Hoefler
Department of Computer Science
ETH Zurich

Homework 3
Out: 2013-10-17

Revision: 1

A: r.enq(x)
A: r:void
B: r.enq(y)
A: r.deq()
B: r:void
A: r:y

Exercise 4

Is the following history of a fifo queue with the operations enq(x)/void deq()/x linearizable? If yes, prove it!

A: q.enq(x)
B: q.enq(y)
A: q:void
B: q:void
A: q.deq()
C: q.deq()
A: q:y
C: q:y

Parallel FIFO Queue Implementation

Implement a queue with fifo semantics in C or C++, using either OpenMP or POSIX threads. Use locks to
implement the queue. Benchmark your implementation on your own machine. Make a diagram out of your
benchmark results.

2


