
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Locks and Lock-Free continued

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

 Now: Project Presentations!

 10 minutes per team (hard limit)

 Rough guidelines:

Present your plan

Related work (what exists, literature review!)

Preliminary results (not necessarily)

Main goal is to gather feedback, so present some details

Pick one presenter (make sure to switch for other presentations!)

 Intermediate (very short) presentation: Thursday 11/21 during
recitation

 Final project presentation: Monday 12/16 during last lecture

2

Review of last lecture

 Hardware operations for concurrency control

 More on locks (using advanced operations)

 Spin locks

 Various optimized locks

 Even more on locks (issues and extended concepts)

 Deadlocks, priority inversion, competitive spinning, semaphores

3

DPHPC Overview

4

Goals of this lecture

 Project presentations 

 Even more on locks (issues and extended concepts)

 Deadlocks, priority inversion, competitive spinning, semaphores

 Case studies

 Barrier

 Locks in practice: a set structure

5

When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

6

When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the
competitiveness?

7

Competitive Spinning

 If T is the overhead to process a wait, then a locking algorithm that
spins for time T before it blocks is 2-competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized
Algorithms for Non-Uniform Problems”, SODA 1989

 If randomized algorithms are used, then
e/(e-1)-competitiveness (~1.58) can be achieved

8

Generalized Locks: Semaphores

 Controlling access to more than one resource

 Described by Dijkstra 1965

 Internal state is an atomic counter C

 Two operations:

 P() – block until C>0; decrement C (atomically)

 V() – signal and increment C

 Binary or 0/1 semaphore equivalent to lock

 C is always 0 or 1, i.e., V() will not increase it further

 Trivia:

 If you’re lucky (aehem, speak Dutch), mnemonics:

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce)

9

Semaphore Implementation

 Can be implemented with mutual exclusion!

 And can be used to implement mutual exclusion 

 … or with test and set and many others!

 Also has fairness concepts:

 Order of granting access to waiting (queued) threads

 strictly fair (starvation impossible, e.g., FIFO)

 weakly fair (starvation possible, e.g., random)

10

Case Study 1: Barrier

 Barrier semantics:

 No process proceeds before all processes reached barrier

 Similar to mutual exclusion but not exclusive, rather “synchronized”

 Often needed in parallel high-performance programming

 Especially in SPMD programming style

 Parallel programming “frameworks” offer barrier semantics (pthread,
OpenMP, MPI)

 MPI_Barrier() (process-based)

 pthread_barrier

 #pragma omp barrier

 lock xadd + spin

Problem: when to re-use the counter?

Cannot just set it to 0 

Trick: “lock xadd -1” when done 

11

[cf. http://www.spiral.net/software/barrier.html]

Barrier Performance

12

Locks in Practice

 Running example: List-based set of integers

 S.insert(v) – return true if v was inserted

 S.remove(v) – return true if v was removed

 S.contains(v) – return true iff v in S

 Simple ordered linked list

 Do not use this at home (poor performance)

 Good to demonstrate locking techniques

E.g., skip list would be faster but more complex

16

Set Structure in Memory

 This and many of the following illustrations are provided by Maurice
Herlihy in conjunction with the book “The Art of Multiprocessor
Programming”

17

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Sequential Set

18

boolean add(S, x) {
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x)
 return false;
 else {
 node n = new node();
 n.key = x;
 n.next = curr;
 pred.next = n;
 }
 return true;
}

boolean remove(S, x) {
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x) {
 pred.next = curr.next;
 free(curr);
 return true;
 }
 return false;
}

boolean contains(S, x) {
 int *curr = S.head;
 while(curr.key < x)
 curr = curr.next;
 if(curr.key == x)
 return true;
 return false;
}

typedef struct {
 int key;
 node *next;
} node;

Sequential Operations

19

a c d

b

a b c

add()

remove()

Concurrent Sets

 What can happen if multiple threads call set operations at the “same
time”?

 Operations can conflict!

 Which operations conflict?

 (add, remove), (add, add), (remove, remove), (remove, contains) will
conflict

 (add, contains) may miss update (which is fine)

 (contains, contains) does not conflict

 How can we fix it?

20

Coarse-grained Locking

21

boolean add(S, x) {
 lock(S);
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x)
 unlock(S);
 return false;
 else {
 node node = malloc();
 node.key = x;
 node.next = curr;
 pred.next = node;
 }
 unlock(S);
 return true;
}

boolean remove(S, x) {
 lock(S);
 node *pred = S.head;
 node *curr = pred.next;
 while(curr.key < x) {
 pred = curr;
 curr = pred.next;
 }
 if(curr.key == x) {
 pred.next = curr.next;
 unlock(S);
 free(curr);
 return true;
 }
 unlock(S);
 return false;
}

boolean contains(S, x) {
 lock(S);
 int *curr = S.head;
 while(curr.key < x)
 curr = curr.next;
 if(curr.key == x) {
 unlock(S);
 return true;
 }
 unlock(S);
 return false;
}

Coarse-grained Locking

 Correctness proof?

 Assume sequential version is correct

Alternative: define set of invariants and proof that initial condition as
well as all transformations adhere

 Proof that all accesses to shared data are in CRs

This may prevent some optimizations

 Is the algorithm deadlock-free? Why?

 Locks are acquired in the same order (only one lock)

 Is the algorithm starvation-free and/or fair? Why?

 It depends on the properties of the used locks!

22

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

23

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%. A good programmer will not be lulled
into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified” — Donald Knuth
(in Structured Programming with Goto Statements)

24

How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex

25

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

26

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

27

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

28

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

29

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

30

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

31

typedef struct {
 int key;
 node *next;
 lock_t lock;
} node;

Hand-over-Hand (fine-grained) locking

a b c

Hand-over-Hand (fine-grained) locking

a b c

Hand-over-Hand (fine-grained) locking

a b c

Hand-over-Hand (fine-grained) locking

a b c

Hand-over-Hand (fine-grained) locking

a b c

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

40

a b c d

remove(b)

Removing a Node

a b c d

remove(b)

Removing a Node

a c d

remove(b)
Why lock target node?

Concurrent Removes

a b c d

remove(c)
remove(b)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Concurrent Removes

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming

Concurrent Removes

49

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming

Concurrent Removes

50

a b c d

remove(b)
remove(c)

Uh, Oh

a c d

remove(b)
remove(c)

Uh, Oh

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking

53

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

a c d

remove(b)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

remove(b)
remove(c)

Removing a Node

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

a b c d

Wait!
remove(c)

Removing a Node

a b d

Proceed

to

remove(b)

Removing a Node

a b d

remove(b)

Removing a Node

a b d

remove(b)

Removing a Node

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

75

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

76

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

77

Optimistic: Traverse without Locking

b d e a

add(c) Aha!

Optimistic: Lock and Load

b d e a

add(c)

Optimistic: Lock and Load

80

b d e a

add(c)

c

What could go wrong?

b d e a

add(c) Aha!

What could go wrong?

82

b d e a

add(c)

What could go wrong?

83

b d e a

remove(b)

What could go wrong?

84

b d e a

remove(b)

What could go wrong?

85

b d e a

add(c)

What could go wrong?

86

b d e a

add(c)

c

What could go wrong?

87

d e a

add(c) Uh-oh

Validate – Part 1

b d e a

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

89

b d e a

add(c) Aha!

What Else Could Go Wrong?

b d e a

add(c)

add(b’)

What Else Could Go Wrong?

91

b d e a

add(c)

add(b’) b’

What Else Could Go Wrong?

92

b d e a

add(c)
b’

What Else Could Go Wrong?

93

b d e a

add(c)

c

Validate Part 2
(while holding locks)

b d e a

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!

95

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

96

typedef struct {
 int key;
 node *next;
 lock_t lock;
 boolean valid;
} node;

Lazy Removal

a a b c d

c

Lazy Removal

a a b d

Present in list

c

Lazy Removal

99

a a b d

Logically deleted

Lazy Removal

a a b c d

Physically deleted

Lazy Removal

a a b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

102

Business as Usual

a b c

Business as Usual

a b c

Business as Usual

a b c

Business as Usual

a b c

remove(b)

Business as Usual

a b c

a not

marked

Business as Usual

a b c

a still

points

to b

Business as Usual

a b c

Logical

delete

Business as Usual

a b c

physical

delete

Business as Usual

a b c

Summary: Wait-free Contains

a 0 0 0 a b c 0 e 1 d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

113

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

114

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

115

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

116

Problem…

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

(3) Physical

Removal 0 d

(2) Node

added

The Solution: Combine Mark and Pointer

a 0 0 0 a b c 0 e 1 c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0 d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

119

Removing a Node

a b d

remove

b

remove

c

c

Removing a Node

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

124

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

125

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

126

