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Administrivia

m Next week — progress presentations
= Makesure, Timo knows about your team (this step is important!)
= Send slides (ppt or pdf) by Sunday 11:59pm to Timo!
= 10 minutes per team (hard limit)
" Prepare! Thisis your first impression, gather feedback from us!
= Rough guidelines:
Present your plan
Related work (what exists, literature review!)
Preliminary results (not necessarily)
Main goal is to gather feedback, so present some details
Pick one presenter (make sure to switch for other presentations!)

m Intermediate (very short) presentation: Thursday11/21 during
recitation

m Final project presentation: Monday 12/16 during last lecture



Review of last lecture

m Language memory models

History
Java/C++ overview

Locks

Two-thread

Peterson

N-thread

Many different locks, strengths and weaknesses
Lock options and parameters

Formal proof methods

Correctness (mutual exclusion as condition)
Progress
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Goals of this lecture

m Hardware operations for concurrency control

m More on locks (using advanced operations)
= Spin locks

= Various optimized locks

m Even more on locks (issues and extended concepts)

= Deadlocks, priority inversion, competitive spinning,
semaphores

m Case studies

= Barrier

= Reasoning about semantics

m Locks in practice: a set structure



Lamport’s Bakery Algorithm (1974)

m Is a FIFO lock (and thus fair)

m Each thread takes numberin doorway and threads enterin the order
of their number!

volatileint flag[n] = {0,0,...,0};
volatileintlabel[n] = {0,0,....,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((3k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
publicvoid unlock() {
flag[tid] = 0;
}



Lamport’s Bakery Algorithm

m Advantages:
= Elegantand correct solution
= Starvation free, even FIFO fairness

m Notusedin practice!
= Why?
= Needs to read/write N memory locations for synchronizing N threads
= Canwe do better?
Using only atomic registers/memory



A Lower Bound to Memory Complexity

m Theorem5.1in[1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

m Sowe’redoomed! Optimallocks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171-184, December
1993



Hardware Support?

m Hardware atomic operations:
® Test&Set
Write const to memory while returning the old value
= Atomic swap
Atomically exchange memory and register
" Fetch&Op
Get value and apply operation to memory location
" Compare&Swap
Compare two values and swap memory with register if equal
= |oad-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed =2 mini-TM

" |ntel TSX (transactional synchronization extensions)
Hardware-TM (roll your own atomic operations)



Relative Power of Synchronization

m Design-Problem I: Multi-core Processor
=  Which atomic operations are useful?

m Design-Problem Il: Complex Application
=  What atomicshould | use?

m Conceptof “consensus number” Cif a primitive can be used to solve the
“consensus problem” in a finite number of steps (even if a threads stop)
= atomicregisters have C=1 (thus locks have C=1!)
= TAS, Swap, Fetch&Op have C=2
= CAS, LL/SC, TM have C=o°



Test-and-Set Locks

m Test-and-Set semantics

= M i |d val
err.10|ze cldvaiue bool test_and_set (bool *flag) {
= Set fixed value TASval (true) bool old = *flag;

= Return old value *flag = true;

return old;

m After execution: } // all atomic!

=  Post-conditionis a fixed (constant) value!



Test-and-Set Locks

m Assume TASval indicates “locked”
m Write somethingelse to indicate “unlocked”

m TAS until return valueis != TASval

m Whenwillthe lockbe volatileint lock = 0;

granted?
Does this work well in void lock() {

- : while (TestAndSet(&lock) == 1);
practice? \

void unlock() {
lock = 0;
}



Contention

m On x86, the XCHG instructionis used to implement TAS

= For experts: x86 LOCK is superfluous!
movl S1, %eax

m Cachelineisread and written xchg  %eax, (%ebx)
" Ends up inexclusive state, invalidatesother copies
® Cachelineis “thrown” around uselessly
" High load on memory subsystem
x86 bus lock is essentially a full memory barrier &



Test-and-Test-and-Set (TATAS) Locks

m SpinninginTASis nota goodidea

m Spinoncache lineinshared state
= Allthreads at the same time, no cache coherency/memory traffic

m Danger!
" Efficient butuse with great | gjatileint lock = 0;
care!
" Generalizationsare void lock() {
dangerous do {

while (lock == 1);
} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;
}



Warning: Even Experts

m Example: Double-Checked Locking

get it wrong!

1997

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

Douglas C. Schmidt
schmidt@cs.wustl.edu
Dept. of Computer Science
Wash. U., St. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

This paper shows how the canonical implementation [1] of

the Singleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism.  To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (Le., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent software.

Double-Checked Locking

Tim Harrison
harrison @ cs.wustlLedu
Dept. of Computer Science
Wash. U, St. Louis

context of concurrency. To illustrate this, consider b
canonical implementation [1] of the Singleton pattd
haves in multi-threaded environments.

The Singleton pattern ensures a class has only onei
and provides a global point of access to that instance |
namically allocating Singletons in C++ programs is
since the order of initialization of global static objects
programs is not well-defined and is therefore non-p
Moreover, dynamic allocation avoids the cost of initi
a Singleton if it is never used.

Defining a Singleton is straightforward:

class Singleton

return instance_;

double-checked locking

Double-checked locking - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Double-checked_locking

In software engineering, double-checked locking (also known as "double-checked
locking optimization") is a software design pattern used to reduce the ...

Usage in Java - Usage in Microsoft Visual C++ - Usage in Microsoft .MET ...

The "Double-Checked Locking is Broken" Declaration
www.cs.umd.edu/~pughfjava/.. /DoubleCheckedLocking.html

Details on the reasons - some very subtle - why double-checked locking cannot be
relied upon to be safe. Signed by a number of experts, including Sun ...

Double-checked locking and the Singleton pattern
www.ibm.com/developerworks/javallibrany/j-dclfindex html

1 May 2002 — Double-checked locking is one such idiom in the Java programming
language that should never be used. In this article, Peter Haggar ...

Double-checked locking: Clever, but broken - Javaworld

www javaworld.com » Java Development Tools

9 Feb 2001 — Many Java programmers are familiar with the double-checked locking
idiom, which allows you to perform lazy initialization with reduced ...

[FoF) Double-Checked Locking An Optimization Pattern for Efficiently ...

sunsite.icm.edu.pl/packages/ace/ACE/PDF/DC-Locking .pdf

mat: PDF/Adohe Acrobat - Quick View

schmidt - Cited by 14 - Related articles

solve this problem, we present the Double-Checked Lock- ing optimization ...

Double-Checked Locking illustrates how changes in under- lying forces (ji.e. ...

Problem: Memory ordering leads to race-conditions!
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Contention?

m Do TATAS locks still have contention?

m Whenlockis released, k threads fight for
cache line ownership
= One gets the lock, all get the CL exclusively (serially!)

= What would be a good
solution? (think “collision
avoidance”)

volatileint lock = 0O;

void lock() {
do {
while (lock == 1);
} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock = 0;
}



TAS Lock with Exponential Backoff

m Exponential backoff eliminates contention statistically

= Locks granted in

. I . .
unpredictable volatileint lock = 0;

order
= Sta rvati_on possible void lock() {
but unlikely while (TestAndSet(&lock) == 1) {
How can we make wait(time);
it even less likely? time *=2; // double waiting time

}
}

void unlock() {
lock = 0;
}

Similarto: T. Anderson: “The performance of spin lock alternativesfor shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990



TAS Lock with Exponential Backoff

m Exponential backoff eliminates contention statistically

= Locks granted in

unpredictable volatileintlock = 0;
order const int maxtime=1000;
= Starvation possible .
but unlikely void lock() {
Maximum waiting w\l;;;ei:t((';er;teﬁ)‘.ndSet(&lock) = Ui
time makes it less , P ,
likely time = min(time * 2, maxtime);
}
}
void unlock() {
lock = 0;
}

Similarto: T. Anderson: “The performance of spin lock alternativesfor shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990



Comparison of TAS Locks
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Improvements?

m AreTAS locks perfect?
= What are the two biggest issues?

= Cache coherency traffic (contending on same location with expensive
atomics)

J— Or i
=  Critical section underutilization (waiting for backoff times will delay entry

to CR)
m Whatwouldbe a fix for that?
= How is this solved at airports and shops (often at least)?

m Queuelocks-- Threads enqueue
= Learn from predecessor if it’s their turn
= Eachthreads spins at a different location
= FIFO fairness



Array Queue Lock

m Arrayto implement
queue

" Tail-pointershows next free
queue position

volatileintarray[n] ={1,0,...,0};
volatileintindex[n] = {0,0,...,0};

_ volatileint tail = 0;
= Eachthread spins on own

location

_ void lock() {
CL padding! index[tid] = GetAndInc(tail) % n;
= index[] array can be putin TLS  while (!array[index[tid]]); // wait to receive lock
m Soarewedone now? }
" What's wrong? void unlock() {
= Synchronizing M objects array[index[tid]]= 0; // | release my lock
requires ©(NM) storage array[(index[tid]+ 1) % n] = 1; // next one

» \What do we do now? }



CLH Lock (1993)

m List-based (same queue
principle)

m Discoveredtwice by Craig,
Landin, Hagersten 1993/94

m 2N+3Mwords
" N threads, M locks

m Requiresthread-local gnode
pointer

" Canbe hidden!

typedef struct gnode {
struct qnode *prev;
int succ_blocked;

} gnode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *qn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(lck, gn);
while (gn->prev->succ_blocked);

}

void unlock(gnode **qgn) {
gnode *pred = (*gn)->prey;
(*qn)->succ_blocked = 0;
*qn = pred;

}



CLH Lock (1993)

m Qnodeobjects represent
thread state!

" succ_blocked == 1if waiting
or acquired lock

= succ_blocked == 0if released
lock

m Listisimplicit!
"= One node per thread

= Spinlocationchanges
NUMA issues (cacheless)

m Can we do better?

typedef struct gnode {
struct qnode *prev;
int succ_blocked;

} gnode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *qn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(lck, gn);
while (gn->prev->succ_blocked);

}

void unlock(gnode **qgn) {
gnode *pred = (*gn)->prey;
(*qn)->succ_blocked = 0;
*qn = pred;

}



MCS Lock (1991)

m Make queue explicit

= Acquire lock by
appendingto queue

= Spinon own node
until locked is reset

m Similar advantages
as CLH but

= Only 2N + M words
= Spinningposition is fixed!
Benefits cache-less NUMA

m Whatare theissues?

= Releasinglock spins
" More atomics!

typedef struct gnode {
struct gnode *next;
int succ_blocked;

} qnode;

gnode *Ick = NULL,;

void lock(gnode *Ick, gnode *qn) {
gn->next = NULL;
gnode *pred = FetchAndSet(lck, gn);
if(pred !'= NULL) {
gn->locked = 1;
pred->next = qn;
while(qn->locked);

I8

void unlock(gnode * Ick, gnode *qn) {
if(qn->next == NULL) { // if we're the last waiter
if(CAS(Ick, gn, NULL)) return;
while(gn->next == NULL); // wait for pred arrival
}
gn->next->locked = 0; // free next waiter
gn->next = NULL;
}



Lessons Learned!

m Keylesson:
= Reducing memory (coherency) traffic is most important!
" Not alwaysstraight-forward (need to reason about CL states)

m MCS: 2006 Dijkstra Prize in distributed computing

= “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

= “probably the most influential practical mutual exclusion algorithm ever”
= “vastly superior to all previous mutual exclusion algorithms”
= fast, fair, scalable 2> widely used, always compared against!



Time to Declare Victory?

m Down to memory complexity of 2N+M
= Probably close to optimal

m Onlylocal spinning
= Several variants with low expected contention

m But: we assumed sequential consistency ®
= Reality causes trouble sometimes
= Sprinklingmemory fences may harm performance
= QOpen research on minimally-synchingalgorithms!
Come and talk to me if you’re interested



More Practical Optimizations

m Let’s step back to “data race”

" (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither A>B nor B>A

= So we put conflicting accesses into a CR and lock it!
This also guarantees memory consistency in C++/Javal!

m Let’s say youimplementa web-based encyclopedia
= Considerthe “average two accesses” — do they conflict?



Reader-Writer Locks

m Allows multiple concurrentreads
= Multiplereader locks concurrently in CR

"  Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

m Syntax:

= read_(un)lock()

= write_(un)lock()



A Simple RW Lock constW = 1

const R=2;
volatileint lock=0; // LSB is writer flag!

m Seems efficient!?

= s it? What's wrong? void read_lock(lock_tlock) {

AtomicAdd(lock, R);

" Polling CAS! while(lock & W);
}
m lIsitfair? void write_lock(lock_t lock) {
" Readers are preferred! while(!CAS(lock, 0, W));

}

= Canalways delay
writers (again and

again and again) void read_unlock(lock_tlock) {

AtomicAdd(lock, -R);
}

void write_unlock(lock_tlock) {
AtomicAdd(lock, -W);

}



Fixing those Issues?

m Pollingissue:

" Combine with MCS lock idea of queue polling

m Fairness:

" Countreaders and writers

(1991)

John M. Mellor-Crummey*
(johnmc@rice.edu)
Center for Research on Parallel Computation
Rice University, P.O. Box 1892
Houston, TX 77251-1892

Abstract

Reader-writer synchronization relaxes the constraints of mu-
tual exclusion to permit more than one process to inspect a
shared object concurrently, as long as none of them changes
its value. On uniprocessors, mutual exclusion and reader-
writer locks are typically designed to de-schedule blocked
processes; however, on shared-memory multiprocessors it
is often advantageous to have processes busy wait. Un-
fortunately, implementations of busy-wait locks on shared-
memory multiprocessors typically cause memory and net-
work contention that degrades performance. Several re-
searchers have shown how to implement scalable mutual
exclusion locks that exploit locality in the memory hier-
archies of shared-memory multiprocessors to eliminate con-
tention for memory and for the processor-memory intercon-
nect, In this paper we present reader-writer locks that sim-
ilarly exploit locality to achieve scalability, with variants
for reader preference, writer preference, and reader-writer
fairness. Performance results on a BBN TC2000 multipro-
cessor demonstrate that our algorithms provide low latency
and excellent scalability.

Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors

Michael L. Scott!
(scott@cs.rochester.edu)
Computer Science Department
University of Rochester
Rochester, NY 14627

communication bandwidth, introducing performance bottle-
necks that become markedly more pronounced in larger ma-
chines and applications. When many processors busy-wait
on a single synchronization variable, they create a hot spot
that gets a disproportionate share of the processor-memory
bandwidth. Several studies [1, 4, 10] have identified synchro-
nization hot spots as a major obstacle to high performance
on machines with both bus-based and multi-stage intercon-
nection networks.

Recent papers, ours among them [9], have addressed the
construction of scalable, contention-free busy-wait locks for
mutual exclusion. These locks employ atomic fetch.and.®
instructions' to comstruct queues of waiting processors,
each of which spins only on locally-accessible flag variables,
thereby inducing no contention. In the locks of Anderson [2]
and Graunke and Thakkar [5), which achieve local spinning
only on cache-coherent machines, each blocking processor
chooses a unique location on which to spin, and this loca-
tion b ident in the p ’s cache. Our MCS
mutual exclusion lock (algorithm 1) exhibits the dual ad-
vantages of (1) spinning on locally-accessible locations even
on distributed shared-memory multiprocessors without co-
herent caches, and (2) requiring only O(P + N) space for N
locks and P processors. rather than O(N P).

The final algorithm (Alg. 4)
W EERIEVTALEIAVYER

corrected in 2003!
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Deadlocks

m Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

CAN'T, You GO
CAN'T, Yov Go

What are necessary
conditions for deadlock?

31



Deadlocks

m Necessary conditions:
= Mutual Exclusion
®= Hold one resource, request another
= No preemption
= Circularwaitin dependencygraph

m One condition missing will prevent deadlocks!

= - Different avoidance strategies (which?)



Issues with Spinlocks

m Spin-lockingis very wasteful
= The spinningthread occupies resources

= Potentiallythe PE where the waiting thread wants to run = requires
context switch!

m Context switchesdueto
= Expiration of time-slices (forced)
= Yieldingthe CPU



What is this?
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Why is the 1997 Mars Rover in our lecture?

m Itlanded, received program, and worked ... until it spuriously
rebooted!

= - watchdog

m Scenario (vxWorks RT OS):
= Single CPU
= Two threads A,B sharing common bus, using locks
" (independent)thread C wrote data to flash
" Priority: A>C—>B (A highest, B lowest)
" Thread C would run into a lifelock (infinite loop)
" Thread B was preempted by C while holdinglock
= Thread A got stuck at lock ®

[http:/iresearch.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_ Account.html]



Priority Inversion

m If busy-waiting thread has higher priority than thread holdinglock =
no progress!

m Can befixed with the help of the OS

= E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)



Condition Variables

m Allowthreadsto yield CPU and leave the OS run queue
= QOther threads can get them back on the queue!

m cond_wait(cond, lock)—yield and go to sleep
m cond_signal(cond)—-wake up sleepingthreads

m Waitand signal are OS calls
= Often expensive, which one is more expensive?
Wait, because it has to perform a full context switch



Condition Variable Semantics

m Hoare-style:
= Signaler passes lock to waiter, signaler suspended
= Waiter runs immediately
= Waiter passes lock back to signaler if it leaves critical section or if it waits

again
m Mesa-style (mostused):
= Signaler keeps lock
=  Waiter simply puton run queue
= Needsto acquire lock, may wait again



When to Spin and When to Block?

m Spinning consumes CPU cycles butis cheap
= “Steals” CPU from other threads

m Blocking has high one-time cost and is then free
= Often hundreds of cycles (trap, save TCB ...)
= Wakeupis also expensive (latency)
Also cache-pollution

m Strategy:

= Poll for a while and then block



When to Spin and When to Block?

m Whatis a “while”?

m Optimal time depends on the future
" When will the active thread leave the CR?

= Can compute optimal offline schedule
= Actual problemis an online problem

m Competitivealgorithms

= An algorithmis c-competitive if for a sequence of actions x and a constant
a holds:

C(x) < c*Coplx) +a

What would a good spinning algorithm look like and what is the
competitiveness?



