
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Locks and Lock-Free

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

 Next week – progress presentations

 Make sure, Timo knows about your team (this step is important!)

 Send slides (ppt or pdf) by Sunday 11:59pm to Timo!

 10 minutes per team (hard limit)

 Prepare! This is your first impression, gather feedback from us!

 Rough guidelines:

Present your plan

Related work (what exists, literature review!)

Preliminary results (not necessarily)

Main goal is to gather feedback, so present some details

Pick one presenter (make sure to switch for other presentations!)

 Intermediate (very short) presentation: Thursday 11/21 during
recitation

 Final project presentation: Monday 12/16 during last lecture

 2

Review of last lecture

 Language memory models

 History

 Java/C++ overview

 Locks

 Two-thread

 Peterson

 N-thread

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Formal proof methods

 Correctness (mutual exclusion as condition)

 Progress

3

DPHPC Overview

4

Goals of this lecture

 Hardware operations for concurrency control

 More on locks (using advanced operations)

 Spin locks

 Various optimized locks

 Even more on locks (issues and extended concepts)

 Deadlocks, priority inversion, competitive spinning,
semaphores

 Case studies

 Barrier

 Reasoning about semantics

 Locks in practice: a set structure

5

Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes number in doorway and threads enter in the order
of their number!

volatile int flag*n+ = ,0,0,…,0-;
volatile int label*n+ = ,0,0,….,0-;

void lock() {
 flag[tid] = 1; // request
 label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
 while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
public void unlock() {
 flag[tid] = 0;
}

6

Lamport’s Bakery Algorithm

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why?

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory

7

A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

 So we’re doomed! Optimal locks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171–184, December
1993

8

Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

9

Relative Power of Synchronization

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Concept of “consensus number” C if a primitive can be used to solve the
“consensus problem” in a finite number of steps (even if a threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞

10

Test-and-Set Locks

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

bool test_and_set (bool *flag) {
 bool old = *flag;
 *flag = true;
 return old;
} // all atomic!

11

Test-and-Set Locks

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval

 When will the lock be
granted?

 Does this work well in
practice?

volatile int lock = 0;

void lock() {
 while (TestAndSet(&lock) == 1);
}

void unlock() {
 lock = 0;
}

12

Contention

 On x86, the XCHG instruction is used to implement TAS

 For experts: x86 LOCK is superfluous!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 bus lock is essentially a full memory barrier

movl $1, %eax
xchg %eax, (%ebx)

13

Test-and-Test-and-Set (TATAS) Locks

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time, no cache coherency/memory traffic

 Danger!

 Efficient but use with great
care!

 Generalizations are
dangerous

volatile int lock = 0;

void lock() {
 do {
 while (lock == 1);
 } while (TestAndSet(&lock) == 1);
}

void unlock() {
 lock = 0;
}

14

Warning: Even Experts get it wrong!

 Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

1997

15

Contention?

 Do TATAS locks still have contention?

 When lock is released, k threads fight for
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good
solution? (think “collision
avoidance”)

volatile int lock = 0;

void lock() {
 do {
 while (lock == 1);
 } while (TestAndSet(&lock) == 1);
}

void unlock() {
 lock = 0;
}

16

TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

volatile int lock = 0;

void lock() {
 while (TestAndSet(&lock) == 1) {
 wait(time);
 time *= 2; // double waiting time
 }
}

void unlock() {
 lock = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 17

TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

volatile int lock = 0;
const int maxtime=1000;

void lock() {
 while (TestAndSet(&lock) == 1) {
 wait(time);
 time = min(time * 2, maxtime);
 }
}

void unlock() {
 lock = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 18

Comparison of TAS Locks

19

Improvements?

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive
atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry
to CR)

 What would be a fix for that?

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness

20

Array Queue Lock

 Array to implement
queue

 Tail-pointer shows next free
queue position

 Each thread spins on own
location

CL padding!

 index[] array can be put in TLS

 So are we done now?

 What’s wrong?

 Synchronizing M objects
requires Θ(NM) storage

 What do we do now?

21

volatile int array*n+ = ,1,0,…,0-;
volatile int index*n+ = ,0,0,…,0-;
volatile int tail = 0;

void lock() {
 index[tid] = GetAndInc(tail) % n;
 while (!array[index[tid]]); // wait to receive lock
}

void unlock() {
 array[index[tid]] = 0; // I release my lock
 array[(index[tid] + 1) % n] = 1; // next one
}

CLH Lock (1993)

 List-based (same queue
principle)

 Discovered twice by Craig,
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!

22

typedef struct qnode {
 struct qnode *prev;
 int succ_blocked;
} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
 qn->succ_blocked = 1;
 qn->prev = FetchAndSet(lck, qn);
 while (qn->prev->succ_blocked);
}

void unlock(qnode **qn) {
 qnode *pred = (*qn)->prev;
 (*qn)->succ_blocked = 0;
 *qn = pred;
}

CLH Lock (1993)

 Qnode objects represent
thread state!

 succ_blocked == 1 if waiting
or acquired lock

 succ_blocked == 0 if released
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?

23

typedef struct qnode {
 struct qnode *prev;
 int succ_blocked;
} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
 qn->succ_blocked = 1;
 qn->prev = FetchAndSet(lck, qn);
 while (qn->prev->succ_blocked);
}

void unlock(qnode **qn) {
 qnode *pred = (*qn)->prev;
 (*qn)->succ_blocked = 0;
 *qn = pred;
}

MCS Lock (1991)

 Make queue explicit

 Acquire lock by
appending to queue

 Spin on own node
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

24

typedef struct qnode {
 struct qnode *next;
 int succ_blocked;
} qnode;

qnode *lck = NULL;

void lock(qnode *lck, qnode *qn) {
 qn->next = NULL;
 qnode *pred = FetchAndSet(lck, qn);
 if(pred != NULL) {
 qn->locked = 1;
 pred->next = qn;
 while(qn->locked);
} }

void unlock(qnode * lck, qnode *qn) {
 if(qn->next == NULL) , // if we’re the last waiter
 if(CAS(lck, qn, NULL)) return;
 while(qn->next == NULL); // wait for pred arrival
 }
 qn->next->locked = 0; // free next waiter
 qn->next = NULL;
}

Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable widely used, always compared against!

25

Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

26

More Practical Optimizations

 Let’s step back to “data race”

 (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither AB nor BA

 So we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

 Let’s say you implement a web-based encyclopedia

 Consider the “average two accesses” – do they conflict?

27

Reader-Writer Locks

 Allows multiple concurrent reads

 Multiple reader locks concurrently in CR

 Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

 Syntax:

 read_(un)lock()

 write_(un)lock()

28

A Simple RW Lock

 Seems efficient!?

 Is it? What’s wrong?

 Polling CAS!

 Is it fair?

 Readers are preferred!

 Can always delay
writers (again and
again and again)

29

const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
 AtomicAdd(lock, R);
 while(lock & W);
}

void write_lock(lock_t lock) {
 while(!CAS(lock, 0, W));
}

void read_unlock(lock_t lock) {
 AtomicAdd(lock, -R);
}

void write_unlock(lock_t lock) {
 AtomicAdd(lock, -W);
}

Fixing those Issues?

 Polling issue:

 Combine with MCS lock idea of queue polling

 Fairness:

 Count readers and writers

30

The final algorithm (Alg. 4)
has a flaw that was
corrected in 2003!

(1991)

Deadlocks

 Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

31

What are necessary

conditions for deadlock?

Deadlocks

 Necessary conditions:

 Mutual Exclusion

 Hold one resource, request another

 No preemption

 Circular wait in dependency graph

 One condition missing will prevent deadlocks!

 Different avoidance strategies (which?)

32

Issues with Spinlocks

 Spin-locking is very wasteful

 The spinning thread occupies resources

 Potentially the PE where the waiting thread wants to run requires
context switch!

 Context switches due to

 Expiration of time-slices (forced)

 Yielding the CPU

33

What is this?

34

Why is the 1997 Mars Rover in our lecture?

 It landed, received program, and worked … until it spuriously
rebooted!

 watchdog

 Scenario (vxWorks RT OS):

 Single CPU

 Two threads A,B sharing common bus, using locks

 (independent) thread C wrote data to flash

 Priority: ACB (A highest, B lowest)

 Thread C would run into a lifelock (infinite loop)

 Thread B was preempted by C while holding lock

 Thread A got stuck at lock

35 [http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

 If busy-waiting thread has higher priority than thread holding lock ⇒
no progress!

 Can be fixed with the help of the OS

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

36

Condition Variables

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

37

Condition Variable Semantics

 Hoare-style:

 Signaler passes lock to waiter, signaler suspended

 Waiter runs immediately

 Waiter passes lock back to signaler if it leaves critical section or if it waits
again

 Mesa-style (most used):

 Signaler keeps lock

 Waiter simply put on run queue

 Needs to acquire lock, may wait again

38

When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

39

When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the
competitiveness?

40

