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Administrivia 

 Next week – progress presentations 

 Make sure, Timo knows about your team (this step is important!) 

 Send slides (ppt or pdf) by Sunday 11:59pm to Timo! 

 10 minutes per team (hard limit) 

 Prepare! This is your first impression, gather feedback from us! 

 Rough guidelines: 

Present your plan 

Related work (what exists, literature review!) 

Preliminary results (not necessarily) 

Main goal is to gather feedback, so present some details 

Pick one presenter (make sure to switch for other presentations!) 

 Intermediate (very short) presentation: Thursday 11/21 during 
recitation 

 Final project presentation: Monday 12/16 during last lecture 
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Review of last lecture 

 Language memory models 

 History 

 Java/C++ overview 

 Locks 

 Two-thread 

 Peterson 

 N-thread 

 Many different locks, strengths and weaknesses 

 Lock options and parameters 

 

 Formal proof methods 

 Correctness (mutual exclusion as condition) 

 Progress 
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DPHPC Overview 
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Goals of this lecture 

 Hardware operations for concurrency control 

 More on locks (using advanced operations) 

 Spin locks 

 Various optimized locks 

 Even more on locks (issues and extended concepts) 

 Deadlocks, priority inversion, competitive spinning, 
semaphores 

 Case studies 

 Barrier 

 Reasoning about semantics 

 Locks in practice: a set structure 
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Lamport’s Bakery Algorithm (1974) 

 Is a FIFO lock (and thus fair) 

 Each thread takes number in doorway and threads enter in the order 
of their number! 

volatile int flag*n+ = ,0,0,…,0-; 
volatile int label*n+ = ,0,0,….,0-; 
 
void lock() { 
  flag[tid] = 1; // request 
  label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket 
  while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {}; 
} 
public void unlock() { 
  flag[tid] = 0; 
} 
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Lamport’s Bakery Algorithm 

 Advantages: 

 Elegant and correct solution 

 Starvation free, even FIFO fairness 

 

 Not used in practice! 

 Why?  

 Needs to read/write N memory locations for synchronizing N threads 

 Can we do better? 

Using only atomic registers/memory 
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A Lower Bound to Memory Complexity 

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes” 

 

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not? 

 

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993 
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Hardware Support? 

 Hardware atomic operations: 

 Test&Set 

Write const to memory while returning the old value 

 Atomic swap 

Atomically exchange memory and register 

 Fetch&Op 

Get value and apply operation to memory location 

 Compare&Swap 

Compare two values and swap memory with register if equal 

 Load-linked/Store-Conditional LL/SC 

Loads value from memory, allows operations, commits only if no other updates 
committed  mini-TM 

 Intel TSX (transactional synchronization extensions) 

Hardware-TM (roll your own atomic operations) 
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Relative Power of Synchronization 

 Design-Problem I: Multi-core Processor 

 Which atomic operations are useful? 

 Design-Problem II: Complex Application 

 What atomic should I use? 

 Concept of “consensus number” C if a primitive can be used to solve the 
“consensus problem” in a finite number of steps (even if a threads stop) 

 atomic registers have C=1 (thus locks have C=1!) 

 TAS, Swap, Fetch&Op have C=2 

 CAS, LL/SC, TM have C=∞ 
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Test-and-Set Locks 

 Test-and-Set semantics 

 Memoize old value 

 Set fixed value TASval (true) 

 Return old value 

 After execution: 

 Post-condition is a fixed (constant) value! 

bool test_and_set (bool *flag) { 
  bool old = *flag; 
  *flag = true; 
  return old; 
} // all atomic! 
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Test-and-Set Locks 

 Assume TASval indicates “locked” 

 Write something else to indicate “unlocked” 

 TAS until return value is != TASval 

 

 When will the lock be  
granted? 

 Does this work well in  
practice? 

volatile int lock = 0; 
 
void lock() { 
  while (TestAndSet(&lock) == 1); 
} 
 
void unlock() { 
  lock = 0; 
} 
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Contention 

 On x86, the XCHG instruction is used to implement TAS 

 For experts: x86 LOCK is superfluous! 

 Cacheline is read and written 

 Ends up in exclusive state, invalidates other copies 

 Cacheline is “thrown” around uselessly 

 High load on memory subsystem 

x86 bus lock is essentially a full memory barrier  

movl    $1, %eax  
xchg    %eax, (%ebx) 
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Test-and-Test-and-Set (TATAS) Locks 

 Spinning in TAS is not a good idea 

 Spin on cache line in shared state 

 All threads at the same time,  no cache coherency/memory traffic 

 

 Danger! 

 Efficient but use with great  
care! 

 Generalizations are  
dangerous 

 

 

volatile int lock = 0; 
 
void lock() { 
  do { 
    while (lock == 1); 
  } while (TestAndSet(&lock) == 1); 
} 
 
void unlock() { 
  lock = 0; 
} 
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Warning: Even Experts get it wrong! 

 Example: Double-Checked Locking 

Problem: Memory ordering leads to race-conditions! 

1997 

15 

Contention? 

 Do TATAS locks still have contention? 

 When lock is released, k threads fight for  
cache line ownership 

 One gets the lock, all get the CL exclusively (serially!) 

 What would be a good  
solution? (think “collision 
avoidance”) 

 

volatile int lock = 0; 
 
void lock() { 
  do { 
    while (lock == 1); 
  } while (TestAndSet(&lock) == 1); 
} 
 
void unlock() { 
  lock = 0; 
} 
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TAS Lock with Exponential Backoff 

 Exponential backoff eliminates contention statistically 

 Locks granted in 
unpredictable 
order 

 Starvation possible 
but unlikely 

How can we make 
it even less likely? 

 

volatile int lock = 0; 
 
void lock() { 
  while (TestAndSet(&lock) == 1) { 
     wait(time); 
     time *= 2; // double waiting time  
  } 
} 
 
void unlock() { 
  lock = 0; 
} 

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory  
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 17 

TAS Lock with Exponential Backoff 

 Exponential backoff eliminates contention statistically 

 Locks granted in 
unpredictable 
order 

 Starvation possible 
but unlikely 

Maximum waiting 
time makes it less 
likely 

 

volatile int lock = 0; 
const int maxtime=1000; 
 
void lock() { 
  while (TestAndSet(&lock) == 1) { 
     wait(time); 
     time = min(time * 2, maxtime);  
  } 
} 
 
void unlock() { 
  lock = 0; 
} 

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory  
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990 18 



Comparison of TAS Locks 
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Improvements? 

 Are TAS locks perfect? 

 What are the two biggest issues? 

 Cache coherency traffic (contending on same location with expensive 
atomics) 

-- or -- 

 Critical section underutilization (waiting for backoff times will delay entry 
to CR) 

 What would be a fix for that?  

 How is this solved at airports and shops (often at least)? 

 Queue locks -- Threads enqueue 

 Learn from predecessor if it’s their turn 

 Each threads spins at a different location 

 FIFO fairness 
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Array Queue Lock 

 Array to implement  
queue 

 Tail-pointer shows next free  
queue position 

 Each thread spins on own  
location 

CL padding! 

 index[] array can be put in TLS 

 So are we done  now? 

 What’s wrong? 

 Synchronizing M objects  
requires Θ(NM) storage 

 What do we do now? 
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volatile int array*n+ = ,1,0,…,0-; 
volatile int index*n+ = ,0,0,…,0-; 
volatile int tail = 0; 
 
void lock() { 
  index[tid] = GetAndInc(tail) % n; 
  while (!array[index[tid]]); // wait to receive lock 
} 
 
void unlock() { 
  array[index[tid]] = 0; // I release my lock 
  array[(index[tid] + 1) % n] = 1; // next one 
} 

CLH Lock (1993) 

 List-based (same queue  
principle) 

 Discovered twice by Craig,  
Landin, Hagersten 1993/94 

 2N+3M words 

 N threads, M locks 

 Requires thread-local qnode  
pointer 

 Can be hidden! 
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typedef struct qnode { 
  struct qnode *prev; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = new qnode; // node owned by lock 
 
void lock(qnode *lck, qnode *qn) { 
  qn->succ_blocked = 1; 
  qn->prev = FetchAndSet(lck, qn); 
  while (qn->prev->succ_blocked); 
} 
 
void unlock(qnode **qn) { 
  qnode *pred = (*qn)->prev; 
  (*qn)->succ_blocked = 0; 
  *qn = pred; 
} 

CLH Lock (1993) 

 Qnode objects represent  
thread state! 

 succ_blocked == 1 if waiting  
or acquired lock 

 succ_blocked == 0 if released  
lock  

 List is implicit! 

 One node per thread 

 Spin location changes 

NUMA issues (cacheless) 

 Can we do better? 
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typedef struct qnode { 
  struct qnode *prev; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = new qnode; // node owned by lock 
 
void lock(qnode *lck, qnode *qn) { 
  qn->succ_blocked = 1; 
  qn->prev = FetchAndSet(lck, qn); 
  while (qn->prev->succ_blocked); 
} 
 
void unlock(qnode **qn) { 
  qnode *pred = (*qn)->prev; 
  (*qn)->succ_blocked = 0; 
  *qn = pred; 
} 

MCS Lock (1991) 

 Make queue explicit 

 Acquire lock by  
appending to queue 

 Spin on own node  
until locked is reset 

 Similar advantages 
as CLH but 

 Only 2N + M words 

 Spinning position is fixed! 

Benefits cache-less NUMA 

 What are the issues? 

 Releasing lock spins 

 More atomics! 
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typedef struct qnode { 
  struct qnode *next; 
  int succ_blocked; 
} qnode; 
 
qnode *lck = NULL;  
 
void lock(qnode *lck, qnode *qn) { 
  qn->next = NULL; 
  qnode *pred = FetchAndSet(lck, qn); 
  if(pred != NULL) { 
    qn->locked = 1; 
    pred->next = qn; 
    while(qn->locked); 
} } 
 
void unlock(qnode * lck, qnode *qn) { 
  if(qn->next == NULL) , // if we’re the last waiter 
    if(CAS(lck, qn, NULL)) return; 
    while(qn->next == NULL); // wait for pred arrival 
  } 
  qn->next->locked = 0; // free next waiter 
  qn->next = NULL; 
} 



Lessons Learned! 

 Key Lesson: 

 Reducing memory (coherency) traffic is most important! 

 Not always straight-forward (need to reason about CL states) 

 

 MCS: 2006 Dijkstra Prize in distributed computing 

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade” 

 “probably the most influential practical mutual exclusion algorithm ever” 

 “vastly superior to all previous mutual exclusion algorithms” 

 fast, fair, scalable  widely used, always compared against! 
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Time to Declare Victory? 

 Down to memory complexity of 2N+M 

 Probably close to optimal 

 Only local spinning 

 Several variants with low expected contention 

 But: we assumed sequential consistency  

 Reality causes trouble sometimes 

 Sprinkling memory fences may harm performance 

 Open research on minimally-synching algorithms! 

Come and talk to me if you’re interested 
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More Practical Optimizations 

 Let’s step back to “data race” 

 (recap) two operations A and B on the same memory cause a data race if 
one of them is a write (“conflicting access”) and neither AB nor BA  

 So we put conflicting accesses into a CR and lock it! 

This also guarantees memory consistency in C++/Java! 

 

 Let’s say you implement a web-based encyclopedia  

 Consider the “average two accesses” – do they conflict? 
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Reader-Writer Locks 

 Allows multiple concurrent reads 

 Multiple reader locks concurrently in CR 

 Guarantees mutual exclusion between writer and writer locks and reader 
and writer locks 

 

 Syntax: 

 read_(un)lock() 

 write_(un)lock() 
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A Simple RW Lock 

 Seems efficient!? 

 Is it? What’s wrong? 

 Polling CAS! 

 

 Is it fair? 

 Readers are preferred! 

 Can always delay  
writers (again and  
again and again)   
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const W = 1; 
const R = 2; 
volatile int lock=0; // LSB is writer flag! 
 
void read_lock(lock_t lock) { 
  AtomicAdd(lock, R); 
  while(lock & W);   
} 
 
void write_lock(lock_t lock) { 
  while(!CAS(lock, 0, W));   
} 
 
void read_unlock(lock_t lock) { 
  AtomicAdd(lock, -R); 
} 
 
void write_unlock(lock_t lock) { 
  AtomicAdd(lock, -W); 
} 

Fixing those Issues? 

 Polling issue: 

 Combine with MCS lock idea of queue polling 

 Fairness: 

 Count readers and writers 
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The final algorithm (Alg. 4) 
has a flaw that was 
corrected in 2003! 

(1991) 



Deadlocks 

 Kansas state legislature: “When two trains approach each other at a 
crossing, both shall come to a full stop and neither shall start up again 
until the other has gone.” 

[according to Botkin, Harlow  "A Treasury of Railroad Folklore" (pp. 381)] 
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What are necessary  

conditions for deadlock? 

Deadlocks 

 Necessary conditions: 

 Mutual Exclusion 

 Hold one resource, request another 

 No preemption 

 Circular wait in dependency graph 

 One condition missing will prevent deadlocks! 

 Different avoidance strategies (which?) 
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Issues with Spinlocks 

 Spin-locking is very wasteful 

 The spinning thread occupies resources 

 Potentially the PE where the waiting thread wants to run  requires 
context switch! 

 Context switches due to 

 Expiration of time-slices (forced) 

 Yielding the CPU 
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What is this? 
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Why is the 1997 Mars Rover in our lecture? 

 It landed, received program, and worked … until it spuriously 
rebooted! 

  watchdog 

 Scenario (vxWorks RT OS): 

 Single CPU 

 Two threads A,B sharing common bus, using locks 

 (independent) thread C wrote data to flash 

 Priority: ACB (A highest, B lowest) 

 Thread C would run into a lifelock (infinite loop) 

 Thread B was preempted by C while holding lock 

 Thread A got stuck at lock  

 

 

 

35 [http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html] 

Priority Inversion 

 If busy-waiting thread has higher priority than thread holding lock ⇒ 
no progress! 

 Can be fixed with the help of the OS 

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to 
highest priority among waiting tasks) 
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Condition Variables 

 Allow threads to yield CPU and leave the OS run queue 

 Other threads can get them back on the queue! 

 cond_wait(cond, lock) – yield and go to sleep 

 cond_signal(cond) – wake up sleeping threads 

 Wait and signal are OS calls 

 Often expensive, which one is more expensive? 

Wait, because it has to perform a full context switch 
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Condition Variable Semantics 

 Hoare-style: 

 Signaler passes lock to waiter, signaler suspended 

 Waiter runs immediately 

 Waiter passes lock back to signaler if it leaves critical section or if it waits 
again 

 Mesa-style (most used): 

 Signaler keeps lock 

 Waiter simply put on run queue 

 Needs to acquire lock, may wait again 
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When to Spin and When to Block? 

 Spinning consumes CPU cycles but is cheap 

 “Steals” CPU from other threads 

 Blocking has high one-time cost and is then free 

 Often hundreds of cycles (trap, save TCB …) 

 Wakeup is also expensive (latency) 

Also cache-pollution 

 Strategy: 

 Poll for a while and then block 
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When to Spin and When to Block? 

 What is a “while”? 

 Optimal time depends on the future 

 When will the active thread leave the CR? 

 Can compute optimal offline schedule 

 Actual problem is an online problem 

 Competitive algorithms 

 An algorithm is c-competitive if for a sequence of actions x and a constant 
a holds: 

C(x) ≤ c*Copt(x) + a 

 What would a good spinning algorithm look like and what is the 
competitiveness? 
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