Design of Parallel and High-Performance

Computing
Fall 2013
Lecture: Locks and Lock-Free

Instructor: Torsten Hoefler & Markus Pischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Administrivia

m Next week — progress presentations
= Make sure, Timo knows about your team (this step is important!)
= Send slides (ppt or pdf) by Sunday 11:59pm to Timo!
= 10 minutes per team (hard limit)
= Prepare! Thisis your first impression, gather feedback from us!
= Rough guidelines:
Present your plan
Related work (what exists, literature review!)
Preliminary results (not necessarily)
Main goal is to gather feedback, so present some details
Pick one presenter (make sure to switch for other presentations!)

= Intermediate (very short) presentation: Thursday 11/21 during
recitation

m Final project presentation: Monday 12/16 during last lecture

Review of last lecture

DPHPC Overview

DPHPC
= Language memory models . .
. locality parallelism
History 8 4
" = L
" Java/C++overview g -caches vector ISA shared memory distributed memory
Locks S - memory hierarchy
" Two-thread 2 | cache coherency |
®* Two-threa o3 T 1
= Peterson 2 _memory , , distributed
= N-thread 5 " models ' " algorithms '
= o
rea4 5 locks group commu-
= Many different locks, strengths and weaknesses o lock free nications
= Lock optionsand parameters Ineaizability
| |
= Formal proof methods | Amdahl's and Gustafson's law
= Correctness (mutual exclusion as condition) % | memory I} PRAM I} LogP
= Progress .é a-B
1/0 complexity
balance principles | balance principles Il
Little's Law scheduling

Goals of this lecture

m Hardware operations for concurrency control

m More on locks (using advanced operations)
= Spin locks
® Various optimized locks
= Even more on locks (issues and extended concepts)
= Deadlocks, priority inversion, competitive spinning,
semaphores
m Case studies
= Barrier
= Reasoning about semantics

m Locks in practice: a set structure

Lamport’s Bakery Algorithm (1974)

m Is a FIFO lock (and thus fair)

m Each thread takes number in doorway and threads enter in the order

of their number!

volatileint flag[n] = {0,0,...,0};
volatileintlabel[n] = {0,0,....,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((3k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
publicvoid unlock() {
flag[tid] = 0;
}

Lamport’s Bakery Algorithm

= Advantages:
= Elegantand correct solution
= Starvationfree, even FIFO fairness

= Notusedin practice!
= Why?
= Needs to read/write N memory locations for synchronizing N threads
= Canwe do better?

Using only atomic registers/memory

A Lower Bound to Memory Complexity

m TheoremS5.1in [1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

m Sowe’redoomed!Optimallocks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171-184, December
1993

Hardware Support?

= Hardware atomic operations:
= Test&Set
Write const to memory while returning the old value
= Atomic swap
Atomically exchange memory and register
= Fetch&Op
Get value and apply operation to memory location
= Compare&Swap
Compare two values and swap memory with register if equal
= |Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates

committed = mini-TM
® |ntel TSX (transactional synchronization extensions)
Hardware-TM (roll your own atomic operations)

Relative Power of Synchronization

m Design-Problem I: Multi-core Processor
= Which atomic operations are useful?

m Design-Problem Il: Complex Application
= What atomicshould | use?

m Conceptof “consensus number” Cif a primitive can be used to solve the
“consensus problem” in a finite number of steps (even if a threads stop)
= atomicregisters have C=1 (thus locks have C=1!)
= TAS, Swap, Fetch&Op have C=2
= CAS, LL/SC, TM have C=oo

Test-and-Set Locks

m Test-and-Set semantics
= Memoize old value
= Set fixed value TASval (true)

bool old = *flag;
= Return old value *flag = true;
m After execution:);jt:lr;f;?riicl

= Post-condition is a fixed (constant) value!

bool test_and_set (bool *flag) {

Test-and-Set Locks

m Assume TASval indicates “locked”
= Write something else to indicate “unlocked”

m TAS untilreturn valueis != TASval

m When willthe lockbe el ek =)

granted?
Does this work well in poldilocki
" practice? while (TestAndSet(&lock) == 1);
’ }

void unlock() {
lock = 0;
}

Contention

= On x86, the XCHG instructionis used to implement TAS

= For experts: x86 LOCK is superfluous!
movl $1, %eax

m Cachelineisread and written xchg %eax, (%ebx)

= Ends up in exclusive state, invalidates other copies
= Cachelineis “thrown” around uselessly
= High load on memory subsystem

x86 bus lock is essentially a full memory barrier &

Test-and-Test-and-Set (TATAS) Locks

m Spinningin TASis nota goodidea

m Spinon cache lineinshared state
= Allthreads at the same time, no cache coherency/memory traffic

= Danger!

= Efficient but use with great
care!

volatileint lock = 0;

= Generalizationsare void lock() {
dangerous do {
while (lock == 1);
} while (TestAndSet(&Iock) == 1);

}

void unlock() {
lock = 0;

}

Warning: Even Experts get it wrong!

m Example: Double-Checked Locking

1 9 9 7 Double-Checked Locking

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

doule-checkealockng ("o]

Problem: Memory ordering leads to race-conditions!

Contention?

m Do TATAS locks still have contention?

m Whenlockis released, k threads fight for
cache line ownership
= One gets the lock, all get the CL exclusively (serially!)
= What would be a good
solution? (think “collision
avoidance”)

volatileint lock = 0;

void lock() {
do{
while (lock == 1);
} while (TestAndSet(&lock) == 1);
}

void unlock() {
lock =0;
}

TAS Lock with Exponential Backoff

= Exponential backoff eliminates contention statistically
= Locks granted in

TAS Lock with Exponential Backoff

= Exponential backoff eliminates contention statistically
= Locks granted in

unpredictable

volatileint lock = 0;

order
= Starvation possible void lock() {
but unlikely while (TestAndSet(&lock) == 1) {
How can we make wait(time);
it even less likely? time *=2; // double waiting time
}
}

void unlock() {
lock = 0;
}

Similarto: T. Anderson: “The performance of spin lock alternativesfor shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

unpredictable
order
= Starvation possible
but unlikely
Maximum waiting
time makes it less
likely

volatileintlock = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lock) == 1) {
wait(time);
time = min(time * 2, maxtime);
}
}

void unlock() {
lock = 0;
}

Similarto: T. Anderson: “The performance of spin lock alternativesfor shared-memory
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

Comparison of TAS Locks

v]

© —— TAS
_ TATAS o
[—— TAS+Backoff i
8] o-
g ° e
E o 8—°
= o | / o _o-0
z g 07 Xo? NorL 080
2 / _070-°
I o
g2 « >
=] < / o—0
ko) O/o/
s o
E o 7| Ch
= / 0

A
o | ©
o

Number of Threads

Improvements?

m Are TAS locks perfect?

= What are the two biggest issues?

= Cache coherency traffic (contending on same location with expensive

atomics)

- or--

= Critical section underutilization (waiting for backoff times will delay entry

to CR)

= Whatwould be a fix for that?

® How is this solved at airports and shops (often at least)?

= Queuelocks -- Threads enqueue
= Learn from predecessor if it’s their turn
= Eachthreads spins at a different location

= FIFO fairness

Array Queue Lock

= Array toimplement
queue
= Tail-pointershows next free
queue position

= Eachthread spins on own
location

CL padding!
= index[] array can be putin TLS

= Soare we done now?
®= What’s wrong?
= Synchronizing M objects
requires ©(NM) storage
= What do we do now?

volatileintarray[n] = {1,0,...,0};
volatileintindex[n] = {0,0,...,0};
volatileint tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (larray[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // | release my lock
array[(index[tid]+ 1) % n] = 1; // next one

CLH Lock (1993)

m List-based (same queue
principle)

m Discoveredtwice by Craig,
Landin, Hagersten 1993/94

= 2N+3Mwords
= N threads, M locks

= Requiresthread-local gnode
pointer
= Canbe hidden!

typedef struct gnode {
struct gnode *prev;
intsucc_blocked;

} gnode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *qn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(Ick, gn);
while (gn->prev->succ_blocked);

}

void unlock(qnode **qn) {
gnode *pred = (*qn)->prev;
(*an)->succ_blocked = 0;
*qn = pred;

}

CLH Lock (1993)

= Qnode objects represent
thread state!
= succ_blocked == 1 if waiting
oracquired lock
= succ_blocked == 0 if released
lock
m Listis implicit!
= One node per thread
= Spinlocation changes
NUMA issues (cacheless)

m Can wedo better?

typedef struct gnode {
struct gnode *prev;
intsucc_blocked;

} anode;

qnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *qn) {
gn->succ_blocked = 1;
qn->prev = FetchAndSet(Ick, qn);
while (gn->prev->succ_blocked);

}

void unlock(gnode **qn) {
gnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

MCS Lock (1991)

= Make queue explicit

= Acquire lock by
appendingto queue

= Spinon own node
until locked is reset

= Similar advantages
as CLH but
= Only 2N + M words
= Spinningposition is fixed!
Benefits cache-less NUMA
= Whatare the issues?

= Releasinglock spins
= More atomics!

typedef struct gnode {
struct gnode *next;
int succ_blocked;

} gnode;

gnode *Ick = NULL;

void lock(gnode *Ick, gnode *qn) {
gn->next = NULL;
gnode *pred = FetchAndSet(Ick, gn);
if(pred != NULL) {
gn->locked = 1;
pred->next = gn;
while(gn->locked);

134

void unlock(gnode * Ick, gnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter
if(CAS(Ick, gn, NULL)) return;
while(gn->next == NULL); // wait for pred arrival
}
gn->next->locked = 0; // free next waiter
gn->next = NULL;
}

Lessons Learned!

m KeyLesson:
= Reducing memory (coherency) traffic is most important!
= Not always straight-forward (need to reason about CL states)

m MCS: 2006 Dijkstra Prize in distributed computing

= “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

= “probably the most influential practical mutual exclusion algorithm ever”
= “yastly superior to all previous mutual exclusion algorithms”
= fast, fair, scalable 2 widely used, always compared against!

Time to Declare Victory?

= Down to memory complexity of 2N+M
= Probably close to optimal

m Onlylocal spinning
= Several variants with low expected contention

= But: we assumed sequential consistency ®
= Reality causes trouble sometimes
= Sprinklingmemory fences may harm performance
= QOpen research on minimally-synchingalgorithms!
Come and talk to me if you’re interested

More Practical Optimizations

m Let’s step back to “data race”

= (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither A>B nor B>A

= So we put conflicting accesses into a CR and lock it!
This also guarantees memory consistency in C++/Java!

m Let’s say youimplementa web-based encyclopedia
= Considerthe “average two accesses” — do they conflict?

Reader-Writer Locks

m Allows multiple concurrent reads
= Multiplereader locks concurrently in CR

= Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

= Syntax:
= read_(un)lock()
= write_(un)lock()

A Simple RW Lock const W= 1;

constR =2;
volatileintlock=0; // LSB is writer flag!
m Seems efficient!?
" Isit? What' 2 void read_lock(lock_tlock) {
. s . a 'swrong AtomicAdd(lock, R);
Polling CAS! while(lock & W);

}

= Isitfair? void write_lock(lock_t lock) {
= Readers are preferred! while(!CAS(lock, 0, W));
}

= Canalways delay
writers (again and

again and again) void read_unlock(lock_tlock) {

AtomicAdd(lock, -R);
}

void write_unlock(lock_tlock) {
AtomicAdd(lock, -W);
}

Fixing those Issues?

m Pollingissue:
= Combine with MCS lock idea of queue polling

m Fairness:
= Countreaders and writers

(1 991) Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors

The final algorithm (Alg. 4)
has a flaw that was
corrected in 2003!

Abstract
Reader

Deadlocks

m Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

What are necessary
conditions for deadlock?

Deadlocks

m Necessary conditions:
= Mutual Exclusion
= Hold one resource, request another
= No preemption
= Circularwaitin dependency graph

= One condition missing will prevent deadlocks!
= ->Different avoidance strategies (which?)

Issues with Spinlocks

m Spin-lockingis very wasteful
= The spinningthread occupies resources
= Potentially the PE where the waiting thread wants to run = requires
context switch!
m Context switches due to
= Expiration of time-slices (forced)
= Yieldingthe CPU

What is this?

Why is the 1997 Mars Rover in our lecture?

= Itlanded, received program, and worked ... until it spuriously
rebooted!
= - watchdog

m Scenario (vxWorks RT OS):
= Single CPU
= Two threads A,B sharing common bus, using locks
= (independent)thread C wrote data to flash
= Priority: A>C>B (A highest, B lowest)
= Thread C would run into a lifelock (infinite loop)
= Thread B was preempted by C while holdinglock
= Thread A got stuck at lock ®

Ipeople/mbj/Mars_F horitative_Account.html] 35

Priority Inversion

m If busy-waiting thread has higher priority than thread holdinglock =
no progress!

m Can be fixed with the help of the OS

= E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

Condition Variables Condition Variable Semantics

m Allowthreads to yield CPU and leave the OS run queue m Hoare-style:
= QOtherthreads can get them back on the queue! = Signaler passes lock to waiter, signaler suspended
= cond_wait(cond, lock) - yield and go to sleep " Waiter runs immediately
= Waiter passes lock back to signaler if it leaves critical section or if it waits

m cond_signal(cond)-wake up sleepingthreads again

= Wait and signal are OS calls m Mesa-style (mostused):
= Often expensive, which one is more expensive? .
Wait, because it has to perform a full context switch L]

Signaler keeps lock
Waiter simply put on run queue
= Needs to acquire lock, may wait again

When to Spin and When to Block? When to Spin and When to Block?

= Spinning consumes CPU cycles butis cheap = Whatis a “while”?
® “Steals” CPU from other threads = Optimal time depends on the future

= Blocking has high one-time cost and is then free = When will the active thread leave the CR?
= Often hundreds of cycles (trap, save TCB ...) = Cancompute optimal offline schedule
= Wakeup is also expensive (latency) = Actual problem is an online problem

Also cache-pollution m Competitive algorithms

m Strategy: = An algorithmis c-competitive if for a sequence of actionsx and a constant
= Pollfor a while and then block a holds:

C(x) S c*Coplx) +a

= What would a good spinningalgorithm look like and what is the
competitiveness?

