
Design of Parallel and High-Performance 
Computing 
Fall 2013 
Lecture: Languages and Locks 

Instructor: Torsten Hoefler & Markus Püschel 

TA: Timo Schneider 

Administrivia 

 You should have a project partner by now 

 Make sure, Timo knows about your team (this step is important!) 

 Think about a project 

 Initial project presentations: Monday 11/4 during lecture 

 Send slides (ppt or pdf) by 11/3 11:59pm to Timo! 

 10 minutes per team (hard limit) 

 Prepare! This is your first impression, gather feedback from us! 

 Rough guidelines: 

Present your plan 

Related work (what exists, literature review!) 

Preliminary results (not necessarily) 

Main goal is to gather feedback, so present some details 

Pick one presenter (make sure to switch for other presentations!) 

 Intermediate (very short) presentation: Thursday 11/21 during recitation 

 Final project presentation: Monday 12/16 during last lecture 
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Distinguished Colloquium 

 Right after our lecture in CAB G61  

 

 Luis Ceze: Disciplined Approximate Computing: From Language to 
Hardware, and Beyond 

 

 Will add one more parameter to computing: reliability 

 Very interesting, you should all go! 
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Review of last lecture 

 Locked Queue 

 Correctness 

 Lock-free two-thread queue 

 Linearizability 

 Combine object pre- and postconditions with serializability 

 Additional (semantic) constraints! 

 Histories 

 Analyze given histories 

Projections, Sequential/Concurrent, Completeness, Equivalence, Well 
formed, Linearizability (formal) 

 Language memory models 

 History 

 Java/C++ overview 
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DPHPC Overview 
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Goals of this lecture 

 Languages and Memory Models 

 Java/C++ definition 

 Recap serial consistency 

 Races (now in practice) 

 Mutual exclusion 

 Locks 

 Two-thread 

 Peterson 

 N-thread 

 Many different locks, strengths and weaknesses 

 Lock options and parameters 

 Problems and outline to next class 
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Java and C++ High-level overview 

 Relaxed memory model 

 No global visibility ordering of operations 

 Allows for standard compiler optimizations 

 But 

 Program order for each thread (sequential semantics) 

 Partial order on memory operations (with respect to synchronizations) 

 Visibility function defined 

 Correctly synchronized programs 

 Guarantee sequential consistency 

 Incorrectly synchronized programs 

 Java: maintain safety and security guarantees 

Type safety etc. (require behavior bounded by causality) 

 C++: undefined behavior 

No safety (anything can happen/change) 

 

  

7 

Communication between Threads: Intuition 

 Not guaranteed unless by: 

 Synchronization 

 Volatile/atomic variables 

 Specialized functions/classes (e.g., java.util.concurrent, …) 

 

x = 10 
y = 5 
flag = true 

if(flag) 
  print(x+y) 

synchronization 

Thread 1 

Thread 2 

Flag is a synchronization variable  
(atomic in C++, volatile in Java), 

i.e., all memory written by T1  
must be visible to T2 after it 
reads the value true for flag! 
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 Abstract relation between threads and memory 

 Local thread view! 

 

 

 

 

 

 

 

 

 

 Does not talk about classes, objects, methods, … 

 Linearizability is a higher-level concept! 

Memory Model: Intuition 

Main Memory 

Working 

memory 

T1 

Working 

memory 

T1 

Working 

memory 

T1 

When are values transferred? 

abstraction  
of caches and  
registers 
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Lock Synchronization 

 Java 

 

 

 Synchronized methods as 
syntactic  sugar 

 

 

 

 C++ 

 

 

 

 Many flexible variants 

 

 

 

 

synchronized (lock) { 
   // critical region 
} 

{ 
  unique_lock<mutex> l(lock);  
  // critical region 
} 

 Semantics: 
 mutual exclusion 
 at most one thread may own a lock 
 a thread B trying to acquire a lock held by thread A blocks until thread A  

           releases lock 
 note: threads may wait forever (no progress guarantee!) 

10 

Memory semantics 

 Similar to synchronization variables 

 

 

 

 

 

 

 All memory accesses before an unlock … 

 are ordered before and are visible to … 

 any memory access after a matching lock! 

x = 10 
… 
y = 5 
… 
unlock(m) 

lock(m) 
  print(x+y) 

Thread 1 

Thread 2 
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Synchronization Variables 

 Variables can be declared volatile (Java) or atomic (C++) 

 

 Reads and writes to synchronization variables  

 Are totally ordered with respect to all threads 

 Must not be reordered with normal reads and writes 

 

 Compiler 

 Must not allocate synchronization variables in registers 

 Must not swap variables with synchronization variables 

 May need to issue memory fences/barriers 

 … 
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Synchronization Variables 

 Write to a synchronization variable 

 Similar memory semantics as unlock (no process synchronization!) 

 Read from a synchronization variable 

 Similar memory semantics as lock (no process synchronization!) 

class example { 
  int x = 0; 
  atomic<bool> v = false 
 
 public void writer() { 
     x = 42; 
     v = true; 
  }  
   
  public void reader() { 
     if(v) { 
       print(x) 
      } 
  } 

Thread 1     

Thread 2     

Without volatile, a  
platform may reorder 
these accesses! 
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Memory Model Rules 

 Java/C++: Correctly synchronized programs will execute sequentially 
consistent 

 Correctly synchronized = data-race free 

 iff all sequentially consistent executions are free of data races 

 Two accesses to a shared memory location form a data race in the 
execution of a program if 

 The two accesses are from different threads 

 At least one access is a write and 

 The accesses are not synchronized 

 

int x = 10 

T1 T2 T3 

read read 
write 
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Locks - Lecture Goals 

 You understand locks in detail 

 Requirements / guarantees 

 Correctness / validation 

 Performance / scalability 

 Acquire the ability to design your own locks 

 Understand techniques and weaknesses/traps 

 Extend to other concurrent algorithms 

Issues are very much the same  

 Feel the complexity of shared memory! 
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Preliminary Comments 

 All code examples are in C/C++ style 

 Neither C nor C++ <11 have a clear memory model 

 C++ is one of the languages of choice in HPC 

 Consider source as exemplary (and pay attention to the memory model)! 

In fact, many/most of the examples are incorrect in anything but 
sequential consistency! 

In fact, you’ll never need those algorithms, but the principles 
demonstrated! 

 x86 is really only used because it’s common 

 This does not mean that we consider the ISA or memory model elegant! 

 We assume atomic memory (or registers)! 

Usually given on x86 (easy to enforce) 

 Number of threads/processes is p, tid is the thread id 
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Recap Concurrent Updates 

 

 

 

 

 Multi-threaded execution! 

 Value of a for p=1? 

 Value of a for p>1? 

Why? Isn’t it a single instruction? 

const int n=1000; 
volatile int a=0; 
for (int i=0; i<n; ++i)  
    a++; 

gcc -O3 

       movl $1000, %eax     // i=n=1000 
.L2: 
       movl (%rdx), %ecx    // ecx = *a 
       addl $1, %ecx           // ecx++ 
       subl $1, %eax           // i— 
       movl %ecx, (%rdx)    // *a = ecx 
       jne .L2                     // loop if i>0   
                                            [sub sets ZF] 
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Some Statistics 

 Nondeterministic execution 

 Result depends on timing  (probably not desired) 

 What do you think are the most significant results?  

 Running two threads on Core i5 dual core 

 a=1000? 2000? 1500? 1223? 1999? 

 

 

 

 

 

const int n=1000; 
volatile int a=0; 
for (int i=0; i<n; ++i)  
    a++; 
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Some Statistics 
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Conflicting Accesses 

 (recap) two memory accesses conflict if they can happen at the same time 
(in happens-before) and one of them is a write (store) 

 Such a code is said to have a “race condition” 

 Also data-race 

 Trivia around races: 

The Therac-25 killed three people  
due to a race 

A data-race lead to a large blackout  
in 2003, leaving 55 million people  
without power causing $1bn damage 

 Can be avoided by critical regions 

 Mutually exclusive access to a set of operations 
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Mutual Exclusion 

 Control access to a critical region 

 Memory accesses of all processes happen in program order (a partial 
order, many interleavings) 

An execution defines a total order of memory accesses 

 Some subsets of memory accesses (issued by the same process) need to 
happen atomically (thread a’s memory accesses may not be interleaved 
with other thread’s accesses) 

We need to restrict the valid executions 

  Requires synchronization of some sort 

 Many possible techniques (e.g., TM, CAS, T&S, …) 

 We discuss locks which have wait semantics 

 movl $1000, %eax     // i=1000 
.L2: 
       movl (%rdx), %ecx    // ecx = *a 
       addl $1, %ecx           // ecx++ 
       subl $1, %eax           // i— 
       movl %ecx, (%rdx)    // *a = ecx 
       jne .L2                     // loop if i>0   
                                            [sub sets ZF] 
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Fixing it with locks 

 

 

 

 

 

 

 

 
 What must the functions 

lock and unlock guarantee? 

 #1: prevent two threads from simultaneously entering CR 

i.e., accesses to CR must be mutually exclusive! 

 #2: ensure consistent memory 

i.e., stores must be globally visible before new lock is granted! 

 

 

const int n=1000; 
volatile int a=0; 
omp_lock_t lck;  
for (int i=0; i<n; ++i) { 
   omp_set_lock(&lck);  
   a++; 
   omp_unset_lock(&lck); 
} 

gcc -O3 

      movl $1000, %ebx      // i=1000 
.L2: 
      movq 0(%rbp), %rdi    // (SystemV CC) 
      call omp_set_lock   // get lock 
      movq 0(%rbp), %rdi   // (SystemV CC) 
      movl (%rax), %edx    // edx = *a 
      addl $1, %edx          // edx++ 
      movl %edx, (%rax)   // *a = edx 
      call omp_unset_lock // release lock 
      subl $1, %ebx         // i— 
      jne .L2                   // repeat if i>0 
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Lock Overview 

 Lock/unlock or acquire/release 

 Lock/acquire: before entering CR 

 Unlock/release: after leaving CR 

 Semantics: 

 Lock/unlock pairs have to match 

 Between lock/unlock, a thread holds the lock 
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? 

Lock Properties 

 Mutual exclusion  
 Only one thread is on the critical region  

 Consistency 
 Memory operations are visible when critical region is left 

 Progress 
 If any thread a is not in the critical region, it cannot prevent another thread b from 

entering 

 Starvation-freedom (implies deadlock-freedom) 
 If a thread is requesting access to a critical region, then it will eventually be 

granted access 

 Fairness 
 A thread a requested access to a critical region before thread b. Did is also granted 

access to this region before b? 

 Performance 
 Scaling to large numbers of contending threads 
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Notation 

 Time defined by precedence (a total order on events) 

 Events are instantaneous 

 Threads produce sequences of events a0,a1,a2,… 

 Program statements may be repeated, denote i-th instance of a as ai 

 Event a occurs before event b: a → b 

 An interval (a,b) is the duration between events a → b 

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c 

 Critical regions 

 A critical region CR is an interval a → b, where a is the first operation in 
the CR and b the last 

 Mutual exclusion 

 Critical regions CRA and CRB are mutually exclusive if: 

Either CRA → CRB or CRB → CRA  for all instances! 

 Assume atomic registers (for now) 
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Simple Two-Thread Locks 

  A first simple spinlock 

 

 

 

 

 

 

 

Why does this not guarantee 
mutual exclusion? 

volatile int flag=0; 
 
void lock(lock) { 
  while(flag); 
  flag = 1; 
} 
 
void unlock (lock) { 
  flag = 0; 
} 

Busy-wait to acquire lock 
(spinning) 

Is this lock correct? 
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Proof Intuition 

 Construct a sequentially consistent order that permits both processes 
to enter CR  
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Simple Two-Thread Locks 

 Another two-thread spin-lock: LockOne 

 

 

 

 

 

 

 

volatile int flag[2]; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid] = true; 
  while (flag[j]) {} // wait 
} 
 
void unlock() { 
  flag[tid] = false; 
} 

When and why does this  
guarantee mutual exclusion? 
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Correctness Proof 

 In sequential consistency! 

 Intuitions: 

 Situation: both threads are ready to enter 

 Show that situation that allows both to enter leads to a schedule violating 
sequential consistency 

Using transitivity of happens-before relation 
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Simple Two-Thread Locks 

 Another two-thread spin-lock: LockOne 

 

 

 

 

 

 

 

volatile int flag[2]; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid] = true; 
  while (flag[j]) {} // wait 
} 
 
void unlock() { 
  flag[tid] = false; 
} 

When and why does this  

guarantee mutual exclusion? 

Does it work in practice? 
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Simple Two-Thread Locks 

 A third attempt at two-thread locking: LockTwo 

 

 

 

 

 

 

 

volatile int victim; 
 
void lock() { 
  victim = tid; // grant access 
  while (victim == tid) {} // wait 
} 
 
void unlock() {} 

Does this guarantee  

mutual exclusion? 
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Correctness Proof 

 Intuition: 

 Victim is only written once per lock() 

 A can only enter after B wrote 

 B cannot enter in any sequentially consistent schedule 
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Simple Two-Thread Locks 

 A third attempt at two-thread locking: LockTwo 

 

 

 

 

 

 

 

volatile int victim; 
 
void lock() { 
  victim = tid; // grant access 
  while (victim == tid) {} // wait 
} 
 
void unlock() {} 

Does this guarantee  

mutual exclusion? 

Does it work in practice? 
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Simple Two-Thread Locks 

 The last two locks provide mutual exclusion 

 LockOne succeeds iff lock attempts overlap 

 LockTwo succeeds iff lock attempts do not overlap 

 Combine both into one locking strategy! 

 Peterson’s lock (1981) 
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Peterson’s Two-Thread Lock (1981) 

 Combines the first lock (request access) with the second lock (grant 
access)  

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 
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Proof Correctness 

 Intuition: 

 Victim is written once 

 Pick thread that wrote victim last 

 Show thread must have read flag==0 

 Show that no sequentially consistent schedule permits that 
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Starvation Freedom 

 (recap) definition: Every thread that calls lock() eventually  
gets the lock. 

 Implies deadlock-freedom! 

 Is Peterson’s lock  
starvation-free? 

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 
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Proof Starvation Freedom 

 Intuition: 

 Threads can only wait/starve in while() 

Until flag==0 or victim==other 

 Other thread enters lock()  sets victim to other 

Will definitely “unstuck” first thread 

 So other thread can only be stuck in lock() 

Will wait for victim==other, victim cannot block both threads  one 
must leave! 

38 

Peterson in Practice … on x86 

 Implement and run on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 

Peterson in Practice … on x86 

 Implement and run on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(flag[tid]) and  

R(flag[j]) 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 

Peterson in Practice … on x86 

 Implement and run on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(flag[tid]) and  

R(flag[j]) 

 Still 1.3 ∙ 10-6% 

Why? 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  flag[tid+ = 0;  // I’m not interested 
} 

Peterson in Practice … on x86 

 Implement and run on x86 

 100000 iterations 

 1.6 ∙ 10-6% errors 

 What is the  
problem? 

No sequential 
consistency 
for W(flag[tid]) and  

R(flag[j]) 

 Still 1.3 ∙ 10-6% 

Why? 

Reads may slip into CR! 
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volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  asm (“mfence”);  
  flag[tid+ = 0;  // I’m not interested 
} 



Correct Peterson Lock on x86 

 Unoptimized (naïve sprinkling of mfences) 

 Performance: 

 No mfence 

375ns 

 mfence in lock 

379ns 

 mfence in unlock 

404ns 

 Two mfence 

427ns (+14%) 

 

volatile int flag[2]; 
volatile int victim; 
 
void lock() { 
  int j = 1 - tid; 
  flag[tid+ = 1; // I’m interested 
  victim = tid;      // other goes first 
  asm (“mfence”); 
  while (flag[j] && victim == tid) {}; // wait 
} 
 
void unlock() { 
  asm (“mfence”);  
  flag[tid+ = 0;  // I’m not interested 
} 
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Locking for N threads 

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1 

 Is it correct? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { //attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 

Filter Lock - Correctness 

 Lemma: For 0<j<n-1, there are at most n-j threads at level j! 

 Intuition: 

 Recursive proof (induction on j) 

 By contradiction, assume n-j+1 threads at level j-1 and j 

 Assume last thread to write victim 

 Any other thread writes level before victim 

 Last thread will stop at spin due to other thread’s write 

 j=n-1 is critical region 
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Locking for N threads 

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1 

 Is it starvation-free? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { //attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 

Filter Lock Starvation Freedom 

 Intuition: 

 Inductive argument over j (levels) 

 Base-case: level n-1 has one thread (not stuck) 

 Level j: assume thread is stuck 

Eventually, higher levels will drain (induction) 

One thread x sets level[x] to j 

Eventually, no more threads enter level j 

Victim can only have one value  one thread will advance! 
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Filter Lock 

 What are the disadvantages of this lock? 
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volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter 
volatile int victim[n]; // the victim thread, excluded from next level 
void lock() { 
  for (int i = 1; i < n; i++) { // attempt level i 
    level[tid] = i; 
    victim[i] = tid; 
    // spin while conflicts exist 
    while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {}; 
  } 
} 
 
void unlock() { 
  level[tid] = 0; 
} 



 Starvation freedom provides no guarantee on how long a thread 
waits or if it is “passed”! 

 To reason about fairness, we define two sections of each lock 
algorithm: 

 Doorway D (bounded # of steps) 

 Waiting W (unbounded # of steps) 

 

 

 FIFO locks: 

 If TA finishes its doorway before TB the CRA  CRB 

 Implies fairness 

void lock() { 
  int j = 1 - tid; 
  flag[tid+ = true; // I’m interested 
  victim = tid;      // other goes first 
  while (flag[j] && victim == tid) {};  
} 

Lock Fairness 
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Lamport’s Bakery Algorithm (1974) 

 Is a FIFO lock (and thus fair) 

 Each thread takes number in doorway and threads enter in the order 
of their number! 

volatile int flag*n+ = ,0,0,…,0-; 
volatile int label*n+ = ,0,0,….,0-; 
 
void lock() { 
  flag[tid] = 1; // request 
  label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket 
  while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {}; 
} 
public void unlock() { 
  flag[tid] = 0; 
} 
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Lamport’s Bakery Algorithm 

 Advantages: 

 Elegant and correct solution 

 Starvation free, even FIFO fairness 

 

 Not used in practice! 

 Why?  

 Needs to read/write N memory locations for synchronizing N threads 

 Can we do better? 

Using only atomic registers/memory 
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A Lower Bound to Memory Complexity 

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes” 

 

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not? 

 

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993 
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Hardware Support? 

 Hardware atomic operations: 

 Test&Set 

Write const to memory while returning the old value 

 Atomic swap 

Atomically exchange memory and register 

 Fetch&Op 

Get value and apply operation to memory location 

 Compare&Swap 

Compare two values and swap memory with register if equal 

 Load-linked/Store-Conditional LL/SC 

Loads value from memory, allows operations, commits only if no other updates 
committed  mini-TM 

 Intel TSX (transactional synchronization extensions) 

Hardware-TM (roll your own atomic operations) 
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