
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Languages and Locks

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Administrivia

 You should have a project partner by now

 Make sure, Timo knows about your team (this step is important!)

 Think about a project

 Initial project presentations: Monday 11/4 during lecture

 Send slides (ppt or pdf) by 11/3 11:59pm to Timo!

 10 minutes per team (hard limit)

 Prepare! This is your first impression, gather feedback from us!

 Rough guidelines:

Present your plan

Related work (what exists, literature review!)

Preliminary results (not necessarily)

Main goal is to gather feedback, so present some details

Pick one presenter (make sure to switch for other presentations!)

 Intermediate (very short) presentation: Thursday 11/21 during recitation

 Final project presentation: Monday 12/16 during last lecture

2

Distinguished Colloquium

 Right after our lecture in CAB G61

 Luis Ceze: Disciplined Approximate Computing: From Language to
Hardware, and Beyond

 Will add one more parameter to computing: reliability

 Very interesting, you should all go!

3

Review of last lecture

 Locked Queue

 Correctness

 Lock-free two-thread queue

 Linearizability

 Combine object pre- and postconditions with serializability

 Additional (semantic) constraints!

 Histories

 Analyze given histories

Projections, Sequential/Concurrent, Completeness, Equivalence, Well
formed, Linearizability (formal)

 Language memory models

 History

 Java/C++ overview

 4

DPHPC Overview

5

Goals of this lecture

 Languages and Memory Models

 Java/C++ definition

 Recap serial consistency

 Races (now in practice)

 Mutual exclusion

 Locks

 Two-thread

 Peterson

 N-thread

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Problems and outline to next class

6

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

7

Communication between Threads: Intuition

 Not guaranteed unless by:

 Synchronization

 Volatile/atomic variables

 Specialized functions/classes (e.g., java.util.concurrent, …)

x = 10
y = 5
flag = true

if(flag)
 print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable
(atomic in C++, volatile in Java),

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

8

 Abstract relation between threads and memory

 Local thread view!

 Does not talk about classes, objects, methods, …

 Linearizability is a higher-level concept!

Memory Model: Intuition

Main Memory

Working

memory

T1

Working

memory

T1

Working

memory

T1

When are values transferred?

abstraction
of caches and
registers

9

Lock Synchronization

 Java

 Synchronized methods as
syntactic sugar

 C++

 Many flexible variants

synchronized (lock) {
 // critical region
}

{
 unique_lock<mutex> l(lock);
 // critical region
}

 Semantics:
 mutual exclusion
 at most one thread may own a lock
 a thread B trying to acquire a lock held by thread A blocks until thread A

 releases lock
 note: threads may wait forever (no progress guarantee!)

10

Memory semantics

 Similar to synchronization variables

 All memory accesses before an unlock …

 are ordered before and are visible to …

 any memory access after a matching lock!

x = 10
…
y = 5
…
unlock(m)

lock(m)
 print(x+y)

Thread 1

Thread 2

11

Synchronization Variables

 Variables can be declared volatile (Java) or atomic (C++)

 Reads and writes to synchronization variables

 Are totally ordered with respect to all threads

 Must not be reordered with normal reads and writes

 Compiler

 Must not allocate synchronization variables in registers

 Must not swap variables with synchronization variables

 May need to issue memory fences/barriers

 …

12

Synchronization Variables

 Write to a synchronization variable

 Similar memory semantics as unlock (no process synchronization!)

 Read from a synchronization variable

 Similar memory semantics as lock (no process synchronization!)

class example {
 int x = 0;
 atomic<bool> v = false

 public void writer() {
 x = 42;
 v = true;
 }

 public void reader() {
 if(v) {
 print(x)
 }
 }

Thread 1

Thread 2

Without volatile, a
platform may reorder
these accesses!

13

Memory Model Rules

 Java/C++: Correctly synchronized programs will execute sequentially
consistent

 Correctly synchronized = data-race free

 iff all sequentially consistent executions are free of data races

 Two accesses to a shared memory location form a data race in the
execution of a program if

 The two accesses are from different threads

 At least one access is a write and

 The accesses are not synchronized

int x = 10

T1 T2 T3

read read
write

14

Locks - Lecture Goals

 You understand locks in detail

 Requirements / guarantees

 Correctness / validation

 Performance / scalability

 Acquire the ability to design your own locks

 Understand techniques and weaknesses/traps

 Extend to other concurrent algorithms

Issues are very much the same

 Feel the complexity of shared memory!

15

Preliminary Comments

 All code examples are in C/C++ style

 Neither C nor C++ <11 have a clear memory model

 C++ is one of the languages of choice in HPC

 Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most of the examples are incorrect in anything but
sequential consistency!

In fact, you’ll never need those algorithms, but the principles
demonstrated!

 x86 is really only used because it’s common

 This does not mean that we consider the ISA or memory model elegant!

 We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

 Number of threads/processes is p, tid is the thread id

16

Recap Concurrent Updates

 Multi-threaded execution!

 Value of a for p=1?

 Value of a for p>1?

Why? Isn’t it a single instruction?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
 a++;

gcc -O3

 movl $1000, %eax // i=n=1000
.L2:
 movl (%rdx), %ecx // ecx = *a
 addl $1, %ecx // ecx++
 subl $1, %eax // i—
 movl %ecx, (%rdx) // *a = ecx
 jne .L2 // loop if i>0
 [sub sets ZF]

17

Some Statistics

 Nondeterministic execution

 Result depends on timing (probably not desired)

 What do you think are the most significant results?

 Running two threads on Core i5 dual core

 a=1000? 2000? 1500? 1223? 1999?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
 a++;

18

Some Statistics

19

Conflicting Accesses

 (recap) two memory accesses conflict if they can happen at the same time
(in happens-before) and one of them is a write (store)

 Such a code is said to have a “race condition”

 Also data-race

 Trivia around races:

The Therac-25 killed three people
due to a race

A data-race lead to a large blackout
in 2003, leaving 55 million people
without power causing $1bn damage

 Can be avoided by critical regions

 Mutually exclusive access to a set of operations

20

Mutual Exclusion

 Control access to a critical region

 Memory accesses of all processes happen in program order (a partial
order, many interleavings)

An execution defines a total order of memory accesses

 Some subsets of memory accesses (issued by the same process) need to
happen atomically (thread a’s memory accesses may not be interleaved
with other thread’s accesses)

We need to restrict the valid executions

  Requires synchronization of some sort

 Many possible techniques (e.g., TM, CAS, T&S, …)

 We discuss locks which have wait semantics

 movl $1000, %eax // i=1000
.L2:
 movl (%rdx), %ecx // ecx = *a
 addl $1, %ecx // ecx++
 subl $1, %eax // i—
 movl %ecx, (%rdx) // *a = ecx
 jne .L2 // loop if i>0
 [sub sets ZF]

21

Fixing it with locks

 What must the functions

lock and unlock guarantee?

 #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

 #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

const int n=1000;
volatile int a=0;
omp_lock_t lck;
for (int i=0; i<n; ++i) {
 omp_set_lock(&lck);
 a++;
 omp_unset_lock(&lck);
}

gcc -O3

 movl $1000, %ebx // i=1000
.L2:
 movq 0(%rbp), %rdi // (SystemV CC)
 call omp_set_lock // get lock
 movq 0(%rbp), %rdi // (SystemV CC)
 movl (%rax), %edx // edx = *a
 addl $1, %edx // edx++
 movl %edx, (%rax) // *a = edx
 call omp_unset_lock // release lock
 subl $1, %ebx // i—
 jne .L2 // repeat if i>0

22

Lock Overview

 Lock/unlock or acquire/release

 Lock/acquire: before entering CR

 Unlock/release: after leaving CR

 Semantics:

 Lock/unlock pairs have to match

 Between lock/unlock, a thread holds the lock

23

?

Lock Properties

 Mutual exclusion
 Only one thread is on the critical region

 Consistency
 Memory operations are visible when critical region is left

 Progress
 If any thread a is not in the critical region, it cannot prevent another thread b from

entering

 Starvation-freedom (implies deadlock-freedom)
 If a thread is requesting access to a critical region, then it will eventually be

granted access

 Fairness
 A thread a requested access to a critical region before thread b. Did is also granted

access to this region before b?

 Performance
 Scaling to large numbers of contending threads

24

Notation

 Time defined by precedence (a total order on events)

 Events are instantaneous

 Threads produce sequences of events a0,a1,a2,…

 Program statements may be repeated, denote i-th instance of a as ai

 Event a occurs before event b: a → b

 An interval (a,b) is the duration between events a → b

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

 Critical regions

 A critical region CR is an interval a → b, where a is the first operation in
the CR and b the last

 Mutual exclusion

 Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA for all instances!

 Assume atomic registers (for now)

25

Simple Two-Thread Locks

 A first simple spinlock

Why does this not guarantee
mutual exclusion?

volatile int flag=0;

void lock(lock) {
 while(flag);
 flag = 1;
}

void unlock (lock) {
 flag = 0;
}

Busy-wait to acquire lock
(spinning)

Is this lock correct?

26

Proof Intuition

 Construct a sequentially consistent order that permits both processes
to enter CR

27

Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
 int j = 1 - tid;
 flag[tid] = true;
 while (flag[j]) {} // wait
}

void unlock() {
 flag[tid] = false;
}

When and why does this
guarantee mutual exclusion?

28

Correctness Proof

 In sequential consistency!

 Intuitions:

 Situation: both threads are ready to enter

 Show that situation that allows both to enter leads to a schedule violating
sequential consistency

Using transitivity of happens-before relation

29

Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
 int j = 1 - tid;
 flag[tid] = true;
 while (flag[j]) {} // wait
}

void unlock() {
 flag[tid] = false;
}

When and why does this

guarantee mutual exclusion?

Does it work in practice?

30

Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
 victim = tid; // grant access
 while (victim == tid) {} // wait
}

void unlock() {}

Does this guarantee

mutual exclusion?

31

Correctness Proof

 Intuition:

 Victim is only written once per lock()

 A can only enter after B wrote

 B cannot enter in any sequentially consistent schedule

32

Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
 victim = tid; // grant access
 while (victim == tid) {} // wait
}

void unlock() {}

Does this guarantee

mutual exclusion?

Does it work in practice?

33

Simple Two-Thread Locks

 The last two locks provide mutual exclusion

 LockOne succeeds iff lock attempts overlap

 LockTwo succeeds iff lock attempts do not overlap

 Combine both into one locking strategy!

 Peterson’s lock (1981)

34

Peterson’s Two-Thread Lock (1981)

 Combines the first lock (request access) with the second lock (grant
access)

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

35

Proof Correctness

 Intuition:

 Victim is written once

 Pick thread that wrote victim last

 Show thread must have read flag==0

 Show that no sequentially consistent schedule permits that

36

Starvation Freedom

 (recap) definition: Every thread that calls lock() eventually
gets the lock.

 Implies deadlock-freedom!

 Is Peterson’s lock
starvation-free?

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

37

Proof Starvation Freedom

 Intuition:

 Threads can only wait/starve in while()

Until flag==0 or victim==other

 Other thread enters lock()  sets victim to other

Will definitely “unstuck” first thread

 So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads  one
must leave!

38

Peterson in Practice … on x86

 Implement and run on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

39

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(flag[tid]) and

R(flag[j])

40

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(flag[tid]) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

41

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 flag[tid+ = 0; // I’m not interested
}

Peterson in Practice … on x86

 Implement and run on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(flag[tid]) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

42

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 asm (“mfence”);
 flag[tid+ = 0; // I’m not interested
}

Correct Peterson Lock on x86

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

volatile int flag[2];
volatile int victim;

void lock() {
 int j = 1 - tid;
 flag[tid+ = 1; // I’m interested
 victim = tid; // other goes first
 asm (“mfence”);
 while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
 asm (“mfence”);
 flag[tid+ = 0; // I’m not interested
}

43

Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it correct?

44

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { //attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

Filter Lock - Correctness

 Lemma: For 0<j<n-1, there are at most n-j threads at level j!

 Intuition:

 Recursive proof (induction on j)

 By contradiction, assume n-j+1 threads at level j-1 and j

 Assume last thread to write victim

 Any other thread writes level before victim

 Last thread will stop at spin due to other thread’s write

 j=n-1 is critical region

45

Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it starvation-free?

46

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { //attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

Filter Lock Starvation Freedom

 Intuition:

 Inductive argument over j (levels)

 Base-case: level n-1 has one thread (not stuck)

 Level j: assume thread is stuck

Eventually, higher levels will drain (induction)

One thread x sets level[x] to j

Eventually, no more threads enter level j

Victim can only have one value  one thread will advance!

47

Filter Lock

 What are the disadvantages of this lock?

48

volatile int level*n+ = ,0,0,…,0-; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {
 for (int i = 1; i < n; i++) { // attempt level i
 level[tid] = i;
 victim[i] = tid;
 // spin while conflicts exist
 while ((∃k != tid) (level[k] >= i && victim[i] == tid)) {};
 }
}

void unlock() {
 level[tid] = 0;
}

 Starvation freedom provides no guarantee on how long a thread
waits or if it is “passed”!

 To reason about fairness, we define two sections of each lock
algorithm:

 Doorway D (bounded # of steps)

 Waiting W (unbounded # of steps)

 FIFO locks:

 If TA finishes its doorway before TB the CRA  CRB

 Implies fairness

void lock() {
 int j = 1 - tid;
 flag[tid+ = true; // I’m interested
 victim = tid; // other goes first
 while (flag[j] && victim == tid) {};
}

Lock Fairness

49

Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes number in doorway and threads enter in the order
of their number!

volatile int flag*n+ = ,0,0,…,0-;
volatile int label*n+ = ,0,0,….,0-;

void lock() {
 flag[tid] = 1; // request
 label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
 while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
public void unlock() {
 flag[tid] = 0;
}

50

Lamport’s Bakery Algorithm

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why?

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory

51

A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least
two processes and S solves mutual exclusion with global progress
[deadlock-freedom], then S must have at least as many variables as
processes”

 So we’re doomed! Optimal locks are available and they’re
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171–184, December
1993

52

Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates
committed  mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

53

