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Review of last lecture 

 Cache-coherence is not enough! 

 Many more subtle issues for parallel programs! 

 

 Memory Models 

 Sequential consistency 

 Why threads cannot be implemented as a library  

 Relaxed consistency models 

 x86 TLO+CC case study 

 

 Complexity of reasoning about parallel objects 
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DPHPC Overview 
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Goals of this lecture 

 Queue: 

 Locked 

C++ locking (small detour) 

 Wait-free two-thread queue 

 Linearizability 

 Intuitive understanding (sequential order on objects!) 

 Linearization points 

 Linearizable  executions 

 Formal definitions (Histories, Projections, Precedence) 

 Linearizability vs. Sequential Consistency 

 Modularity 
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Lock-based queue 
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class Queue { 

 

  private: 

  int head, tail; 

  std::vector<Item> items; 

  std::mutex lock; 

 

  public: 

  Queue(int capacity) { 

    head = tail = 0; 

    items.resize(capacity); 

  } 

  … 

}; 

 

head 
tail 
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Queue fields protected by  
single shared lock! 



class Queue { 

  … 

 

  public: 

  void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 

  Item deq() { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw FullException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

}; 

Lock-based queue 
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tail 
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Queue fields protected by  
single shared lock! 

Class question: how is the lock 
ever unlocked? 

head 



C++ Resource Acquisition is Initialization 

 RAII – suboptimal name 

 Can be used for locks (or any other resource acquisitions) 

 Constructor grabs resource 

 Destructor frees resource 

 

 Behaves as if 

 Implicit unlock at end of block! 

  

 Main advantages 

 Always free lock at exit 

 No “lost” locks due to exceptions 
or strange control flow (goto ) 

 Very easy to use 
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class lock_guard<typename mutex_impl> { 

   mutex_impl &_mtx; // ref to the mutex 

 

   public: 

      scoped_lock(mutex_impl & mtx ) :  _mtx(mtx) {  

          _mtx.lock();  //lock  mutex in constructor 

      } 

      ~scoped_lock() {  

         _mtx.unlock(); //unlock mutex in destructor 

      } 

}; 



Example execution 
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A: q.deq(): x 

B: q.enq(x) 

lock update q unlock 

lock update q unlock 

update q update q 

“sequential 
   behavior” 



Correctness 

 Is the locked queue correct? 

 Yes, only one thread has access if locked correctly 

 Allows us again to reason about pre- and postconditions 

 Smells a bit like sequential consistency, no? 

 Class question: What is the problem with this approach? 

 Same as for SC  
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It does not scale! 

What is the solution here? 



Threads working at the same time? 

 Same thing (concurrent queue) 

 For simplicity, assume only two threads 

 Thread A calls only enq() 

 Thread B calls only deq() 
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Wait-free 2-Thread Queue 

tail 0 

2 

5 4 

7 

3 6 

y x 
1 

enq(z) 
deq() 

z 

head 



Wait-free 2-Thread Queue 

head 

tail 0 

2 
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y 
1 

queue[tail] 

= z 

result = x 

z 

x 



Wait-free 2-Thread Queue 

tail 0 

2 
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y 
1 

tail++ 
head++  

z 

head 
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Is this correct? 

 Hard to reason about correctness 

 What could go wrong?  

 

 

 

 

 

 Nothing (at least no crash) 

 Yet, the semantics of the queue are funny (define “FIFO” now)! 
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 void enq(Item x) { 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 



Serial to Concurrent Specifications 

 Serial specifications are complex enough, so lets stick to them 

 Define invocation and response events (start and end of method) 

 Extend the concept to concurrency: linearizability 

 Each method should “take effect” 

 Instantaneously 

 Between invocation and response events 

 Concurrent object is correct if this “sequential” behavior is correct 

 Called “linearizable” 
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method execution 

Linearization point = when method takes effect 



Linearizability  

 Sounds like a property of an execution … 

 An object is called linearizable if all possible executions on the object 
are linearizable 

 Says nothing about the order of executions! 
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Example 

time time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 
q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 

linearization points 



Example 2 

time 



Example 2 

time 

q.enq(x) 



Example 2 

time 

q.enq(x) q.deq(y) 



Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 



Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 



Example 2 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 



Example 3 

time time 



Example 3 

time 

q.enq(x) 

time 



Example 3 

time 

q.enq(x) 

q.deq(x) 

time 



Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 



Example 3 

time 

q.enq(x) 

q.deq(x) 

q.enq(x) 

q.deq(x) 

time 



Example 4 

time 

q.enq(x) 

time 



Example 4 

time 

q.enq(x) 

q.enq(y) 

time 



Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

time 



Example 4 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 



q.enq(x) 

q.enq(y) 

q.deq(y) 

q.deq(x) 

time 

Example 4 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) 

write(1) already 

happened 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) write(1) 

write(1) already 

happened 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(0) write(1) 

write(1) already 

happened 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) 

write(1) already 

happened 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 

write(1) already 

happened 



Read/Write Register Example 

time 

write(0) 
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time 
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Read/Write Register Example 

time 
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time 

read(1) write(1) 
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Read/Write Register Example 

time 

write(0) 
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time 
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Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(1) write(1) 

write(2) 



Read/Write Register Example 

time 

read(1) write(0) 

write(1) 

write(2) 

time 

read(2) write(1) 

write(2) 



About Executions 

 Why? 

 Can’t we specify the linearization point of each operation without 
describing an execution? 

 Not always 

 In some cases, linearization point depends on the execution 

 

 Define a formal model for executions! 
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Properties of concurrent method executions 
 
 Method executions take time 

 May overlap 

 Method execution = operation 

 Defined by invocation and response events 

 Duration of method call 

 Interval between the events 
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q.enq(x) 

time 

q.deq(): x 

invocation response 

pending 



Formalization - Notation 

 Invocation 

 

 

 

 Response 

 

 

 

 

 Method is implicit (correctness criterion)! 
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A: q.enq(x) 

thread object method arguments 

A: q:void 

thread object result 

A: q:FullException() 

thread object exception 



Concurrency 

 A concurrent system consists of a collection of sequential threads Pi 

 Threads communicate via shared objects 
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History 

 Describes an execution 

 Sequence of invocations and responses 

 H= 
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A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.eng(c)  
B: p:void 
B: q.deq() 
B: q:a 

Invocation and response match if 
 thread names are the same 
 objects are the same 
 

Note: Method name is implicit! 



Projections on Threads 

 Threads subhistory H|P (“H at P”) 

 Subsequences of all events in H whose thread name is P 
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A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
 
 

 
 
 
B: p.enq(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|A= H|B= 



Projections on Objects 

 Objects subhistory H|o (“H at o”) 

 Subsequence of all events in H whose object name is o 
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A: q.enq(a) 
A: q:void 
A: q.enq(b) 
B: p.eng(c)  
B: p:void 
B: q.deq() 
B: q:a 

H= H|p= H|q= 

 
 
 
B: p.eng(c)  
B: p:void 
 
 

A: q.enq(a) 
A: q:void 
A: q.enq(b) 
 
 
B: q.deq() 
B: q:a 



Sequential Histories 

 A history H is sequential if 

 

 

 

 

 

 

 

 A history H is concurrent if 

 It is not sequential 
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A: q.enq(a) 
A: q:void 
B: p.enq(b) 
B: p:void 
B: q.deq(c)  
B: q:void 
B: q.enq() 
… 

 First event of H is an invocation 
 Each invocation (except possibly 
   the last is immediately followed  
   by a matching response 
 Each response is immediately  
   followed by an invocation 
 

Method calls of different threads  
do not interleave 



Well-formed histories 

 Per-thread projections must be sequential 
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A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B= 



Equivalent histories 

 Per-thread projections must be the same 
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A: q.enq(x) 
B: p.enq(y)  
B: p:void 
B: q.deq() 
A: q:void 
B: q:x 
 
 

H= 

A: q.enq(x) 
A: q:void 

H|A=G|A= 

B: p.enq(y)  
B: p:void 
B: q.deq() 
B: q:x 

H|B=G|B= 

A: q.enq(x) 
B: p.enq(y)  
A: q:void 
B: p:void 
B: q.deq() 
B: q:x 
 
 

G= 



Legal Histories 

 Sequential specification allows to describe what behavior we expect 
and tolerate 

 When is a single-thread, single-object history legal? 

 

 Recall: Example  

 Preconditions and Postconditions 

 Many others exist! 

 

 A sequential (multi-object) history H is legal if 

 For every object x 

 H|x adheres to the sequential specification for x 

64 



Precedence 
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A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void 
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) B: q.deq() 

A method execution precedes 
another if response event 
precedes invocation event 
 



Precedence vs. Overlapping 

 Non-precedence = overlapping 
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A: q.enq(x)  
B: q.enq(y)  
B: q:void  
A: q:void 
B: q.deq() 
B: q:x 
 
 

A: q.enq(x) 

B: q.enq(y) 

Some method executions 
overlap with others 
 
 



Precedence relations 

 Given history H 

 Method executions m0 and m1 in H 

 m0 →H m1 (m0 precedes m1 in H) if 

 Response event of m0 precedes invocation event of m1 

 Precedence relation m0 →H m1 is a  

 Strict partial order on method executions 

Irreflexive, antisymmetric, transitive 

 Considerations 

 Precedence forms a total order if H is sequential 

 Unrelated method calls  overlap  concurrent 
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Definition Linearizability 

 A history H induces a strict partial order <H on operations 

 m0 <H m1 if m0 →H m1 

 A history H is linearizable if 

 H can be extended to a history H’ 

by appending responses to pending operations or dropping pending operations 

 H’ is equivalent to some legal sequential history S and 

 <H’ ⊆ <S 

 S is a linearization of H 

 

 Remarks: 

 For each H, there may be many valid extensions to H’ 

 For each extension H’, there may be many S 

 Interleaving at the granularity of methods 
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Ensuring <H’ ⊆ <S 

 
 Find an S that contains H’ 

time 

a 

b 

time <S 

 

c <H’ 

<H’ = {a → c,b → c} 

<S =  {a → b,a → c,b → c} 



A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

Example 

time 

B.q.enq(4) 

A. q.enq(3) 

B.q.deq(4) B. q.enq(6) 



Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(3) B. q.enq(6) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A. q.enq(3) 



Example 

Complete this 

pending 

invocation 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 



Example 

time 

B.q.enq(4) B.q.deq(4) B. q.enq(6) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

B q:enq(6) 

A q:void 

discard this one 



Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

 

A q:void 

discard this one 



A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 



A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 



B.q.enq(4) B.q.deq(4) 

A.q.enq(3) 

A q.enq(3) 

B q.enq(4) 

B q:void 

B q.deq() 

B q:4 

A q:void 

Example 

time 

B q.enq(4) 

B q:void 

A q.enq(3) 

A q:void 

B q.deq() 

B q:4 

Equivalent sequential history 



Linearization Points 

 Identify one atomic step where a method “happens” (effects become 
visible to others) 

 Critical section 

 Machine instruction (atomics, transactional memory …) 

 Does not always succeed 

 One may need to define several different steps for a given method 

 If so, extreme care must be taken to ensure pre-/postconditions  

 All possible executions on the object must be linearizable 
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 void enq(Item x) { 

    std::lock_guard<std::mutex> l(lock) 

    if(tail-head == items.size()) { 

      throw FullException; 

    } 

    items[tail % items.size()] = x; 

    tail = (tail+1)%items.size(); 

  } 

 Item deq() { 

   std::lock_guard<std::mutex> l(lock) 

    if(tail == head) { 

      throw EmptyException; 

    } 

    Item item = items[head % items.size()]; 

    head = (head+1)%items.size(); 

  } 



Composition 

 H is linearizable iff for every object x, H|x is linearizable! 

 Composing linearizable objects results in a linearizable system 

 

 Reasoning 

 Consider linearizability of objects in isolation 

 

 Modularity 

 Allows concurrent systems to be constructed in a modular fashion 

 Compose independently-implemented objects 
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Linearizability vs. Sequential Consistency 

 Sequential consistency 

 Correctness condition 

 For describing hardware memory interfaces 

 Remember: not existing ones! 

 

 Linearizability 

 Stronger correctness condition 

 For describing higher-level systems composed from linearizable 
components 
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Map linearizability to sequential consistency 

 Variables with read and write operations 

 Sequential consistency 

 Objects with a type and methods 

 Linearizability 

 Map sequential consistency ↔ linearizability 

 Reduce data types to variables with read and write operations 

 Model variables as data types with read() and write() methods 

 Sequential consistency 

 A history H is sequential if it can be extended to H’ and H’ is 
equivalent to some sequential history S 

 Note: Precedence order (<H ⊆ <S) does not need to be maintained 
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Example 

time 



Example 

time 

q.enq(x) 
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time 
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Example 

time 
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Example 
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q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 
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Example 

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Sequentially consistent? 



Properties of sequential consistency 
 
 Theorem: Sequential consistency is not compositional 
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H= 

Compositional would mean: 
“If H|p and H|q are sequentially consistent, 
  then H is sequentially consistent!” 
 
This is not guaranteed for SC schedules! 
 
See following example! 

A: p.enq(x) 
A: p:void 
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void 
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  



FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

time 



FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 



FIFO Queue Example 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

History H 

time 



H|p Sequentially Consistent 

time 

p.enq(x) p.deq(y) 

p.enq(y) 

q.enq(x) 

q.enq(y) q.deq(x) 

time 



H|q Sequentially Consistent 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 



Ordering imposed by p 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 



Ordering imposed by q 

time 

p.enq(x) p.deq(y) q.enq(x) 

q.enq(y) q.deq(x) p.enq(y) 

time 



p.enq(x) 

Ordering imposed by both 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 



p.enq(x) 

Combining orders 

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

p.deq(y) 

p.enq(y) 



A: p.enq(x) 
A: p:void 
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void 
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 
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H= 

A: p.enq(x) 
A: p:void 
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  

H|p= 

A: p.enq(x) 
A: p:void 
A: p.deq() 
A: p:y  

B: p.enq(y) 
B: p:void  

(H|p)|A= (H|p)|B= 

H|p is sequentially consistent! 



A: p.enq(x) 
A: p:void 
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void 
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 
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H= H|q= (H|q)|A= (H|q)|B= 

H|q is sequentially consistent! 

B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void 
B: q.deq() 
B: q:x  

A: q.enq(x) 
A: q:void 

B: q.enq(y) 
B: q:void  
B: q.deq() 
B: q:x  



A: p.enq(x) 
A: p:void 
B: q.enq(y) 
B: q:void  
A: q.enq(x) 
A: q:void 
B: p.enq(y) 
B: p:void  
A: p.deq() 
A: p:y  
B: q.deq() 
B: q:x  

Example in our notation 

 Sequential consistency is not compositional 
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H= H|A= H|B= 

H is not sequentially consistent! 

A: p.enq(x) 
A: p:void 
A: q.enq(x) 
A: q:void 
A: p.deq() 
A: p:y 

B: q.enq(y) 
B: q:void  
B: p.enq(y) 
B: p:void  
B: q.deq() 
B: q:x  



Correctness: Linearizability 

 Sequential Consistency 

 Not composable 

 Harder to work with 

 Good way to think about hardware models 

 

 We will use linearizability as in the remainder of this course 

unless stated otherwise 



Study Goals 

 Define linearizability with your own words! 

 Describe the properties of linearizability! 

 Explain the differences between sequential consistency and 
linearizability! 

 

 Given a history H 

 Identify linearization points 

 Find equivalent sequential history S 

 Decide and explain whether H is linearizable 

 Decide and explain whether H is sequentially consistent 

 Give values for the response events such that the execution is linearizable 

104 



Language Memory Models 

 Which transformations/reorderings can be applied to a program 

 Affects platform/system 

 Compiler, (VM), hardware 

 Affects programmer 

 What are possible semantics/output 

 Which communication between threads is legal? 

 Without memory model 

 Impossible to even define “legal” or “semantics” when data is accessed 
concurrently 

 A memory model is a contract 

 Between platform and programmer 
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History of Memory Models 

 Java’s original memory model was broken 

 Difficult to understand => widely violated 

 Did not allow reorderings as implemented in standard VMs 

 Final fields could appear to change value without synchronization 

 Volatile writes could be reordered with normal reads and writes 

=> counter-intuitive for most developers 

 Java memory model was revised 

 Java 1.5 (JSR-133) 

 Still some issues (operational semantics definition) 

 C/C++ didn’t even have a memory model until recently 

 Not able to make any statement about threaded semantics! 

 Introduced in C++11 and C11 

 Based on experience from Java, more conservative 
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Everybody wants to optimize 
 
 Language constructs for synchronization 

 Java: volatile, final, synchronized, … 

 C++: atomic, (NOT volatile!) … 

 

 Without synchronization (defined language-specific) 

 Compiler, (VM), architecture 

 Reorder and appear to reorder memory operations 

 Maintain sequential semantics per thread 

 Other threads may observe any order (have seen examples before) 
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Java and C++ High-level overview 

 Relaxed memory model 

 No global visibility ordering of operations 

 Allows for standard compiler optimizations 

 But 

 Program order for each thread (sequential semantics) 

 Partial order on memory operations (with respect to synchronizations) 

 Visibility function defined 

 Correctly synchronized programs 

 Guarantee sequential consistency 

 Incorrectly synchronized programs 

 Java: maintain safety and security guarantees 

Type safety etc. (require behavior bounded by casuality) 

 C++: undefined behavior 

No safety (anything can happen/change) 
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Communication between Threads Intuition 

 Not guaranteed unless by: 

 Synchronization 

 Volatile/atomic variables 

 Specialized functions/classes (e.g., java.util.concurrent, ) 
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x = 10 
y = 5 
flag = true 

if(flag) 
  print(x+y) 

synchronization 

Thread 1 

Thread 2 

Flag is a synchronization variable  
(atomic in C++, volatile in Java), 

i.e., all memory written by T1  
must be visible to T2 after it 
reads the value true for flag! 



 Abstract relation between threads and memory 

 Local thread view! 

 

 

 

 

 

 

 

 

 

 Does not talk about classes, objects, methods, … 

 Linearizability is a higher-level concept! 

Memory Model Intuition 

110 

Main Memory 

Working 

memory 

T1 

Working 

memory 

T1 

Working 

memory 

T1 

When are values transferred? 

abstraction  
of caches and  
registers 



Lock Synchronization 

 Java 

 

 

 Synchronized methods as 
syntactic  sugar 
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 C++ 

 

 

 

 Many flexible variants 

 

 

 

 

synchronized (lock) { 
   // critical region 
} 

{ 
  unique_lock<mutex> l(lock);  
  // critical region 
} 

 Semantics: 
 mutual exclusion 
 at most one thread may own a lock 
 a thread B trying to acquire a lock held by thread A blocks until thread A  

           releases lock 
 note: threads may wait forever (no progress guarantee!) 



Memory semantics 

 Similar to synchronization variables 

 

 

 

 

 

 

 All memory accesses before an unlock … 

 are ordered before and are visible to … 

 any memory access after a matching lock! 
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x = 10 
… 
y = 5 
… 
unlock(m) 

lock(m) 
  print(x+y) 

Thread 1 

Thread 2 



Synchronization Variables 

 Variables can be declared volatile (Java) or atomic (C++) 

 

 Reads and writes to synchronization variables  

 Are totally ordered with respect to all threads 

 Must not be reordered with normal reads and writes 

 

 Compiler 

 Must not allocate synchronization variables in registers 

 Must not swap variables with synchronization variables 

 May need to issue memory fences/barriers 

 … 
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Synchronization Variables 

 Write to a synchronization variable 

 Similar memory semantics as unlock (no process synchronization!) 

 Read from a synchronization variable 

 Similar memory semantics as lock (no process synchronization!) 
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class example { 
  int x = 0; 
  atomic<bool> v = false 
 
 public void writer() { 
     x = 42; 
     v = true; 
  }  
   
  public void reader() { 
     if(v) { 
       print(x) 
      } 
  } 

Thread 1     

Thread 2     

Without volatile, a  
platform may reorder 
these accesses! 



Memory Model Rules 

 Java/C++: Correctly synchronized programs will execute sequentially 
consistent 

 Correctly synchronized = data-race free 

 iff all sequentially consistent executions are free of data races 

 Two accesses to a shared memory location form a data race in the 
execution of a program if 

 The two accesses are from different threads 

 At least one access is a write and 

 The accesses are not synchronized 
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int x = 10 

T1 T2 T3 

read read 
write 


