
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Linearizability

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Review of last lecture

 Cache-coherence is not enough!

 Many more subtle issues for parallel programs!

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library 

 Relaxed consistency models

 x86 TLO+CC case study

 Complexity of reasoning about parallel objects

2

DPHPC Overview

3

Goals of this lecture

 Queue:

 Locked

C++ locking (small detour)

 Wait-free two-thread queue

 Linearizability

 Intuitive understanding (sequential order on objects!)

 Linearization points

 Linearizable executions

 Formal definitions (Histories, Projections, Precedence)

 Linearizability vs. Sequential Consistency

 Modularity

4

Lock-based queue

5

class Queue {

 private:

 int head, tail;

 std::vector<Item> items;

 std::mutex lock;

 public:

 Queue(int capacity) {

 head = tail = 0;

 items.resize(capacity);

 }

 …

};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

class Queue {

 …

 public:

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw FullException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

};

Lock-based queue

6

tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

C++ Resource Acquisition is Initialization

 RAII – suboptimal name

 Can be used for locks (or any other resource acquisitions)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto )

 Very easy to use

7

class lock_guard<typename mutex_impl> {

 mutex_impl &_mtx; // ref to the mutex

 public:

 scoped_lock(mutex_impl & mtx) : _mtx(mtx) {

 _mtx.lock(); //lock mutex in constructor

 }

 ~scoped_lock() {

 _mtx.unlock(); //unlock mutex in destructor

 }

};

Example execution

8

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
 behavior”

Correctness

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC 

9

It does not scale!

What is the solution here?

Threads working at the same time?

 Same thing (concurrent queue)

 For simplicity, assume only two threads

 Thread A calls only enq()

 Thread B calls only deq()

10

head

tail 0

2

1

5 4

7

3 6

y x

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y x
1

enq(z)
deq()

z

head

Wait-free 2-Thread Queue

head

tail 0

2

5 4

7

3 6

y
1

queue[tail]

= z

result = x

z

x

Wait-free 2-Thread Queue

tail 0

2

5 4

7

3 6

y
1

tail++
head++

z

head

x

Is this correct?

 Hard to reason about correctness

 What could go wrong?

 Nothing (at least no crash)

 Yet, the semantics of the queue are funny (define “FIFO” now)!

14

 void enq(Item x) {

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

Serial to Concurrent Specifications

 Serial specifications are complex enough, so lets stick to them

 Define invocation and response events (start and end of method)

 Extend the concept to concurrency: linearizability

 Each method should “take effect”

 Instantaneously

 Between invocation and response events

 Concurrent object is correct if this “sequential” behavior is correct

 Called “linearizable”

15

method execution

Linearization point = when method takes effect

Linearizability

 Sounds like a property of an execution …

 An object is called linearizable if all possible executions on the object
are linearizable

 Says nothing about the order of executions!

16

Example

time time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

linearization points

Example 2

time

Example 2

time

q.enq(x)

Example 2

time

q.enq(x) q.deq(y)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Example 3

time time

Example 3

time

q.enq(x)

time

Example 3

time

q.enq(x)

q.deq(x)

time

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Example 3

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Example 4

time

q.enq(x)

time

Example 4

time

q.enq(x)

q.enq(y)

time

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

time

Example 4

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

Example 4

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0)

write(1) already

happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already

happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(0) write(1)

write(1) already

happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

write(1) already

happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

write(1) already

happened

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(1) write(1)

write(2)

Read/Write Register Example

time

read(1) write(0)

write(1)

write(2)

time

read(2) write(1)

write(2)

About Executions

 Why?

 Can’t we specify the linearization point of each operation without
describing an execution?

 Not always

 In some cases, linearization point depends on the execution

 Define a formal model for executions!

54

Properties of concurrent method executions

 Method executions take time

 May overlap

 Method execution = operation

 Defined by invocation and response events

 Duration of method call

 Interval between the events

55

q.enq(x)

time

q.deq(): x

invocation response

pending

Formalization - Notation

 Invocation

 Response

 Method is implicit (correctness criterion)!

56

A: q.enq(x)

thread object method arguments

A: q:void

thread object result

A: q:FullException()

thread object exception

Concurrency

 A concurrent system consists of a collection of sequential threads Pi

 Threads communicate via shared objects

57

History

 Describes an execution

 Sequence of invocations and responses

 H=

58

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.eng(c)
B: p:void
B: q.deq()
B: q:a

Invocation and response match if
 thread names are the same
 objects are the same

Note: Method name is implicit!

Projections on Threads

 Threads subhistory H|P (“H at P”)

 Subsequences of all events in H whose thread name is P

59

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

A: q.enq(a)
A: q:void
A: q.enq(b)

B: p.enq(c)
B: p:void
B: q.deq()
B: q:a

H= H|A= H|B=

Projections on Objects

 Objects subhistory H|o (“H at o”)

 Subsequence of all events in H whose object name is o

60

A: q.enq(a)
A: q:void
A: q.enq(b)
B: p.eng(c)
B: p:void
B: q.deq()
B: q:a

H= H|p= H|q=

B: p.eng(c)
B: p:void

A: q.enq(a)
A: q:void
A: q.enq(b)

B: q.deq()
B: q:a

Sequential Histories

 A history H is sequential if

 A history H is concurrent if

 It is not sequential

61

A: q.enq(a)
A: q:void
B: p.enq(b)
B: p:void
B: q.deq(c)
B: q:void
B: q.enq()
…

 First event of H is an invocation
 Each invocation (except possibly
 the last is immediately followed
 by a matching response
 Each response is immediately
 followed by an invocation

Method calls of different threads
do not interleave

Well-formed histories

 Per-thread projections must be sequential

62

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=

Equivalent histories

 Per-thread projections must be the same

63

A: q.enq(x)
B: p.enq(y)
B: p:void
B: q.deq()
A: q:void
B: q:x

H=

A: q.enq(x)
A: q:void

H|A=G|A=

B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

H|B=G|B=

A: q.enq(x)
B: p.enq(y)
A: q:void
B: p:void
B: q.deq()
B: q:x

G=

Legal Histories

 Sequential specification allows to describe what behavior we expect
and tolerate

 When is a single-thread, single-object history legal?

 Recall: Example

 Preconditions and Postconditions

 Many others exist!

 A sequential (multi-object) history H is legal if

 For every object x

 H|x adheres to the sequential specification for x

64

Precedence

65

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x) B: q.deq()

A method execution precedes
another if response event
precedes invocation event

Precedence vs. Overlapping

 Non-precedence = overlapping

66

A: q.enq(x)
B: q.enq(y)
B: q:void
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)

B: q.enq(y)

Some method executions
overlap with others

Precedence relations

 Given history H

 Method executions m0 and m1 in H

 m0 →H m1 (m0 precedes m1 in H) if

 Response event of m0 precedes invocation event of m1

 Precedence relation m0 →H m1 is a

 Strict partial order on method executions

Irreflexive, antisymmetric, transitive

 Considerations

 Precedence forms a total order if H is sequential

 Unrelated method calls  overlap  concurrent

67

Definition Linearizability

 A history H induces a strict partial order <H on operations

 m0 <H m1 if m0 →H m1

 A history H is linearizable if

 H can be extended to a history H’

by appending responses to pending operations or dropping pending operations

 H’ is equivalent to some legal sequential history S and

 <H’ ⊆ <S

 S is a linearization of H

 Remarks:

 For each H, there may be many valid extensions to H’

 For each extension H’, there may be many S

 Interleaving at the granularity of methods

68

Ensuring <H’ ⊆ <S

 Find an S that contains H’

time

a

b

time <S

c <H’

<H’ = {a → c,b → c}

<S = {a → b,a → c,b → c}

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A. q.enq(3)

Example

Complete this

pending

invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

B.q.enq(4) B.q.deq(4)

A.q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history

Linearization Points

 Identify one atomic step where a method “happens” (effects become
visible to others)

 Critical section

 Machine instruction (atomics, transactional memory …)

 Does not always succeed

 One may need to define several different steps for a given method

 If so, extreme care must be taken to ensure pre-/postconditions

 All possible executions on the object must be linearizable

78

 void enq(Item x) {

 std::lock_guard<std::mutex> l(lock)

 if(tail-head == items.size()) {

 throw FullException;

 }

 items[tail % items.size()] = x;

 tail = (tail+1)%items.size();

 }

 Item deq() {

 std::lock_guard<std::mutex> l(lock)

 if(tail == head) {

 throw EmptyException;

 }

 Item item = items[head % items.size()];

 head = (head+1)%items.size();

 }

Composition

 H is linearizable iff for every object x, H|x is linearizable!

 Composing linearizable objects results in a linearizable system

 Reasoning

 Consider linearizability of objects in isolation

 Modularity

 Allows concurrent systems to be constructed in a modular fashion

 Compose independently-implemented objects

79

Linearizability vs. Sequential Consistency

 Sequential consistency

 Correctness condition

 For describing hardware memory interfaces

 Remember: not existing ones!

 Linearizability

 Stronger correctness condition

 For describing higher-level systems composed from linearizable
components

80

Map linearizability to sequential consistency

 Variables with read and write operations

 Sequential consistency

 Objects with a type and methods

 Linearizability

 Map sequential consistency ↔ linearizability

 Reduce data types to variables with read and write operations

 Model variables as data types with read() and write() methods

 Sequential consistency

 A history H is sequential if it can be extended to H’ and H’ is
equivalent to some sequential history S

 Note: Precedence order (<H ⊆ <S) does not need to be maintained

81

Example

time

Example

time

q.enq(x)

Example

time

q.enq(x) q.deq(y)

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Linearizable?

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Linearizable?

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

Example

time

q.enq(x)

q.enq(y)

q.deq(y) q.enq(x)

q.enq(y)

Sequentially consistent?

Properties of sequential consistency

 Theorem: Sequential consistency is not compositional

90

H=

Compositional would mean:
“If H|p and H|q are sequentially consistent,
 then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

time

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

FIFO Queue Example

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

History H

time

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

H|q Sequentially Consistent

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Ordering imposed by p

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

Ordering imposed by q

time

p.enq(x) p.deq(y) q.enq(x)

q.enq(y) q.deq(x) p.enq(y)

time

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

100

H=

A: p.enq(x)
A: p:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y

H|p=

A: p.enq(x)
A: p:void
A: p.deq()
A: p:y

B: p.enq(y)
B: p:void

(H|p)|A= (H|p)|B=

H|p is sequentially consistent!

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

101

H= H|q= (H|q)|A= (H|q)|B=

H|q is sequentially consistent!

B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: q.deq()
B: q:x

A: q.enq(x)
A: q:void

B: q.enq(y)
B: q:void
B: q.deq()
B: q:x

A: p.enq(x)
A: p:void
B: q.enq(y)
B: q:void
A: q.enq(x)
A: q:void
B: p.enq(y)
B: p:void
A: p.deq()
A: p:y
B: q.deq()
B: q:x

Example in our notation

 Sequential consistency is not compositional

102

H= H|A= H|B=

H is not sequentially consistent!

A: p.enq(x)
A: p:void
A: q.enq(x)
A: q:void
A: p.deq()
A: p:y

B: q.enq(y)
B: q:void
B: p.enq(y)
B: p:void
B: q.deq()
B: q:x

Correctness: Linearizability

 Sequential Consistency

 Not composable

 Harder to work with

 Good way to think about hardware models

 We will use linearizability as in the remainder of this course

unless stated otherwise

Study Goals

 Define linearizability with your own words!

 Describe the properties of linearizability!

 Explain the differences between sequential consistency and
linearizability!

 Given a history H

 Identify linearization points

 Find equivalent sequential history S

 Decide and explain whether H is linearizable

 Decide and explain whether H is sequentially consistent

 Give values for the response events such that the execution is linearizable

104

Language Memory Models

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed
concurrently

 A memory model is a contract

 Between platform and programmer

105

History of Memory Models

 Java’s original memory model was broken

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition)

 C/C++ didn’t even have a memory model until recently

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, more conservative

106

Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, final, synchronized, …

 C++: atomic, (NOT volatile!) …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

107

Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by casuality)

 C++: undefined behavior

No safety (anything can happen/change)

108

Communication between Threads Intuition

 Not guaranteed unless by:

 Synchronization

 Volatile/atomic variables

 Specialized functions/classes (e.g., java.util.concurrent,)

109

x = 10
y = 5
flag = true

if(flag)
 print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable
(atomic in C++, volatile in Java),

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

 Abstract relation between threads and memory

 Local thread view!

 Does not talk about classes, objects, methods, …

 Linearizability is a higher-level concept!

Memory Model Intuition

110

Main Memory

Working

memory

T1

Working

memory

T1

Working

memory

T1

When are values transferred?

abstraction
of caches and
registers

Lock Synchronization

 Java

 Synchronized methods as
syntactic sugar

111

 C++

 Many flexible variants

synchronized (lock) {
 // critical region
}

{
 unique_lock<mutex> l(lock);
 // critical region
}

 Semantics:
 mutual exclusion
 at most one thread may own a lock
 a thread B trying to acquire a lock held by thread A blocks until thread A

 releases lock
 note: threads may wait forever (no progress guarantee!)

Memory semantics

 Similar to synchronization variables

 All memory accesses before an unlock …

 are ordered before and are visible to …

 any memory access after a matching lock!

112

x = 10
…
y = 5
…
unlock(m)

lock(m)
 print(x+y)

Thread 1

Thread 2

Synchronization Variables

 Variables can be declared volatile (Java) or atomic (C++)

 Reads and writes to synchronization variables

 Are totally ordered with respect to all threads

 Must not be reordered with normal reads and writes

 Compiler

 Must not allocate synchronization variables in registers

 Must not swap variables with synchronization variables

 May need to issue memory fences/barriers

 …

113

Synchronization Variables

 Write to a synchronization variable

 Similar memory semantics as unlock (no process synchronization!)

 Read from a synchronization variable

 Similar memory semantics as lock (no process synchronization!)

114

class example {
 int x = 0;
 atomic<bool> v = false

 public void writer() {
 x = 42;
 v = true;
 }

 public void reader() {
 if(v) {
 print(x)
 }
 }

Thread 1

Thread 2

Without volatile, a
platform may reorder
these accesses!

Memory Model Rules

 Java/C++: Correctly synchronized programs will execute sequentially
consistent

 Correctly synchronized = data-race free

 iff all sequentially consistent executions are free of data races

 Two accesses to a shared memory location form a data race in the
execution of a program if

 The two accesses are from different threads

 At least one access is a write and

 The accesses are not synchronized

115

int x = 10

T1 T2 T3

read read
write

