Design of Parallel and High-Performance

Computing
Fall 2013
Lecture: Linearizability

Instructor: Torsten Hoefler & Markus Pischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Review of last lecture

m Cache-coherenceis not enough!
= Many more subtle issues for parallel programs!

= Memory Models
= Sequential consistency
= Why threads cannot be implemented as a library ©
= Relaxed consistency models
= x86 TLO+CC case study

= Complexity of reasoning about parallel objects

DPHPC Overview

DPHPC
» locality parallelism
@ ==
=} e
g -caches vector ISA shared memory distributed memory
S - memory hierarchy
2 | cache coherency |
] T 1
P __memory | distributed
a " models ' " algorithms '
O
< locks group commu-
8 lock free nications
wait free
| Amdahl's and Gustafson's law |
T 1

= 1 memory 11 PRAM 11 LogP |
el T T L 1
g o-P

1/0 complexity

balance principles | balance principles Il

Little's Law scheduling

Goals of this lecture

= Queue:
= Locked
C++ locking (small detour)
= Wait-free two-thread queue

m Linearizability
® |ntuitive understanding (sequential order on objects!)
® Linearization points
® Linearizable executions
= Formal definitions (Histories, Projections, Precedence)

m Linearizability vs. Sequential Consistency
= Modularity

Lock-based queue

class Queue {

Queue(int capacity) {

}

);.

int head, tail;
std::vector<ltem> items;
std::mutex lock;

head = tail = 0;
items.resize(capacity);

Lock-based queue

class Queue {

public:
void eng(Item x) {
Ed::Iock_guard<std::mutex> I(lock)

if(tail-head == items.size()) {

throw FullException;

}

items|[tail % items.size()] = x;

tail = (tail+1)%items.size();

}

Item deq() {
ud::Iock_guard<std::mutex> I(lock)
if(tail == head) {
throw FullException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();
}
k

]_

C++ Resource Acquisition is Initialization

= RAIl - suboptimal name

= Can be used for locks (or any other resource acquisitions)

-
Constructor grabs resource class lock_guard<typename mutex_impl> {

= Destructor frees resource mutex_impl &_mtx; // ref to the mutex
public:
scoped_lock(mutex_impl & mtx) : _mtx(mtx) {
_mtx.lock(); //lock mutex in constructor
}
~scoped_lock() {
_mtx.unlock(); //unlock mutex in destructor

m Behavesas if
= Implicit unlock at end of block!

= Main advantages)
= Always free lock at exit i

= No “lost” locks due to exceptions
or strange control flow (goto ©)

= Very easy to use

Example execution

A: g.deq(): x

B: g.enq(x)

“sequential
behavior”

Correctness

m Is the locked queue correct?
= Yes, only one thread has access if locked correctly
= Allows us again to reason about pre- and postconditions
= Smells a bit like sequential consistency, no?

m Class question: What is the problem with this approach?
= Same asfor SC ©

Threads working at the same time?

= Same thing (concurrent queue)

m For simplicity, assume only two threads

* ThreadAcallsonlyend() head
= Thread B callsonly deq() tail
10

Wait-free 2-Thread Queue

Wait-free 2-Thread Queue

tail

=z

Wait-free 2-Thread Queue

Is this correct?

m Hard to reason about correctness

= What could go wrong?

void enq(ltemx) { Item deq() {
if(tail-head == items.size()) { if(tail == head) {
throw FullException; throw EmptyException;

} }
items([tail % items.size()] = x;
tail = (tail+1)%items.size();

} }

Item item = items[head % items.size()];
head = (head+1)%items.size();

= Nothing(at least no crash)

= Yet, the semantics of the queue are funny (define “FIFO” now)!

Serial to Concurrent Specifications

m Serial specifications are complex enough, so lets stick to them
= Define invocationand response events (start and end of method)

m Extend the conceptto concurrency: linearizability

m Each method should “take effect”
® |nstantaneously

= Between invocation and response events

m Concurrentobjectis correctif this “sequential” behavioris correct
= (Called“linearizable”

method execution

Linearization point = when method takes effect

15

Linearizability

= Soundslike a property of an execution ...

= Anobjectis called linearizable if all possible executions on the object
are linearizable

m Says nothing about the order of executions!

void eng(ltem x) { Item deq() {
std::lock_guard<std::mutex> I(lock) std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) { if(tail == head) {
throw FullException; throw EmptyException;
} }
items|[tail % items.size()] = x; Item item = items[head % items.size()];
tail = (tail+1)%items.size();. head = (head+1)%items.size();

Example

-/

linearization points

void eng(ltemx) { Item deq() {
std::lock_guard<std::mutex> I(lock) std::lock_guard<std::mutex> |(lock)
if(tail-head == items.size()) { if(tail == head) {
throw FullException; throw EmptyException;
} }
items][tail % items.size()] = x;
tail = (tail+1)%items.size();.

Example

Item item = items[head % items.size()];
head = (head+1)%items.size();

/

linearization points

void enq(ltemx) {
std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
}
items|tail % items.size()] = x;
tail = (tail+1)%items.size();.

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();

Example

linearization points

g.enq(x)

g.enq(y)

Example

g.enq(x)

g.enq(y)

void enq(ltemx) {
std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
}
items|tail % items.size()] = x;
tail = (tail+1)%items.size();.

q.deq(x)

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();

linearization points

void enq(Itemx) {
std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
}
items[tail % items.size()] = x;
tail = (tail+1)%items.size();.

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();

/!

Example

@

}

linearization points

g.enq(x) q.deq(y)

g.enq(y) g.deq(x)

Example

g.¢nqg(x)

g.enc(y)

void eng(Itemx) {

}

std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
}
items[tail % items.size()] = x;
tail = (tail+1)%items.size();.

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();

linearization points

void eng(ltem x) {
std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
}
items|[tail % items.size()] = x;
tail = (tail+1)%items.size();.

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head % items.size()];
head = (head+1)%items.size();

yd

o~
linearization points

Example

@

q.deq(y)

g.en((y)

Example 2

Example 2

)
mr—

Example 2

m g.deq(y)

Example 2

@

) &

Am’»

Example 2

¥
e
—ﬁm’»

Example 2

@

€

Example 3

Example 3

ErrTTE— .
m————

Example 3

N2
o[e]e]

ErrTTE— .

Example 3

@

Example 3

Example 4

=)
e —

Example 4

m“

Example 4

M’ g.deq(y)

Example 4

@

M’ g.deq(y)
m q.deq(x)

|

Example 4

Read/Write Register Example

=

Read/Write Register Example

write(1) already
happened

Read/Write Register Example

write(1) already
happened

Read/Write Register Example

(CEL((0)]

write(1) already
happened

Read/Write Register Example

write(1) already
happened

Read/Write Register Example

write(1) already
happened

Read/Write Register Example

read(1)

write(1) already
happened

Read/Write Register Example

&
e

Read/Write Register Example

=)
—

Read/Write Register Example Read/Write Register Example

) €
o ﬂ@

Read/Write Register Example Read/Write Register Example

About Executions

= Why?
= Can’t we specify the linearization point of each operation without
describing an execution?

= Notalways
= |n some cases, linearization pointdepends on the execution

m Define a formal model for executions!

wr te(1)

Properties of concurrent method executions

= Method executions take time
= Mayoverlap

= Method execution=operation
= Defined by invocation and response events

m Duration of method call
= Interval between the events

pend

' g.enq(x) '

ing

' qg.deq(): x *

time

invocation response

—

Formalization - Notation

= Invocation

A: g.enq(x)

S N~

thread object method arguments
= Response

A: g:void

1N

thread object result

A: g:FullException()
N

e

thread object exception

= Method isimplicit (correctness criterion)!

Concurrency

m A concurrentsystem consists of a collection of sequential threads P;

m Threads communicate viashared objects

History

m Describes an execution
= Sequence of invocationsand responses
= H=

A:g.enq(a)))
A: q:void :—> Invocation and response match if

= thread names are the same

A: g.enq(b) .

B: p.eng(c) objects are the same

B: p:void

B: z.deq() Note: Method name is implicit!
B: q:a

Projections on Threads

m Threads subhistory H|P (“H at P”)
= Subsequences of all events in H whose thread name is P

H= H|A= H|B=

A: g.enqg(a) A: g.enq(a)

A: g:void A: g:void

A: g.enq(b) A: g.enq(b)

B: p.enq(c) B: p.enq(c)
B: p:void B: p:void
B: g.deq() B: g.deq()
B: q:a B: g:a

Projections on Objects

m Objects subhistoryH|o (“H at 0”)
= Subsequence of all events in H whose object name is o

H= Hlp= Hla=

A: g.enqg(a) A: g.enq(a)
A: g:void A: g:void
A: g.enq(b) A: g.enq(b)
B: p.eng(c) B: p.eng(c)

B: p:void B: p:void

B: g.deq() B: g.deq()
B: q:a B: g:a

Sequential Histories

m A historyHis sequential if

< A: g.enqg(a)
A: g:void
tB: p.enq(b)
B: p:void

S
<—B: g.deq(c)
S

B: q:void
tB: g.enq()

= First event of H is an invocation

= Each invocation (except possibly
the last is immediately followed
by a matching response

= Each response is immediately
followed by an invocation

Method calls of different threads

do not interleave

= Ahistory His concurrent if
" |tis not sequential

Well-formed histories

m Per-thread projections must be sequential

H= H|A=

A: g.enq(x) A: g.enq(x)

B: p.enq(y) A: g:void

B: p:void

B: q.deq() H|B=

A: g:void B: p.enq(y)

B: q:x B: p:void
B: g.deq()
B: q:x

Equivalent histories

m Per-thread projections must be the same

Legal Histories

= Sequential specification allows to describe what behavior we expect
and tolerate
= When is a single-thread, single-object history legal?

H= G= H|A=G|A=
A: g.enq(x) A: g.enq(x) A: g.enq(x)
B: p.enq(y) B: p.enq(y) A: q:void = Recall: Example
B: p:void A: g:void = Preconditionsand Postconditions
B: g.deq() B: p:void H|B=G|B= = Many others exist!
A: g:void B: g.deq() B: p.enq(y)
B: q:x B: q:x B: p:void
B: g.deq() = Asequential (multi-object) history His legal if
B: q:x = Forevery object x
= H|x adheres to the sequential specification for x
Precedence Precedence vs. Overlapping
= Non-precedence = overlapping
A: g.enq(x) A method execution precedes A: g.enq(x) Some method executions
B: g.enq(y) another if response event B: g.enq(y) overlap with others
B: g:void precedes invocation event B: g:void A: g.ena(x)
A: g:void A: g:void |
B: g.deq() B: g.deq()
B: q:x A: g.enq(x) B: g.deq() B: q:x B: g.enq(y)

Precedence relations

= Given historyH

= Method executionsmgand m, inH

= my—y My (M precedes my in H) if

= Response event of m, precedes invocation event of m;
m Precedencerelationm,—, m,isa

= Strict partial order on method executions
Irreflexive, antisymmetric, transitive

= Considerations
= Precedence forms a total order if H is sequential
= Unrelated method calls > overlap - concurrent

67

Definition Linearizability

= Ahistory Hinduces a strict partial order <,, on operations
= my<ymyifmg—ymy
m AhistoryHis linearizable if
® Hcan be extended to a history H’
by appending responses to pending operations or dropping pending operations
= H’is equivalentto some legal sequential history S and

LIRS =N

m Sisalinearizationof H

= Remarks:
® Foreach H, there may be many valid extensions to H’
= For each extension H’, there may be many S
® |nterleaving at the granularity of methods

68

Ensuring <y € <g
= Find an S that contains H’

<y = {a—c,b—oc}

< = {a—b,a—c,b—c}

Example

A g.enq(3)

Example

A g.enq(3) .
. Complete this

pending
invocation

Example

A g.enqg(3)
omplete this

pending
invocation

Example

A g.enq(3)

discard this one

Example

A g.enq(3)

discard this one

I a—

A qg:void

S v o
< > emmm>

Example

A g.enqg(3)

A qg:void

S v oa————

lemmy> mmm>
e —

Example
A g.enq(3)
A g.enq(3)
A qg:void
A qg:void

o a———
e famm>

———

Example
Equivalent sequential history
A g.enq(3)
A g.enq(3)
A qg:void
A g:void

Linearization Points

= Identify one atomicstep where a method “happens” (effects become
visible to others)
= Critical section
= Machineinstruction (atomics, transactional memory ...)

= Does not always succeed
= One may need to define several different steps for a given method
= |f so, extreme care must be taken to ensure pre-/postconditions

= All possible executions on the object must be linearizable

Item deq() {
std::lock_guard<std::mutex> |(lock)
if(tail == head) {
throw EmptyException;

void eng(ltem x) {
std::lock_guard<std::mutex> I(lock)
if(tail-head == items.size()) {
throw FullException;
} }
items][tail % items.size()] = x; Item item = items[head % items.size()];
tail = (tail+1)%items.size(); head = (head+1)%items.size();

} }

78

Composition

m Hislinearizableiff for every objectx, H|x is linearizable!
= Composinglinearizable objects results in a linearizable system

= Reasoning
= Consider linearizability of objects in isolation

= Modularity

Linearizability vs. Sequential Consistency

= Sequential consistency
= Correctness condition
= Fordescribing hardware memory interfaces
= Remember: not existing ones!

m Linearizability
= Stronger correctness condition
= For describing higher-level systems composed from linearizable

= Allows concurrent systems to be constructed in a modular fashion components
= Compose independently-implemented objects
Map linearizability to sequential consistency Example

m Variables with read and write operations
= Sequential consistency

m Objects with a type and methods
= Linearizability
= Map sequential consistency <> linearizability

= Reduce data types to variables with read and write operations
= Model variables as data types with read() and write() methods

= Sequential consistency

= A history H is sequential if it can be extended to H" and H’ is
equivalent to some sequential history S

= Note: Precedence order (<H < <S) does not need to be maintained

Example

Example

q.deq(y)

e —

Example

@ Linearizable?

>

q.deq(y)

&

Example

@ Linearizable?

€

q.deq(y)

&

Example

@ Linearizable?

&)

Example

@ Sequentially consistent?

€

g.deq(y)

&

Properties of sequential consistency

= Theorem:Sequential consistency is not compositional
H=

A: p.enq(x)
A: p:void
B: g.enq(y)
B: g:void
A: g.enq(x)
A: g:void
B: p.enq(y)
B: p:void
A: p.deq()
A: py

B: g.deq()
B: g:x

Compositional would mean:
“If H|p and H|q are sequentially consistent,
then H is sequentially consistent!”

This is not guaranteed for SC schedules!

See following example!

FIFO Queue Example

= b 6

e e—

FIFO Queue Example

) &) &=

6

e —

FIFO Queue Example

e

History H

T —

H|p Sequentially Consistent

) &) &=

) 6
e —

H|g Sequentially Consistent

e e)

m—re——

Ordering imposed by p

p.deq(y)

Ordering imposed by q

q. enq(y)

HEENC

Ordering imposed by both

g.deq(x)

Combining orders

g.enq(y) ‘ p-enq(y)l q.dev(x)
— T Y/

Example in our notation

= Sequential consistencyis not compositional

H= Hlp= (Hlp)|A= (Hlp)|B=
A: p.enq(x) A: p.enq(x) A: p.enq(x) B: p.enq(y)
A: p:void A: p:void A: p:void B: p:void
B: g.enq(y) B: p.enq(y) A: p.deq()

B: g:void B: p:void A: piy

A: g.enq(x) A: p.deq()

A: g:void A: piy

B: p.enq(y)

B: p:void

A: p.deq() _ , _—

A: piy H|p is sequentially consistent!

B: g.deq()

B: q:x

100

Example in our notation

m Sequential consistencyis not compositional

H=

A: p.enq(x)
p:void
g.enq(y)
g:void
g.enq(x)
g:void
p.enq(y)
p:void
p.deq()
py
q.deq()
qix

POD>>0D>>00 >

Hlg= (Hla)|A= (Hla)|B=
B: g.enq(y) A: g.enq(x) B: g.enq(y)
B: g:void A: g:void B: g:void
A: g.enq(x) B: g.deq()
A: g:void B: q:x

B: g.deq()

B: q:x

H|q is sequentially consistent!

101

Example in our notation

m Sequential consistencyis not compositional

H= H |A: H | B=

A: p.enq(x) A: p.enq(x) B: g.enq(y)

A: p:void A: p:void B: g:void

B: g.enq(y) A: g.enq(x) B: p.enq(y)

B: g:void A: g:void B: p:void

A: g.enq(x) A: p.deq() B: g.deq()

A: g:void A: py B: g:x

B: p.enq(y)

B: p:void

A: p.deq() . _ _—
A: piy H is not sequentially consistent!
B: g.deq()

B: g:x

102

Correctness: Linearizability

= Sequential Consistency
= Not composable
= Harder to work with
= Good way to think about hardware models

m We will use linearizability as in the remainder of this course
unless stated otherwise

Study Goals

m Define linearizability with your own words!
m Describe the properties of linearizability!

= Explain the differences between sequential consistency and
linearizability!

m Givena historyH
= |dentify linearization points
= Find equivalentsequential history S
= Decide and explain whether H is linearizable
= Decide and explain whether H is sequentially consistent
= Give valuesfor the response events such that the execution is linearizable

Language Memory Models

= Which transformations/reorderings can be applied to a program

m Affects platform/system
= Compiler, (VM), hardware

m Affects programmer
= What are possible semantics/output
= Which communication between threads is legal?

= Withoutmemorymodel
= |mpossible to even define “legal” or “semantics” when data is accessed
concurrently
= A memorymodelisa contract
= Between platform and programmer

History of Memory Models

m Java’s original memory model was broken
= Difficultto understand => widely violated
= Did not allow reorderings as implemented in standard VMs
= Finalfields could appear to change value without synchronization
= Volatilewrites could be reordered with normal reads and writes
=> counter-intuitive for most developers

= Java memory model was revised
* Javal.5 (JSR-133)
= Still some issues (operational semantics definition)

m C/C++didn’teven have a memory model until recently
= Not able to make any statement about threaded semantics!
® Introducedin C++11 and C11
= Based on experience from Java, more conservative

Everybody wants to optimize

m Language constructs for synchronization
= Java:volatile, final, synchronized, ...
= C++:atomic, (NOT volatile!) ...

= Withoutsynchronization (defined language-specific)
= Compiler, (VM), architecture
= Reorder and appear to reorder memory operations
® Maintainsequential semantics per thread
= QOther threads may observe any order (have seen examples before)

Java and C++ High-level overview

= Relaxed memory model
= No globalvisibility ordering of operations
= Allows for standard compiler optimizations

= But
= Program order for each thread (sequential semantics)
= Partial order on memory operations (with respect to synchronizations)
= Visibility function defined

m Correctly synchronized programs
= Guarantee sequential consistency

= Incorrectly synchronized programs
= Java: maintainsafety and security guarantees
Type safety etc. (require behavior bounded by casuality)
= C++: undefined behavior
No safety (anything can happen/change)

Communication between Threads Intuition

= Notguaranteed unless by:
= Synchronization
= Volatile/atomicvariables

= Specialized functions/classes (e.g., java.util.concurrent,)

Thread 1
x=10 Flag is a synchronization variable
y=5 (atomic in C++, volatile in Java),

flag = true.
synchrcr% Thread 2

if(flag)
print(x+y)

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

Memory Model Intuition

m Abstract relation between threads and memory
= Local thread view!

When are values transferred?

abstraction
of caches and
registers

m Does nottalk about classes, objects, methods, ...
= Linearizabilityisa higher-level concept!

Lock Synchronization

= Java u C++
synchronized (lock) { {
// critical region unique_lock<mutex> I(lock);
} // critical region
= Synchronized methods as !

syntactic sugar = Many flexible variants

= Semantics:
= mutual exclusion
= at most one thread may own a lock

= a thread B trying to acquire a lock held by thread A blocks until thread A
releases lock

= note: threads may wait forever (no progress guarantee!)

Memory semantics

= Similar to synchronization variables
Thread 1
x=10

y=5

unlock(m|
Thread 2

lock(m)
print(x+y)

= All memory accesses before an unlock ...
= are ordered before and are visibleto ...
= any memory access after a matchinglock!

Synchronization Variables

m Variables can be declared volatile (Java) or atomic (C++)

m Reads and writes to synchronization variables
= Are totally ordered with respect to all threads

® Must not be reordered with normal reads and writes

m Compiler

= Must not allocate synchronization variablesin registers

Must not swap variables with synchronization variables

= May need to issue memory fences/barriers
L]

Synchronization Variables

= Write to a synchronization variable
= Similar memory semantics as unlock (no process synchronization!)

= Read from a synchronizationvariable

= Similar memory semantics as lock (no process synchronization!)

class example {
intx=0;
atomic<bool>v = false

public void writer() {
x=42;

= true: Thread 1
) Without volatile, a

platform may reorder
public void reader() { these accesses!
if(v){ ’
print(x) Thread 2
}
}

Memory Model Rules

m Java/C++: Correctly synchronized programs will execute sequentially
consistent

m Correctly synchronized = data-race free
= iff all sequentially consistent executions are free of data races

m Two accesses to a shared memory location form a data race in the
execution of a program if
= The two accesses are from different threads
= Atleast one access is a write and
= The accesses are not synchronized

