Design of Parallel and High-Performance

Computing
Fall 2013
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Pischel
TA: Timo Schneider

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

DPHPC Overview

DPHPC
- locality parallelism
©« |
s 490 =
g - caches vector ISA shared memory distributed memory
< - memory hierarchy
3
]
2 | distributed |
= algorithms
O
s locks group commu-
ock free nications
8 lock f icati
wait free
linearizability
\ Amdahl's and Gustafson's law |
I 1
& L memory 1 PRAM 11 LogP |
© T 1T LI 1
g o-P
1/0 complexity
balance principles | balance principles Il
Little's Law scheduling P

Goals of this lecture

m Architecture case studies
= Memory
m Cache Coherence

= Memory Consistency

Architecture Developments

v ¥ b
g 4 » »
- o Sk

<1999 ’00-’05 '06-12 13-20 >2020
distributed large cache- large cache- coherentandnon-  |argely non.
memol b - Y " L

“ry coherent
i - N y accelerators and
and i
through through cot through communicating
messages memory access memory access communicating through remote
and messages and remote direct through memory directmemory
memory access access and remote

access

directmemory

ol |

Sources: various vendors

Case Study 1: IBM POWER7 IH (BW)

Blue Waters System ‘@-‘.!.‘.-.

Building Block

lﬂrruf*ﬁuﬁﬁ“

SuperNode
(1024 cores)
Drawer T Near-line Storage
[T NI
256 cores
( ) On-line Storage
SMP node
(32 cores)
P7 Chip
(8 cores)

Source: IBM/NCSA

POWER?7 Core

Execution Units
= 2 Fixed point units
= 2 Load store units
= 4 Double precision floating point
= 1Branch
= 1 Condition register
=1 Vector unit
= 1 Decimal floating point unit
= 6 wide dispatch
= Recovery Function Distributed
1,2,4 Way SMT Support
= Out of Order Execution
32KB I-Cache
32KB D-Cache
256KB L2
= Tightly coupled to core

Source: IBM/NCSA




POWER? Chip (8 cores)

= Base Technology
= 45 nm, 576 mm?
= 1.2 B transistors

= Chip

= 8cores

= 4 FMAs/cycle/core

= 32 MB L3 (private/shared)

= Dual DDR3 memory
128 GiB/s peak bandwidth
(1/2 byte/flop)

= Clock range of 3.5 -4 GHz

T L

Source: IBMNCSA

Source: IBMINCSA

Quad Chip Module (4 chips)

32 cores

= 32 cores*8 F/core*4 GHz=1TF

4 threads per core (max)

= 128 threads per package

4x32 MiB L3 cache
= 512 GB/s RAM BW (0.5 B/F)

800 W (0.8 W/F)

Adding a Network Interface (Hub)

m Connects QCMto PCl-e
= Two 16x and one 8x PCl-e slot

m Connects 8 QCM's vialow

latency, high bandwidth,
copper fabric.

= Provides a message passing
mechanism with very
high bandwidth

= Provides the lowest possible
latency between 8 QCM's

‘Source: IBMINCSA

i

‘Source: IBMINCSA

1.1 TB/s POWER7 IH HUB

= 192 GB/s Host Connection

= 336 GB/s to 7 other local nodes

Torrent

Hub Chip | | i)

Diff PHYs.

EI-3PHYs
Diff PHYs

= 240 GB/s to local-remote nodes

= 320 GB/s to remote nodes

= 40 GB/s to general purpose I/O

s cf. “The PERCS interconnect” @Hotl’10

P7 IH Drawer

* 8 nodes

* 32 chips
« 256 cores /

First Level Interconnect
»L-Local oz =

pra pra (ll pra bra

»HUB to HUB Copper Wiring
»256 Cores

Source: IBM/NCSA

2 3 4 5

pra pra fill er oo (ll ers era il 6 e




P7 IH Supernode

2" Level Interconnect (1,024 cores)

2" Level Interéonnect (1,024 cdres)

Second Level Interconnect

=Optical ‘L-Remote’ Links from HUB
=4 drawers

=1,024 Cores

LeTels BW of 1150

Bisection BW 10G-E ports

Super Node
(32 Nodes / 4 CEC)

— g
— g
e
e

I
T

2" Level Interconnect (1,024 cores) 2"’ Level Interconnect (1,024 cores)
‘Source: IBWNCSA 13

Case Study 2: IBM Blue Gene/Q packaging

2. Module 3. Compute Card
Single Chip One single chip module,
4. Node Card
16 GB DDR3 M
1. Chip emhf 32 Compute Cards,
16 cores Optical Modules, Link Chips, Torus

,.’ —

16 5b. 1/0 Drawer
81/0 Cards
8 PCle Gen2 slots

512

o

6. Rack
2 Midplanes
1,20r41/0 Drawers

7. System
20PFIs
5a. Midplane
16 Node Cards
- ~2 Mio
16384
8192

Source: IBM, SC10

Blue Gene/Q Compute chip

= 360 mm? Cu-45 technology (SOI)
= ~ 1.47 Btransistors

System-on-a-Chip design : integrates processors,
memory and networking logic into a single chlp

= 16user+1 service processors
= plus 1 redundant processor
= all processors are symmetric
= each 4-way multi-threaded
=64 bits PowerISA™
*1.6GHz
= L11/D cache = 16kB/16kB
= L1 prefetch engines
= each processor has Quad FPU
(4-wide double precision, SIMD)
= peak performance 204.8 GFLOPS@55W

= Central shared L2 cache: 32 MB
= eDRAM
= multiversioned cache/transactional
memory/speculative execution.
= supports atomic ops

= Dual memory controller
* 16 GB external DDR3 memory
®1.33GHz
=2 * 16 byte-wide interface (+ECC)

| = Chip-to-chip networking
= Router logic integrated into BQC chip.

Source: IBM, PACT'11

Blue Gene/Q Network

m On-chip external network
m Message Unit
m Torus Switch
= Serdes
m Everything!
m Only55-60 W per node
m Top of Green500 and
GreenGraph500

Source: IBM, PACT'11

Case Study 3: Cray Cascade (XC30)

= Biggestcurrentinstallationat CSCS! ©
= >2k nodes

m Standard Intel x86 Sandy Bridge Server-class CPUs

vvvvvvv A0 £ i £ o £ i o S S

‘/li/ii/i(i/i(ii/i/ﬁ/h/ﬁ/h/

| -

backplanes
connected with

copper cables in a

group:
“Black Network"

Optical cables
interconnect
groups
“Blue Network™

Aries connected by
backplane
“Green Network”

Cray Cascade Network Topology

m All-to-all connection among groups (“blue network”)

Source: Bob Alverson, Cray

= What does that remind you of?




Memory — CPU gap widens

m  Measure processor speed as “throughput” = o

m Today’s architectures

wopmepis

FLOPS/s, IOPS/s, ... —

woTHosts

Moore’s law - “60% growth per year o

Tt

My Laptop (70 Gflopis)
106

My iPad2 & iPhone 45 (102 Gflopis)
+Gloprs +

100

Source: Jack Dongarra

tiny bandwidth == HUGE BOTTLENECK

POWER?: 256 GFLOP/s — 128 GB/s memory bandwidth **** Y
BG/Q: 205 GFLOPS/s — 42.6 GB/s memory bandwidth .. [ T /

Trend: memory performance grows 10% per year

Performance
5

0.1
1975 1980 1985 1930 1995 2600 2605 2010
Year

Source: John Mc.Calpin

Issues

= How to measure bandwidth?

= Datasheet (often peak performance, may include overheads)
Frequency times bus width: 51 GiB/s

= Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?

= Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

= How to measure Latency?

Issues

= How to measure bandwidth?

= How to measure Latency?

Data sheet (often peak performance, may include overheads)
Frequency times buswidth: 51 GiB/s
Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?
Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

Data sheet (often optimistic, or not provided)
<100ns

Random pointer chase
110 ns with one core, 258 ns with 32 cores!

Conjecture: Buffering is a must!

m  Write Buffers
= Delayed write back saves memory bandwidth
= Datais often overwritten or re-read

m Caching
= Directory of recently used locations
= Stored as blocks (cache lines)

Cache Coherence

m Different caches may have copy if same memory location!

m Cache coherence

m Cache architectures

Manages existence of multiple copies

Multi level caches

Multi-port vs. single port

Shared vs. private (partitioned)
Inclusive vs. exclusive

Write back vs. write through

Victim cache to reduce conflict misses

Exclusive Hierarchical Caches

Memory




Shared Hierarchical Caches

Shared Hierarchical Caches with MT

HT,HHT,  HT, | HT,

Caching Strategies (repeat)

= Remember:
= Write Back?
= Write Through?

m Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation (updates are eventuallyvisible to all readers)
= Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (later)

Werite Through Cache

1. CPUjreads X from memory
¢ loadsX=0 intoits cache
2. CPU, reads X from memory
¢ loadsX=0 intoits cache
3. CPU, writes X=1
* stores X=1inits cache
* stores X=1 in memory

(\4 CPU, reads X from its cache
* loadsX=0 from its cache
Incoherent value for X on CPU,

CPU; may wait for update!

Requires write propagation!

Write Back Cache

1. CPU,reads X from memory
* loadsX=0 intoits cache
2. CPU, reads X from memory
* loadsX=0 intoits cache
3. CPU, writes X=1
¢ stores X=1 inits cache

4. CPU, writes X =2

* stores X=2 inits cache
5. CPU, writes back cache line

* stores X=2 inin memory
6. CPU, writes back cache line

¢ stores X=1 in memory
Later store X=2 from CPU, lost

Requires write serialization!

A simple example

struct twoint {
inta;
intb;

}

m Assume C99:

= Two threads:
® Thread0: write to a
= Thread 1: write to b

m  Assume write back cache
= What may end up in main memory?




Cache Coherence Protocol

m Programmer cannot deal with unpredictable behavior!

m Cache controller maintains dataintegrity
= Allwrites to different locationsare visible

Fundamental Mechanisms

= Snooping
= Shared bus or (broadcast) network
® Cache controller “snoops” all transactions
= Monitorsand changes the state of the cache’s data

m Directory-based
= Record information necessary to maintain cohrence
= E.g., owner and state of a line etc.

Cache Coherence Parameters

m Concerns/Goals
= Performance
= |Implementation cost (chip space)
= Correctness
= (Memory model side effects)

m lIssues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
= Precision of block sharing (per block, per sub-block?)
= Block size (cache linesize?)

An Engineering Approach: Empirical start

m Problem 1:stale reads
= Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

m Problem 2:lostupdate
= Incorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data
= Solution:
Disallow more than one modified copy

Cache Coherence Approaches

= Based oninvalidation
= Broadcast all coherency traffic (writes to shared lines) to all caches

= Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches
= Simple implementation for bus-based systems
= Works at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

= Based on explicitupdates
= Central directory for cache line ownership
= Local write updates copies in remote caches gl
Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)
= Scalable but more complex/expensive
E.g., Intel Xeon Phi

Invalidation vs. update

= Invalidation-based:
= Only write misses hit the bus (works with write-back caches)
= Subsequent writes to the same cache line are local
= - Good for multiple writes to the same line (in the same cache)

= Update-based:
= Allsharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often
= Supports producer-consumer pattern well
= Many (local) writes may waste bandwidth!

m Hybrid forms are possible!

MESI Cache Coherence

= Most common hardware implementation of discussed requirements
aka. “lllinois protocol”

Each line has one of the following states (in a cache):

= Modified (M)
= Local copy has been modified, no copies in other caches
= Memory is stale
m  Exclusive (E)
®= No copiesin other caches
= Memory is up to date
= Shared (S)
= Unmodified copies may exist in other caches
= Memory is up to date
= Invalid (1)
= Lineisnotin cache




Terminology

m Cleanline:

= Content of cache line and main memory is identical (also: memory is up to
date)

= Canbe evicted without write-back
m Dirtyline:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details

m Bus transaction:
= Asignal onthe bus that can be observed by all caches
= Usually blocking

m Local read/write:
= Aload/store operation originating at a core connected to the cache

Transitions in response to local reads

m StateisM
= No bus transaction

m StateisE
= No bus transaction

m StateisS
= No bus transaction

m Stateis|
= Generate bus read request (BusRd)
May force other cache operations (see later)
= QOther cache(s) signal “sharing” if they hold a copy
= |f shared was signaled, go to state S
= Otherwise, go to state E

m After update:returnread value

Transitions in response to local writes

m StateisM
= No bus transaction

m StateisE
® No bus transaction
" Gotostate M

m StateisS
= Line alreadylocal & clean
= There may be other copies
= Generate bus read request for upgrade to exclusive (BusRdX*)
" Gotostate M

m Stateis|
= Generate bus read request for exclusive ownership (BusRdX)
®* Gotostate M

Transitions in response to snooped BusRd

m StateisM
= Write cache line back to main memory
= Signal “shared”
" Gotostate$S
m StateisE
= Signal “shared”
= Go to state S and signal “shared”
m StateisS
= Signal “shared”
m Stateis|
= |Ignore

Transitions in response to snooped BusRdX

m StateisM
= Write cache line backto memory
= Discard lineandgo to

m StateisE
= Discard lineandgo tol

m StateisS
= Discard lineandgo to

m Stateis|
= |gnore

m BusRdX*is handled like BusRdX!

MESI State Diagram (FSM)

(Y

.
Prwr \
BusRdx| BusRdx \

\ I

/
(. /
msnan’mn/ /
Ry
7

die
a(S)

Pt

Source: Wikipedia




Small Exercise
[Action | Pistate | P2state | P3state | Busaction | Datafrom |

Small Exercise
[Action | P1state | P2state | P3state | Busaction | Datafrom |
| |

P1 reads x Plreadsx E BusRd Memory
P2 reads x P2readsx S S | BusRd Memory
P1 writes x Pl writesx M | | BusRdX*  Cache
P1 reads x P1 reads x M | | - Cache
P3 writes x P3 writesx | | M BusRdX Memory
Optimizations? Related Protocols: MOESI (AMD)

m Class question: what could be optimized in the MESI protocol to
make a system faster?

m Extended MESI protocol

m Cache-to-cache transfer of modified cache lines
= CacheinM or O state always transfers cache line to requesting cache
= No need to contact (slow) main memory

m Avoids write back when another process accesses cache line
®* Good when cache-to-cache performance is higher than cache-to-memory
E.g. shared last level cache!

m Broadcasts updatesin O state
= Additional load onthe bus

MOESI State Diagram

Read Hit

Reset
INVD, WBINVD

Probe Wite Ht

Read Miss, Exclsive

()

N

Read Ht
Probe Read Hit

Read Hit
Wite Hit

Probe Read Hit

Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive
®* No copiesin other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)

= Owner (0): Modified Shared
= Exclusive right to make changes

= QOtherS copies may exist (“dirty sharing”)

= Memory is stale, cache supplies copy (reply to BusRd*)
m Exclusive (E):

= Same as MESI (one local copy, up to date memory)
m Shared (S):

= Unmodified copy may exist in other caches 5
= Memory is up to date unless an O copy exists in another cache

New O

= Invalid (1):
= Same as MESI




Related Protocols: MESIF (Intel?)

= Modified (M): Modified Exclusive

= No copiesin other caches, local copy dirty

= Memory is stale, cache supplies copy (reply to BusRd*)
Exclusive (E):

= Same as MESI (one local copy, up to date memory)
m Shared (S):

= Unmodified copy may exist in other caches
= Memory is up to date unless an O copy exists in another cache

Invalid (1):
= Same as MESI

m Forward (F):
= Special form of S state, other caches may havelinein S
= Most recent requester of lineisin F state
= Cache acts as responder for requests to this line

Multi-level caches

m  Mostsystems have multi-level caches

Problem: only “last level cache” is connected to bus or network
Snoop requests are relevant for inner-levels of cache (L1)
Modificationsof L1 data may not be visible at L2 (and thus the bus)

m L1/L2 modifications

On BusRd check if lineisin M state in L1
It may be in Eor SinL2!

On BusRdX(*) send invalidationsto L1

Everything else can be handledin L2

m If L1is write through, L2 could “remember” state of L1 cache line

May increase traffic though

Directory-based cache coherence

= Snoopingdoes notscale
= Bus transactions must be globally visible
= |mplies broadcast

m Typical solution: tree-based (hierarchical) snooping
= Root becomes a bottleneck

m Directory-based schemes are more scalable
= Directory (entry for each CL) keeps track of all owning caches
= Point-to-pointupdate to involved processors
No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QP! ...

Basic Scheme

m  System with N processors P,
" m For each memory block (size: cache
line) maintain a directory entry
= N presence bits
= Set if block in cache of P;

Interconnection network = 1dirty bit

m For each cache block

Directory = 1valid and 1 dirty bit

Presence bits Dirty bit m First proposed by Censier and

Feautrier (1978
Memory (1978)

Directory-based CC: Read miss

m P;intendsto read, misses

m If dirty bit (in directory) s off
= Read from main memory
= Set presenceli]
= Supply data to reader

m If dirtybitison
= Recall cache line from P,
= Update memory
= Unset dirty bit, block shared
= Set presenceli]
= Supply data to reader

Directory-based CC: Write miss

m P;intends to write, misses

m If dirty bit (in directory)is off

Send invalidationsto all processors P; with presence[j] turned on
Unset presence bit for all processors

Set dirty bit

Set presenceli], owner P,

m If dirty bitis on

Recall cache line from owner P,
Update memory

Unset presencelj]

Set presencel[i], dirty bit remains set
Supply data to reader




Directory-based CC: Write hit on remote Discussion

m P, intends to write, misses m Scaling of memory bandwidth
®= No centralized memory

= Cache line valid, dirty bit off, P, not owner m Directory-based approaches scale with restrictions
= Access directory = Require presence bit for each cache
. . ) S
® Send invalidationsto all processors P; with presencelj] set Number of bits determined at design time
. N ) ] )
= Unset presence bit for all processors Directory requires memory (size scales linearly)
. e .
= Set dirty bit Shared vs. distributed directory

= Set presencel[i], owner P;

m Software-emulation
= Distributed shared memory (DSM)
= Emulate cache coherence in software (e.g., TreadMarks)
= Often on a per-page basis, utilizes memory virtualization and paging

Case Study: Intel Xeon Phi

[core | [core | ees [core | [core |

A
[GoDRs [+—> [ ] [™ | eee [™ | [ | [ GDDRS|

GDDRS5 |[+—» [ ] [ ] eee [ | [™ ] «—| GDDRS|

[core | [core | eee [CORE | [coRE |




