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Fall 2013 
Lecture: Introduction 

Instructor: Torsten Hoefler & Markus Püschel 

TA: Timo Schneider 



Goals of this lecture 

 Motivate you! 

 What is parallel computing? 

 And why do we need it? 

 What is high-performance computing? 

 What’s a Supercomputer and why do we care? 

 Basic overview of 

 Programming models 

Some examples 

 Architectures 

Some case-studies 

 Provide context for coming lectures 
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Let us assume … 

 … you were to build a machine like this … 

 

 

 

 

 

 

 

 

 … we know how each part works 

 There are just many of them! 

 Question: How many calculations per second are needed to emulate a brain? 
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Source: wikipedia 
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Source: www.singularity.com Can we do this today? 
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Source: www.singularity.com Blue Waters, ~13 PF (2012) 

Tianhe-2, ~55 PF (2013) 

1 Exaflop! ~2022? 



Human Brain – No Problem! 

 … not so fast, we need to understand how to program those 
machines … 
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Human Brain – No Problem! 
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Scooped! 

Source: extremetech.com 



Other problem areas: Scientific Computing 

 Most natural sciences are simulation driven are moving towards 
simulation 
 Theoretical physics (solving the Schrödinger equation, QCD) 
 Biology (Gene sequencing) 
 Chemistry (Material science) 
 Astronomy (Colliding black holes) 
 Medicine (Protein folding for drug discovery) 
 Meteorology (Storm/Tornado prediction) 
 Geology (Oil reservoir management, oil exploration) 
 and many more … (even Pringles uses HPC) 
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Other problem areas: Commercial Computing 

 Databases, data mining, search 
 Amazon, Facebook, Google 

 Transaction processing 
 Visa, Mastercard 

 Decision support 
 Stock markets, Wall Street, Military applications 

 Parallelism in high-end systems and back-ends 
 Often throughput-oriented 
 Used equipment varies from COTS (Google) to high-end redundant 

mainframes (banks) 
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Other problem areas: Industrial Computing 

 Aeronautics (airflow, engine, structural mechanics, 
electromagnetism) 

 Automotive (crash, combustion, airflow) 

 Computer-aided design (CAD) 

 Pharmaceuticals (molecular modeling, protein folding, drug design) 

 Petroleum (Reservoir analysis) 

 Visualization (all of the above, movies, 3d) 
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What can faster computers do for us? 

 Solving bigger problems than we could solve before! 

 E.g., Gene sequencing and search, simulation of whole cells, mathematics 
of the brain, … 

 The size of the problem grows with the machine power 

 Weak Scaling 

 

 Solve small problems faster! 

 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, 
weapons, …) 

 The machine power grows with constant problem size 

 Strong Scaling 
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High-Performance Computing (HPC) 

 a.k.a. “Supercomputing” 

 Question: define “Supercomputer”! 
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High-Performance Computing (HPC) 

 a.k.a. “Supercomputing” 

 Question: define “Supercomputer”! 

 “A supercomputer is a computer at the frontline of contemporary processing 
capacity--particularly speed of calculation.” (Wikipedia) 

 Usually quite expensive ($s and kWh) and big (space) 

 HPC is a quickly growing niche market 

 Not all “supercomputers”, wide base 

 Important enough for vendors to specialize 

 Very important in research settings (up to 40% of university spending) 

“Goodyear Puts the Rubber to the Road with High Performance Computing” 

“High Performance Computing Helps Create New Treatment For Stroke Victims” 

“Procter & Gamble: Supercomputers and the Secret Life of Coffee” 

“Motorola: Driving the Cellular Revolution With the Help of High Performance 
Computing” 

“Microsoft: Delivering High Performance Computing to the Masses” 
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The Top500 List 

 A benchmark, solve Ax=b 

 As fast as possible!  as big as possible  

 Reflects some applications, not all, not even many 

 Very good historic data! 

 Speed comparison for computing centers, states, countries, nations, 
continents  

 Politicized (sometimes good, sometimes bad) 

 Yet, fun to watch 
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The Top500 List (June 2013) 
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Piz Daint @ CSCS 
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Blue Waters in 2009 

This is why you need to understand  
performance expectations well! 

Imagine you’re designing a $500 M  
supercomputer, and all you have is: 



Blue Waters in 2012 



History and Trends 

 

20 Source: Jack Dongarra 

Single GPU/MIC Card 



High-Performance Computing grows quickly 

 Computers are used to automate many tasks 

 Still growing exponentially 

 New uses discovered continuously 
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Source: The Economist 

IDC, 2007: “The overall HPC server market grew  
by 15.5  percent in 2007 to reach $11.6 billion […]  
while the same kinds of boxes that go into HPC  
machinery but are used for general purpose  
computing, rose by only 3.6 percent to $54.4” 

IDC, 2009: “expects the HPC technical server  
market to  grow at a healthy 7% to 8% yearly  
rate to reach revenues of $13.4 billion by 2015.” 
 
“The non-HPC portion of the server market was  
actually down 20.5 per cent, to $34.6bn” 



How to increase the compute power? 
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Source: Intel  
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How to increase the compute power? 
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Source: Intel  

Hot Plate 

Nuclear Reactor 

Rocket Nozzle 

Sun’s Surface 

Clock Speed: 
Not an option anymore! 
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Source: Wikipedia 



So how to invest the transistors? 

 Architectural innovations 
 Branch prediction, Tomasulo logic/rename register, speculative execution, 

… 

 Help only so much  

 What else?  
 Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell 

B.E., GPUs, MIC 

 We call this “cores” these days 

 Also, more intelligent devices or higher bandwidths (e.g., DMA controller, 
intelligent NICs)  
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Source: IBM Source: NVIDIA Source: Intel 



Towards the age of massive parallelism 

 Everything goes parallel 

 Desktop computers get more cores 

2,4,8, soon dozens, hundreds? 

 Supercomputers get more PEs (cores, nodes) 

> 3 million today 

> 50 million on the horizon 

1 billion in a couple of years (after 2020) 

 Parallel Computing is inevitable! 
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Parallel vs. Concurrent computing 
Concurrent activities may be executed in parallel 
Example:  
  A1 starts at T1, ends at T2; A2 starts at T3, ends at T4 
  Intervals (T1,T2) and (T3,T4) may overlap! 
Parallel activities:  
  A1 is executed while A2  is running 
  Usually requires separate resources! 



Goals of this lecture 

 Motivate you! 

 What is parallel computing? 

 And why do we need it? 

 What is high-performance computing? 

 What’s a Supercomputer and why do we care? 

 Basic overview of 

 Programming models 

Some examples 

 Architectures 

Some case-studies 

 Provide context for coming lectures 
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Granularity and Resources 
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                       Activities 

 Micro-code instruction 

 Machine-code instruction  
(complex or simple) 

 Sequence of machine-code  
instructions: 

Blocks 

Loops 

Loop nests 

Functions 

Function sequences 

 

 

                  Parallel Resource 

 Instruction-level parallelism 

 Pipelining 

 VLIW 

 Superscalar 

 SIMD operations 

 Vector operations 

 Instruction sequences 

 Multiprocessors 

 Multicores 

 Multithreading 

  

 



Resources and Programming 
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                  Parallel Resource 

 Instruction-level parallelism 

 Pipelining 

 VLIW 

 Superscalar 

 SIMD operations 

 Vector operations 

 Instruction sequences 

 Multiprocessors 

 Multicores 

 Multithreading 

  

 

                     Programming 

 Compiler 

 (inline assembly) 

 Hardware scheduling 

 

 Compiler (inline assembly) 

 Libraries 

 Compilers (very limited) 

 Expert programmers 

 Parallel languages 

 Parallel libraries 

 Hints 

 

  

 



Historic Architecture Examples 

 Systolic Array  

 Data-stream driven (data counters) 

 Multiple streams for parallelism 

 Specialized for applications (reconfigurable) 

 

 Dataflow Architectures 

 No program counter, execute instructions when all input arguments are 
available 

 Fine-grained, high overheads 

Example: compute f = (a+b) * (c+d)  

 

30 

Source: ni.com 

Source: isi.edu 



Von Neumann Architecture 

 Program counter  Inherently serial! 
Retrospectively define parallelism in instructions and data 
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SISD 
Standard Serial Computer  

(nearly extinct) 

SIMD 
Vector Machines or Extensions 

(very common) 

MISD 
Redundant Execution 

(fault tolerance) 

MIMD 
Multicore 

(ubiquituous) 



Parallel Architectures 101 

 

 

 

 

 

 

 

 

 

 

 … and mixtures of those 
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Today’s laptops Today’s servers 

Yesterday’s clusters Today’s clusters 



Programming Models 

 Shared Memory Programming (SM/UMA) 

 Shared address space 

 Implicit communication 

 Hardware for cache-coherent remote memory access 

 Cache-coherent Non Uniform Memory Access (cc NUMA) 

 

 (Partitioned) Global Address Space (PGAS) 

 Remote Memory Access 

 Remote vs. local memory (cf. ncc-NUMA) 

 

 Distributed Memory Programming (DM) 

 Explicit communication (typically messages) 

 Message Passing 
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Shared Memory Machines 

 Two historical architectures: 

 “Mainframe” – all-to-all connection  
between memory, I/O and PEs 

Often used if PE is the most expensive part 

Bandwidth scales with P 

PE Cost scales with P,  Question: what about network cost? 
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Source: IBM 



Shared Memory Machines 

 Two historical architectures: 

 “Mainframe” – all-to-all connection  
between memory, I/O and PEs 

Often used if PE is the most expensive part 

Bandwidth scales with P 

PE Cost scales with P,  Question: what about network cost? 

Answer: Cost can be cut with multistage connections (butterfly) 

 “Minicomputer” – bus-based connection 
All traditional SMP systems  

High latency, low bandwidth (cache isimportant) 

Tricky to achieve highest performance (contention) 

Low cost, extensible 
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Source: IBM 



Shared Memory Machine Abstractions 

 Any PE can access all memory 

 Any I/O can access all memory (maybe limited) 

 OS (resource management) can run on any PE 

 Can run multiple threads in shared memory 

 Used since 40+ years 

 Communication through shared memory 

 Load/store commands to memory controller 

 Communication is implicit 

 Requires coordination 

 Coordination through shared memory 

 Complex topic 

 Memory models 
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Shared Memory Machine Programming 

 Threads or processes  

 Communication through memory 

 Synchronization through memory or OS objects 

 Lock/mutex (protect critical region) 

 Semaphore (generalization of mutex (binary sem.)) 

 Barrier (synchronize a group of activities) 

 Atomic Operations (CAS, Fetch-and-add) 

 Transactional Memory (execute regions atomically) 

 Practical Models: 

 Posix threads 

 MPI-3 

 OpenMP 

 Others: Java Threads, Qthreads, … 
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An SMM Example: Compute Pi 
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 Using Gregory-Leibnitz Series: 

  

 

 Iterations of sum can be computed in parallel 

 Needs to sum all contributions at the end 

 

Source: mathworld.wolfram.com 



Pthreads Compute Pi Example 
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int main( int argc, char *argv[] )  

{  

    // definitions … 

    thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t)); 

    resultarr= (double*)malloc(nthreads * sizeof(double)); 

 

    for (i=0; i<nthreads; ++i) { 

      int ret = pthread_create( &thread_arr[i], NULL,  

                         compute_pi, (void*) i); 

    } 

    for (i=0; i<nthreads; ++i) { 

      pthread_join( thread_arr[i], NULL); 

    } 

    pi = 0; 

    for (i=0; i<nthreads; ++i) pi += resultarr[i]; 

  

    printf ("pi is approximately %.16f, Error is %.16f\n",  

                  pi, fabs(pi - PI25DT));  

 }  

int n=10000; 

double *resultarr; 

int nthreads; 

 

void *compute_pi(void *data) { 

  int i, j;  

  int myid = (int)(long)data; 

  double mypi, h, x, sum;  

 

  for (j=0; j<n; ++j) {  

    h   = 1.0 / (double) n;  

    sum = 0.0;  

    for (i = myid + 1; i <= n; i += nthreads) {  

      x = h * ((double)i - 0.5);  

      sum += (4.0 / (1.0 + x*x));  

    }  

    mypi = h * sum;  

  }  

  resultarr[myid] = mypi; 

} 



Additional comments on SMM 

 OpenMP would allow to implement this example much simpler (but 
has other issues) 

 Transparent shared memory has some issues in practice: 

 False sharing (e.g., resultarr[]) 

 Race conditions (complex mutual exclusion protocols) 

 Little tool support (debuggers need some work) 

 Achieving performance is harder than it seems! 
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Distributed Memory Machine Programming 

 Explicit communication between PEs 

 Message passing or channels 

 Only local memory access, no direct access to  
remote memory 

 No shared resources (well, the network) 

 

 Programming model: Message Passing (MPI, PVM) 

 Communication through messages or group operations (broadcast, 
reduce, etc.) 

 Synchronization through messages (sometimes unwanted side effect) or 
group operations (barrier) 

 Typically supports message matching and communication contexts 
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 Send specifies buffer to be transmitted 

 Recv specifies buffer to receive into 

 Implies copy operation between named PEs 

 Optional tag matching 

 Pair-wise synchronization (cf. happens before) 

DMM Example: Message Passing 
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Pr ocess  P Pr ocess  Q 

Addr ess  Y 

Addr ess  X 

Send  X, Q, t 

Receive  Y ,  P ,  t Match 

Local pr ocess 
addr ess space 

Local pr ocess 
addr ess space 

Source: John Mellor-Crummey 



DMM MPI Compute Pi Example 
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int main( int argc, char *argv[] )  {  

    // definitions 

    MPI_Init(&argc,&argv);  

    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);  

    MPI_Comm_rank(MPI_COMM_WORLD, &myid);  

 

    double t = -MPI_Wtime(); 

    for (j=0; j<n; ++j) {  

      h   = 1.0 / (double) n;  

      sum = 0.0;  

      for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5);  sum += (4.0 / (1.0 + x*x)); }  

      mypi = h * sum;  

      MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);  

    }  

    t+=MPI_Wtime(); 

 

    if (!myid) { 

      printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));  

      printf("time: %f\n", t); 

    } 

     

    MPI_Finalize();  

}  



DMM Example: PGAS 

 Partitioned Global Address Space 

 Shared memory emulation for DMM 

Usually non-coherent 

 “Distributed Shared Memory” 

Usually coherent 

 Simplifies shared access to distributed data 

 Has similar problems as SMM programming 

 Sometimes lacks performance transparency  

Local vs. remote accesses 

 Examples: 

 UPC, CAF, Titanium, X10, … 
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How to Tame the Beast? 

 How to program large machines? 

 No single approach, PMs are not converging yet 

 MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), … 

 Architectures converge  

 General purpose nodes connected by general purpose or specialized 
networks 

 Small scale often uses commodity networks 

 Specialized networks become necessary at scale 

 Even worse: accelerators (not covered in this class, yet) 
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Practical SMM Programming: Pthreads 
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Kernel 

User 

CPU 0 CPU 1 

Kernel 

User 

CPU 0 CPU 1 

User-level Threads Kernel-level Threads 

Covered in example, small set of functions for thread creation and management  



Practical SMM Programming: 

 Fork-join model 

 

 

 

 

 

 Types of constructs: 

Source: OpenMP.org 

Source: Blaise Barney, LLNL 

+ Tasks 



OpenMP General Code Structure 
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#include <omp.h> 

 

main ()  { 

int var1, var2, var3; 

// Serial code  

 

// Beginning of parallel section. Fork a team of threads. Specify variable scoping  

#pragma omp parallel private(var1, var2) shared(var3) 

{ 

// Parallel section executed by all threads  

// Other OpenMP directives 

// Run-time Library calls 

// All threads join master thread and disband  

}   

// Resume serial code  

} 

Source: Blaise Barney, LLNL 



Practical PGAS Programming: UPC 

 PGAS extension to the C99 language 

 

 

 

 

 

 

 Many helper library functions  

 Collective and remote allocation 

 Collective operations 

 Complex consistency model 
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Practical DMM Programming: MPI-1 

50 Collection of 1D address spaces 

Helper Functions 

many more 
(>600 total) 

Source: Blaise Barney, LLNL 



Complete Six Function MPI-1 Example 

51 

#include <mpi.h> 

 

int main(int argc, char **argv) { 

  int myrank, sbuf=23, rbuf=32; 

  MPI_Init(&argc, &argv); 

 

  /* Find out my identity in the default communicator */ 

  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

  if (myrank == 0) { 

    MPI_Send(&sbuf,      /* message buffer */ 

             1,                  /* one data item */ 

             MPI_INT,             /* data item is an integer */ 

             rank,                /* destination process rank */ 

             99,             /* user chosen message tag */ 

             MPI_COMM_WORLD);    /* default communicator */ 

  } else { 

    MPI_Recv(&rbuf,  MPI_DOUBLE,  0, 99, MPI_COMM_WORLD,  &status); 

    printf(“received: %i\n”, rbuf); 

  } 

 

  MPI_Finalize(); 

} 



MPI-2/3: Greatly enhanced functionality 

 Support for shared memory in SMM domains 

 

 

 Support for Remote Memory Access Programming 

 Direct use of RDMA 

 Essentially PGAS 

 

 Enhanced support for message passing communication 

 Scalable topologies  

 More nonblocking features 

 … many more 
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Accelerator example: CUDA 
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Hierarchy of Threads 

Complex Memory Model 

Simple Architecture 

Source: NVIDIA 



Accelerator example: CUDA 

54 

#define N 10 

int main( void ) { 

  int a[N], b[N], c[N]; 

  int *dev_a, *dev_b, *dev_c; 

  // allocate the memory on the GPU 

  cudaMalloc( (void**)&dev_a, N * sizeof(int) ); 

  cudaMalloc( (void**)&dev_b, N * sizeof(int) ); 

  cudaMalloc( (void**)&dev_c, N * sizeof(int) ); 

  // fill the arrays 'a' and 'b' on the CPU 

  for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i;  } 

  // copy the arrays 'a' and 'b' to the GPU 

  cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice );  

  cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice ); 

  add<<<N,1>>>( dev_a, dev_b, dev_c ); 

  // copy the array 'c' back from the GPU to the CPU 

  cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost ); 

  // free the memory allocated on the GPU 

  cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c ); 

} 

__global__ void add( int *a, int *b, int *c ) { 

  int tid = blockIdx.x; 

  // handle the data at this index 

  if (tid < N) 

    c[tid] = a[tid] + b[tid]; 

  } 

The Kernel 

Host Code 



OpenACC / OpenMP 4.0 

 Aims to simplify GPU programming 

 Compiler support 

 Annotations! 
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#define N 10 

int main( void ) { 

  int a[N], b[N], c[N]; 

#pragma acc kernels 

  for (int i = 0; i < N; ++i) 

    c[i] = a[i] + b[i]; 

} 



More programming models/frameworks 

 Not covered: 

 SMM:  Intel Cilk / Cilk Plus, Intel TBB, … 

 Directives: OpenHMPP, PVM, … 

 PGAS: Coarray Fortran (Fortran 2008), … 

 HPCS: IBM X10, Fortress, Chapel, … 

 Accelerator: OpenCL, C++AMP, … 

 This class will not describe any model in more detail! 

 There are too many and they will change quickly (only MPI made it >15 yrs) 

 No consensus, but fundamental questions remain: 

 Data movement 

 Synchronization 

 Memory Models 

 Algorithmics 

 Foundations 
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Goals of this lecture 

 Motivate you! 

 What is parallel computing? 

 And why do we need it? 

 What is high-performance computing? 

 What’s a Supercomputer and why do we care? 

 Basic overview of 

 Programming models 

Some examples 

 Architectures 

Some case-studies 

 Provide context for coming lectures 
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DPHPC Lecture 

 You will most likely not have access to the largest machines 

 But our desktop/laptop will be a “large machine” soon 

 HPC is often seen as “Formula 1” of computing (architecture experiments) 

 DPHPC will teach you concepts! 

 Enable to understand and use all parallel architectures 

 From a quad-core mobile phone to the largest machine on the planet! 

MCAPI vs. MPI – same concepts, different syntax 

 No particular language (but you should pick/learn one for your project!) 

Parallelism is the future: 
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DPHPC Overview 
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