
Design of Parallel and High-Performance
Computing
Fall 2013
Lecture: Introduction

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Goals of this lecture

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

2

Let us assume …

 … you were to build a machine like this …

 … we know how each part works

 There are just many of them!

 Question: How many calculations per second are needed to emulate a brain?
3

Source: wikipedia

4

Source: www.singularity.com Can we do this today?

5

Source: www.singularity.com Blue Waters, ~13 PF (2012)

Tianhe-2, ~55 PF (2013)

1 Exaflop! ~2022?

Human Brain – No Problem!

 … not so fast, we need to understand how to program those
machines …

6

Human Brain – No Problem!

7

Scooped!

Source: extremetech.com

Other problem areas: Scientific Computing

 Most natural sciences are simulation driven are moving towards
simulation
 Theoretical physics (solving the Schrödinger equation, QCD)
 Biology (Gene sequencing)
 Chemistry (Material science)
 Astronomy (Colliding black holes)
 Medicine (Protein folding for drug discovery)
 Meteorology (Storm/Tornado prediction)
 Geology (Oil reservoir management, oil exploration)
 and many more … (even Pringles uses HPC)

8

Other problem areas: Commercial Computing

 Databases, data mining, search
 Amazon, Facebook, Google

 Transaction processing
 Visa, Mastercard

 Decision support
 Stock markets, Wall Street, Military applications

 Parallelism in high-end systems and back-ends
 Often throughput-oriented
 Used equipment varies from COTS (Google) to high-end redundant

mainframes (banks)

9

Other problem areas: Industrial Computing

 Aeronautics (airflow, engine, structural mechanics,
electromagnetism)

 Automotive (crash, combustion, airflow)

 Computer-aided design (CAD)

 Pharmaceuticals (molecular modeling, protein folding, drug design)

 Petroleum (Reservoir analysis)

 Visualization (all of the above, movies, 3d)

10

What can faster computers do for us?

 Solving bigger problems than we could solve before!

 E.g., Gene sequencing and search, simulation of whole cells, mathematics
of the brain, …

 The size of the problem grows with the machine power

 Weak Scaling

 Solve small problems faster!

 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars,
weapons, …)

 The machine power grows with constant problem size

 Strong Scaling

11

High-Performance Computing (HPC)

 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

12

High-Performance Computing (HPC)

 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

 “A supercomputer is a computer at the frontline of contemporary processing
capacity--particularly speed of calculation.” (Wikipedia)

 Usually quite expensive ($s and kWh) and big (space)

 HPC is a quickly growing niche market

 Not all “supercomputers”, wide base

 Important enough for vendors to specialize

 Very important in research settings (up to 40% of university spending)

“Goodyear Puts the Rubber to the Road with High Performance Computing”

“High Performance Computing Helps Create New Treatment For Stroke Victims”

“Procter & Gamble: Supercomputers and the Secret Life of Coffee”

“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”

“Microsoft: Delivering High Performance Computing to the Masses”

 13

The Top500 List

 A benchmark, solve Ax=b

 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for computing centers, states, countries, nations,
continents 

 Politicized (sometimes good, sometimes bad)

 Yet, fun to watch

14

The Top500 List (June 2013)

15

Piz Daint @ CSCS

17

Blue Waters in 2009

This is why you need to understand
performance expectations well!

Imagine you’re designing a $500 M
supercomputer, and all you have is:

Blue Waters in 2012

History and Trends

20 Source: Jack Dongarra

Single GPU/MIC Card

High-Performance Computing grows quickly

 Computers are used to automate many tasks

 Still growing exponentially

 New uses discovered continuously

21

Source: The Economist

IDC, 2007: “The overall HPC server market grew
by 15.5 percent in 2007 to reach $11.6 billion […]
while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to $54.4”

IDC, 2009: “expects the HPC technical server
market to grow at a healthy 7% to 8% yearly
rate to reach revenues of $13.4 billion by 2015.”

“The non-HPC portion of the server market was
actually down 20.5 per cent, to $34.6bn”

How to increase the compute power?

22

4004
8008

8080

8085

8086

286 386
486

Pentium®
Processors

1

10

100

1000

10000

1970 1980 1990 2000 2010

P
o

w
e

r
D

e
n

si
ty

 (
W

/c
m

2)

Source: Intel

Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Clock Speed:

How to increase the compute power?

23

4004
8008

8080

8085

8086

286 386
486

Pentium®
Processors

1

10

100

1000

10000

1970 1980 1990 2000 2010

P
o

w
e

r
D

e
n

si
ty

 (
W

/c
m

2)

Source: Intel

Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Clock Speed:
Not an option anymore!

24

Source: Wikipedia

So how to invest the transistors?

 Architectural innovations
 Branch prediction, Tomasulo logic/rename register, speculative execution,

…

 Help only so much 

 What else?
 Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell

B.E., GPUs, MIC

 We call this “cores” these days

 Also, more intelligent devices or higher bandwidths (e.g., DMA controller,
intelligent NICs)

25

Source: IBM Source: NVIDIA Source: Intel

Towards the age of massive parallelism

 Everything goes parallel

 Desktop computers get more cores

2,4,8, soon dozens, hundreds?

 Supercomputers get more PEs (cores, nodes)

> 3 million today

> 50 million on the horizon

1 billion in a couple of years (after 2020)

 Parallel Computing is inevitable!

26

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
 A1 starts at T1, ends at T2; A2 starts at T3, ends at T4
 Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
 A1 is executed while A2 is running
 Usually requires separate resources!

Goals of this lecture

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

27

Granularity and Resources

28

 Activities

 Micro-code instruction

 Machine-code instruction
(complex or simple)

 Sequence of machine-code
instructions:

Blocks

Loops

Loop nests

Functions

Function sequences

 Parallel Resource

 Instruction-level parallelism

 Pipelining

 VLIW

 Superscalar

 SIMD operations

 Vector operations

 Instruction sequences

 Multiprocessors

 Multicores

 Multithreading

Resources and Programming

29

 Parallel Resource

 Instruction-level parallelism

 Pipelining

 VLIW

 Superscalar

 SIMD operations

 Vector operations

 Instruction sequences

 Multiprocessors

 Multicores

 Multithreading

 Programming

 Compiler

 (inline assembly)

 Hardware scheduling

 Compiler (inline assembly)

 Libraries

 Compilers (very limited)

 Expert programmers

 Parallel languages

 Parallel libraries

 Hints

Historic Architecture Examples

 Systolic Array

 Data-stream driven (data counters)

 Multiple streams for parallelism

 Specialized for applications (reconfigurable)

 Dataflow Architectures

 No program counter, execute instructions when all input arguments are
available

 Fine-grained, high overheads

Example: compute f = (a+b) * (c+d)

30

Source: ni.com

Source: isi.edu

Von Neumann Architecture

 Program counter  Inherently serial!
Retrospectively define parallelism in instructions and data

31

SISD
Standard Serial Computer

(nearly extinct)

SIMD
Vector Machines or Extensions

(very common)

MISD
Redundant Execution

(fault tolerance)

MIMD
Multicore

(ubiquituous)

Parallel Architectures 101

 … and mixtures of those

32

Today’s laptops Today’s servers

Yesterday’s clusters Today’s clusters

Programming Models

 Shared Memory Programming (SM/UMA)

 Shared address space

 Implicit communication

 Hardware for cache-coherent remote memory access

 Cache-coherent Non Uniform Memory Access (cc NUMA)

 (Partitioned) Global Address Space (PGAS)

 Remote Memory Access

 Remote vs. local memory (cf. ncc-NUMA)

 Distributed Memory Programming (DM)

 Explicit communication (typically messages)

 Message Passing

33

Shared Memory Machines

 Two historical architectures:

 “Mainframe” – all-to-all connection
between memory, I/O and PEs

Often used if PE is the most expensive part

Bandwidth scales with P

PE Cost scales with P, Question: what about network cost?

34

Source: IBM

Shared Memory Machines

 Two historical architectures:

 “Mainframe” – all-to-all connection
between memory, I/O and PEs

Often used if PE is the most expensive part

Bandwidth scales with P

PE Cost scales with P, Question: what about network cost?

Answer: Cost can be cut with multistage connections (butterfly)

 “Minicomputer” – bus-based connection
All traditional SMP systems

High latency, low bandwidth (cache isimportant)

Tricky to achieve highest performance (contention)

Low cost, extensible

35

Source: IBM

Shared Memory Machine Abstractions

 Any PE can access all memory

 Any I/O can access all memory (maybe limited)

 OS (resource management) can run on any PE

 Can run multiple threads in shared memory

 Used since 40+ years

 Communication through shared memory

 Load/store commands to memory controller

 Communication is implicit

 Requires coordination

 Coordination through shared memory

 Complex topic

 Memory models

36

Shared Memory Machine Programming

 Threads or processes

 Communication through memory

 Synchronization through memory or OS objects

 Lock/mutex (protect critical region)

 Semaphore (generalization of mutex (binary sem.))

 Barrier (synchronize a group of activities)

 Atomic Operations (CAS, Fetch-and-add)

 Transactional Memory (execute regions atomically)

 Practical Models:

 Posix threads

 MPI-3

 OpenMP

 Others: Java Threads, Qthreads, …

37

An SMM Example: Compute Pi

38

 Using Gregory-Leibnitz Series:

 Iterations of sum can be computed in parallel

 Needs to sum all contributions at the end

Source: mathworld.wolfram.com

Pthreads Compute Pi Example

39

int main(int argc, char *argv[])

{

 // definitions …

 thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t));

 resultarr= (double*)malloc(nthreads * sizeof(double));

 for (i=0; i<nthreads; ++i) {

 int ret = pthread_create(&thread_arr[i], NULL,

 compute_pi, (void*) i);

 }

 for (i=0; i<nthreads; ++i) {

 pthread_join(thread_arr[i], NULL);

 }

 pi = 0;

 for (i=0; i<nthreads; ++i) pi += resultarr[i];

 printf ("pi is approximately %.16f, Error is %.16f\n",

 pi, fabs(pi - PI25DT));

 }

int n=10000;

double *resultarr;

int nthreads;

void *compute_pi(void *data) {

 int i, j;

 int myid = (int)(long)data;

 double mypi, h, x, sum;

 for (j=0; j<n; ++j) {

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i += nthreads) {

 x = h * ((double)i - 0.5);

 sum += (4.0 / (1.0 + x*x));

 }

 mypi = h * sum;

 }

 resultarr[myid] = mypi;

}

Additional comments on SMM

 OpenMP would allow to implement this example much simpler (but
has other issues)

 Transparent shared memory has some issues in practice:

 False sharing (e.g., resultarr[])

 Race conditions (complex mutual exclusion protocols)

 Little tool support (debuggers need some work)

 Achieving performance is harder than it seems!

40

Distributed Memory Machine Programming

 Explicit communication between PEs

 Message passing or channels

 Only local memory access, no direct access to
remote memory

 No shared resources (well, the network)

 Programming model: Message Passing (MPI, PVM)

 Communication through messages or group operations (broadcast,
reduce, etc.)

 Synchronization through messages (sometimes unwanted side effect) or
group operations (barrier)

 Typically supports message matching and communication contexts

41

 Send specifies buffer to be transmitted

 Recv specifies buffer to receive into

 Implies copy operation between named PEs

 Optional tag matching

 Pair-wise synchronization (cf. happens before)

DMM Example: Message Passing

42

Pr ocess P Pr ocess Q

Addr ess Y

Addr ess X

Send X, Q, t

Receive Y , P , t Match

Local pr ocess
addr ess space

Local pr ocess
addr ess space

Source: John Mellor-Crummey

DMM MPI Compute Pi Example

43

int main(int argc, char *argv[]) {

 // definitions

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 double t = -MPI_Wtime();

 for (j=0; j<n; ++j) {

 h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }

 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 }

 t+=MPI_Wtime();

 if (!myid) {

 printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));

 printf("time: %f\n", t);

 }

 MPI_Finalize();

}

DMM Example: PGAS

 Partitioned Global Address Space

 Shared memory emulation for DMM

Usually non-coherent

 “Distributed Shared Memory”

Usually coherent

 Simplifies shared access to distributed data

 Has similar problems as SMM programming

 Sometimes lacks performance transparency

Local vs. remote accesses

 Examples:

 UPC, CAF, Titanium, X10, …

44

How to Tame the Beast?

 How to program large machines?

 No single approach, PMs are not converging yet

 MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), …

 Architectures converge

 General purpose nodes connected by general purpose or specialized
networks

 Small scale often uses commodity networks

 Specialized networks become necessary at scale

 Even worse: accelerators (not covered in this class, yet)

45

Practical SMM Programming: Pthreads

46

Kernel

User

CPU 0 CPU 1

Kernel

User

CPU 0 CPU 1

User-level Threads Kernel-level Threads

Covered in example, small set of functions for thread creation and management

Practical SMM Programming:

 Fork-join model

 Types of constructs:

Source: OpenMP.org

Source: Blaise Barney, LLNL

+ Tasks

OpenMP General Code Structure

48

#include <omp.h>

main () {

int var1, var2, var3;

// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband

}

// Resume serial code

}

Source: Blaise Barney, LLNL

Practical PGAS Programming: UPC

 PGAS extension to the C99 language

 Many helper library functions

 Collective and remote allocation

 Collective operations

 Complex consistency model

49

Practical DMM Programming: MPI-1

50 Collection of 1D address spaces

Helper Functions

many more
(>600 total)

Source: Blaise Barney, LLNL

Complete Six Function MPI-1 Example

51

#include <mpi.h>

int main(int argc, char **argv) {

 int myrank, sbuf=23, rbuf=32;

 MPI_Init(&argc, &argv);

 /* Find out my identity in the default communicator */

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 if (myrank == 0) {

 MPI_Send(&sbuf, /* message buffer */

 1, /* one data item */

 MPI_INT, /* data item is an integer */

 rank, /* destination process rank */

 99, /* user chosen message tag */

 MPI_COMM_WORLD); /* default communicator */

 } else {

 MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);

 printf(“received: %i\n”, rbuf);

 }

 MPI_Finalize();

}

MPI-2/3: Greatly enhanced functionality

 Support for shared memory in SMM domains

 Support for Remote Memory Access Programming

 Direct use of RDMA

 Essentially PGAS

 Enhanced support for message passing communication

 Scalable topologies

 More nonblocking features

 … many more

52

Accelerator example: CUDA

53

Hierarchy of Threads

Complex Memory Model

Simple Architecture

Source: NVIDIA

Accelerator example: CUDA

54

#define N 10

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 cudaMalloc((void**)&dev_a, N * sizeof(int));

 cudaMalloc((void**)&dev_b, N * sizeof(int));

 cudaMalloc((void**)&dev_c, N * sizeof(int));

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i; }

 // copy the arrays 'a' and 'b' to the GPU

 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

 add<<<N,1>>>(dev_a, dev_b, dev_c);

 // copy the array 'c' back from the GPU to the CPU

 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

 // free the memory allocated on the GPU

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

}

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x;

 // handle the data at this index

 if (tid < N)

 c[tid] = a[tid] + b[tid];

 }

The Kernel

Host Code

OpenACC / OpenMP 4.0

 Aims to simplify GPU programming

 Compiler support

 Annotations!

55

#define N 10

int main(void) {

 int a[N], b[N], c[N];

#pragma acc kernels

 for (int i = 0; i < N; ++i)

 c[i] = a[i] + b[i];

}

More programming models/frameworks

 Not covered:

 SMM: Intel Cilk / Cilk Plus, Intel TBB, …

 Directives: OpenHMPP, PVM, …

 PGAS: Coarray Fortran (Fortran 2008), …

 HPCS: IBM X10, Fortress, Chapel, …

 Accelerator: OpenCL, C++AMP, …

 This class will not describe any model in more detail!

 There are too many and they will change quickly (only MPI made it >15 yrs)

 No consensus, but fundamental questions remain:

 Data movement

 Synchronization

 Memory Models

 Algorithmics

 Foundations

56

Goals of this lecture

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

73

DPHPC Lecture

 You will most likely not have access to the largest machines

 But our desktop/laptop will be a “large machine” soon

 HPC is often seen as “Formula 1” of computing (architecture experiments)

 DPHPC will teach you concepts!

 Enable to understand and use all parallel architectures

 From a quad-core mobile phone to the largest machine on the planet!

MCAPI vs. MPI – same concepts, different syntax

 No particular language (but you should pick/learn one for your project!)

Parallelism is the future:

74

DPHPC Overview

75

