Design of Parallel and High-Performance

Computing
Fall 2013
Lecture: Introduction

Instructor: Torsten Hoefler & Markus Pischel
TA: Timo Schneider

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Goals of this lecture

= Motivate you!

= Whatis parallel computing?
= And why do we need it?

m Whatis high-performance computing?
= What’s a Supercomputer and why do we care?

m Basicoverview of
® Programming models
Some examples
= Architectures
Some case-studies

m Provide context for cominglectures

Let us assume ...

= .. youwere to build a machine like this ...

= ... we know how each part works
= There are just many of them!

Source: wikipedia

= Question: How many calculationsper second are needed to emulate a brain?

Exp ial Growth of Comp
Twentieth through twenty first century
109 - Logarithmic Plot
107
Science
107
5
10" 4 Computer
" Ml ot) - A 30, 207557 P18

g 10 4
>
5 1074
& 1o
°
s 2 All Human Brains.
§ 107 fremermeeen s ST RS,
(72}
3
g
2
k3
k]
3
]
o

10

1
2100

T T T T T T T T T
1900 1920 1940 1960 1980 ,p00 2020 2040 N60 2080

Source: www.singularity.com Year

Can we do this today?

Growth in
Supercomputer Power
21 Logarithmic Plot

Required for Human Brain Neural
Simulation for Uploading (2025) ——e=—

I B
S 10°.
o
g 1.
- 3 Required for Human Brain ~
£ 10°- Functional Simulation (2013) — 1 Exaflop! 2022?
3
o 15 =
£ 10 - Blue Gene/P MDGrape 3 b
] E
o 14 - ASCI Pumple §JBlue Genell. . ~l
g . EC R o Tianhe-2, ~55 PF (2013)
& 13 = Columbia
g 10 'ASCI White
12 ASCI Red ASCI Red Trendline
107 = Num.
= Wind Tunnel CP-PACS/2048 —O— Planned
10” 9 SR2201/1024
E 'Num. Wind Tunnel
10 = M-5/1024
10 nl 1 1 1 1 1 | 1 i)
1990 1995 2000 2005 2010 2015 2020 2025 2030
Doubling time = 1.2 years Year

Source: www.singularity.com

Blue Waters, ~13 PF (2012)

Human Brain — No Problem!

m ... notso fast, we need to understand how to program those
machines...

“|Researchers Simulate Mouse Brain on

Human Brain — No Problem!

Simulating 1 second of human brain activity
takes 82,944 processors

Ryan Whitwam 21 Comment

Scooped!

The brain is a deviously complex
biological computing device that even

the fastest supercomputers in the
“436 123 o 108 24 world fail to emulate. Well, that's not
entirely true anymore. Researchers at
the Okinawa Institute of Technology
Graduate University in Japan and
Forschungszentrum Jiilich in Germany have managed to simulate a single second of human
brain activity in a very, very powerful computer

fue (wiwee] | 2 R | [swe

Source: extremetech.com

Other problem areas: Scientific Computing

= Most natural sciences are simulation driven are moving towards
simulation
= Theoretical physics (solving the Schrodinger equation, QCD)
= Biology (Gene sequencing)
= Chemistry (Material science)
= Astronomy (Collidingblack holes)
= Medicine (Protein folding for drug discovery)
= Meteorology (Storm/Tornado prediction)
= Geology (Oil reservoir management, oil exploration)
= and many more ... (even Pringles uses HPC)

Other problem areas: Commercial Computing

m Databases, data mining, search
= Amazon, Facebook, Google

m Transaction processing
= Visa, Mastercard

m Decision support
= Stock markets, Wall Street, Military applications

m Parallelismin high-end systems and back-ends
= Often throughput-oriented

= Used equipment varies from COTS (Google) to high-end redundant
mainframes (banks)

Other problem areas: Industrial Computing

= Aeronautics (airflow, engine, structural mechanics,
electromagnetism)

= Automotive (crash, combustion, airflow)

m Computer-aided design (CAD)

m Pharmaceuticals (molecular modeling, protein folding, drug design)
m Petroleum (Reservoir analysis)

m Visualization (all of the above, movies, 3d)

What can faster computers do for us?

m Solving bigger problems than we could solve before!

= E.g., Gene sequencingand search, simulation of whole cells, mathematics
of the brain, ...

= The size of the problem grows with the machine power
-2 Weak Scaling

m Solve small problems faster!

= E.g., large (combinatorial)searches, mechanical simulations (aircrafts, cars,
weapons, ...)

= The machine power grows with constant problem size
- Strong Scaling

High-Performance Computing (HPC)

= a.k.a. “Supercomputing”

= Question: define “Supercomputer”!

High-Performance Computing (HPC)

= a.k.a. “Supercomputing”

= Question: define “Supercomputer”!

= “Asupercomputeris a computer at the frontline of contemporary processing
capacity--particularly speed of calculation.” (Wikipedia)

= Usually quite expensive ($s and kWh) and big (space)

m HPCis a quickly growing niche market

= Not all “supercomputers”, wide base

= Important enough for vendors to specialize

= Veryimportantin research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”
“Microsoft: Delivering High Performance Computing to the Masses”

The Top500 List

= A benchmark, solve Ax=b
= As fast as possible! - as big as possible ©
= Reflects some applications, not all, not even many
= Very good historic data!

m Speed comparison for computing centers, states, countries, nations,
continents ®
= Politicized (sometimes good, sometimes bad)
= Yet, fun to watch

The Top500 List (June 2013)

Rpeak Power

XC30 back in December 2012,

Rank Site System Cores (TFlopls) (TFlopls) (KW)
@ Vational University of Defense Technology Tianhe-2 (MilkyWay2) - THAVB-FEP Cluster, Intel 3120000 33862.7 549024 17808
China Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 3151P
NUDT
@ DOE/SCIOaK Ridge National Laboratory Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray 560640 175000 271125 8200
United States Gemini interconnect, NVIDIA K20x
Cray Inc
@ DOE/NNSALINL Sequoia - BlueGene/Q, Power BQC 16C 160 GHz, 1572864 171732 201327 7890
United States Custom
1BM
@ RIKEN Advanced Institute for K computer, SPARCE4. VIl 2.0GHz, Tofu 705024 105100 112804 12660
Computational Science (AICS) interconnect
Japan Fujitsu
@ DOE/SC/AMgonne National Laboratory Mira - BlusGene/Q, Power BQC 16C 1 60GHz, 766432 85866 100663 3945
United States Custom
1BM
@ Texas Atvanced Computing Center/Univ. of Stampede - PowerEdge C8220, Xeon E5-2680 8C 462462 51681 8520.1 4510
Texas 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
United States Dell
@ Forschungszentum Jusich (F2(@B Swss Scientifc Computing Center (CSCS) iz Daint - Cray XC30, Xean ES-2670 6C 2600GHz, 35840 6269 7455
Y Switzerland Ares interconnect
Cray nc
o DOE/NNSA/LLNL Ican - BlueGene/Q, Power BQC 16C 1 600GHz, 303216 42033 5033.2 1972
United States Custom Interconnect
1BM
@ ebniz Rechenzentrum SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 147456 28970 31851 3423
Germany 2.70GH2, Infiniband FDR
1BM 15
March 19, 2013
& 2 2 =
Swiss 'GPU Supercomputer' Will Be Fastest
Tiffany Trader = T
Y e you’re designing a $500 M
Page: 12 supercomputer, and all you have is:
— —
The NVIDIA GPU Technology Conference is in full-swing today in San Jose, Calif. The
annual event kicked off this morning with a keynote from NVIDIA CEO Jen-Hsun Huang,
who revealed that the Swiss National Supercomputing Center (CSCS) is building Europe's
fastest GPU-accelerated supercomputer, an extension of a Cray system that was
announced last year.
As Cray Vice President, Storage & Data Management Barry Bolding told HPCwire, this will
be the first Cray supercomputer equipped with Intel Xeon processors and NVIDA GPUs.
CSCS is part of ETH Zurich, one of the top universities in the world and the alma mater of This is why you need to understand
Albert Einstein. The supercomputing center installed phase one of its shiny new Cray 3

performance expectations well!

Blue Waters in 2012

History and Trends

162 PFlop/s
100 Pflop/s
17.6 PF
10 Pflop/s hagls
1 Pflop/s SUM
100 Tflop/s
=1
10 Tflop/s 76.5 TFlop/s
6-8 years
1 Tflop/s Single GPU/MIC Card
1.17 TFlop/s
100 Gflop/s My Laptop (70 Gflop/s
59.7 GFlop/s
10 Gflop/s
My iPad2 & iPhone 4s (1.02 Gflop/s)
1 Gflop/s
100 Mflop/s gl
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012

Source: Jack Dongarra 20

High-Performance Computing grows quickly

m Computers are used to automate many tasks

m Still growing exponentially SardonBraw b1
The | Whstwestwrong RS
Economist || setchineiitdon: bise
The EU woos Russia.

= New uses discovered continuously

The rightta eatcats and dogs.

' 'I'he data deluge

ANO HOW TO HANDLE I: A 14-PAGE SPECIAL REPORT

IDC, 2007: “The overall HPC server market grew
by 15.5 percent in 2007 to reach $11.6 billion [...]
while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to $54.4”

IDC, 2009: “expects the HPC technical server
market to grow at a healthy 7% to 8% yearly
rate to reach revenues of $13.4 billion by 2015

“The non-HPC portion of the server market was
actually down 20.5 per cent, to $34.6bn”

i £ s g

Source: The Economist

21

How to increase the compute power?

Clock Speed:
10000 - [Sur's Surface 2
¢
__ 1000
E Rocket Nozzle
2
z
100
z
]
o
4
5 10 3935 Hot Plate
H 20 008 80;5 Pentlum"
a 286 \ 86 Processors
R , ,
1 i
1970 1980 1990 2000 2010

Source: Intel®

How to increase the compute power?

Not an option anymore!

10000 - [Sur's Suriace 4

__1000 4
E Rocket Nozzle 6
§ /
S 100 Nuclear Reactor &4
2 <
2 /
g P
] 10 .—MOOS Y Hot Plate -
5 a0 3085 Q. e Pentium®
286 386 _yug6 Processors
lsol o i r i IQI i r i i i i 4 i i i i 4
1970 1980 1990 2000 2010

Source: Intel®

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16Core SPARCTS

oo
2,600,000,000 sucaeXon "ﬂ\.\l [R—
1,000,000,000 o, RS

000,000, oot S
AMD K109/ \Cae 7 (Quad)
FEES
100,000,000
onen
- ‘curve shows transistor
S 10,000,000 oount doubling evelry
3 two years
o
s
1%}
2 1,000,000
=
g
100,000
10,000-]
eos0. /' m.m
¥ avos

2,300 <00ie ‘Roa s

r u T T J
1971 1980 1990 2000 2011
Source: Wikipedia

Date of introduction 24

So how to invest the transistors?

m Architecturalinnovations
= Branch prediction, Tomasulo logic/rename register, speculative execution,

= Help only so much ®

= Whatelse?

= Simplificationis beneficial, less transistors per CPU, more CPUs, e.g., Cell
B.E., GPUs, MIC

= We call this “cores” these days

= Also, more intelligent devices or higher bandwidths (e.g., DMA controller,
intelligentNICs)

Source: IBM Source: NVIDIA Source: Intel

Towards the age of massive parallelism

m Everythinggoes parallel
= Desktop computers get more cores
2,4,8, soon dozens, hundreds?
= Supercomputers get more PEs (cores, nodes)
> 3 million today
> 50 million on the horizon
>1 billion in a couple of years (after 2020)

m Parallel Computingis inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
Al starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
Al is executed while A2 is running
Usually requires separate resources!

Goals of this lecture

= Motivate you!

= Whatis parallel computing?
= And why do we need it?

m Whatis high-performance computing?
= What's a Supercomputer and why do we care?

m Basicoverview of
= Programming models
Some examples
= Architectures
Some case-studies

m Provide context for cominglectures

Granularity and Resources

Activities Parallel Resource
= Micro-code instruction ® Instruction-level parallelism
= Pipelining
= VLW

= Superscalar

Resources and Programming

Parallel Resource Programming
= |nstruction-level parallelism = Compiler
= Pipelining = (inline assembly)
= VLW = Hardware scheduling

= Superscalar
= SIMD i

! S
ctol

= Libraries

Historic Architecture Examples TT T

00,] —

m SystolicArray
= Data-stream driven (data counters)
= Multiple streams for parallelism
= Specialized for applications (reconfigurable)

. v‘_lm Source: ni.com

m Dataflow Architectures
= No program counter, execute instructions when all input arguments are
available
((a + b) * (c + d))
abcd a b c d

= Fine-grained, high overheads
Example: compute f = (a+b) * (c+d)

Source: isi.edu

actor

30

Von Neumann Architecture

m Program counter = Inherentlyserial!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore
(fault tolerance) (ubiquituous)

Parallel Architectures 101

UMA

cache| cache. cache cache cache | cache

memory

Today’s laptops

Today’s servers

11,
{3

TOM RDMA

ord ol fod [e M EEER

. . . cache

cache cache cache cacho
- - @ - o

Yesterday’s clusters Today’s clusters

m ... and mixtures of those

Programming Models o 4 2 s
URONOR0

= Shared Memory Programming (SM/UMA)
= Shared address space
= |mplicit communication

UMA
= Hardware for cache-coherent remote memory access
= Cache-coherent Non Uniform Memory Access (cc NUMA) 1 2 3
m (Partitioned) Global Address Space (PGAS)
= Remote Memory Access | mefnory I
= Remote vs. local memory (cf. ncc-NUMA) rons

m Distributed Memory Programming (DM)
= Explicit communication (typically messages)
= Message Passing

LAt

Shared Memory Machines

m Two historical architectures:
= “Mainframe” — all-to-all connection
between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?

Source: 1BM

Shared Memory Machines

m Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?
Answer: Cost can be cut with multistage connections (butterfly)

Source: IBM

= “Minicomputer” — bus-based connection
All traditional SMP systems
High latency, low bandwidth (cache isimportant)
Tricky to achieve highest performance (contention)
Low cost, extensible

Shared Memory Machine Abstractions

0 1 2 3
m OS (resource management)can run on any PE

= Canrun multiplethreads in shared memory m

= Used since 40+ years UMA

= Any PE can access all memory
= Any /O can access all memory (maybe limited)

= Communication through shared memory
= Load/store commands to memory controller
= Communicationis implicit
= Requires coordination

m Coordination through shared memory

= Complex topic
= Memory models

Shared Memory Machine Programming
GRONUR(

UMA

m Threadsorprocesses
= Communicationthrough memory

= Synchronization through memory or OS objects
= Lock/mutex (protect critical region)
= Semaphore (generalization of mutex (binary sem.))
= Barrier (synchronize a group of activities)
= Atomic Operations (CAS, Fetch-and-add)
= Transactional Memory (execute regions atomically)

m Practical Models:
= Posix threads
= MPI-3
= OpenMP
= Others: Java Threads, Qthreads, ...

An SMM Example: Compute Pi

m Using Gregory-Leibnitz Series:
oo (=1
42 k=0 2R
= |terationsof sum can be computed in parallel
= Needs to sum all contributionsat the end

[’
w

LD 30 40 50"

Source: mathworld.wolfram.com

int main(intargc, char *argv[])

{

Pthreads Compute Pi Example

int n=10000;
double *resultarr;

// definitions ... int nthreads;

thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t));

resultarr= (double*)malloc(nthreads * sizeof(double)); void *compute_pi(void *data) {

inti, j;
int myid = (int)(long)data;

for (i=0; i<nthreads; ++i) { doubl ih
louble mypi, h, x, sum;

int ret = pthread_create(&thread_arr[i], NULL,
compute_pi, (void*)i);

} for (j=0; j<n; ++j){
for (i=0; i<nthreads; ++i) { h =1.0/(double)n;
sum =0.0;

pthread_join(thread_arr[i], NULL);
} for (i = myid + 1;i <= n; i += nthreads) {

x=h *((double)i- 0.5);
sum += (4.0 / (1.0 + x*x));
}

mypi=h * sum;

pi=0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("piis approximately %.16f, Erroris %.16f\n",

pi, fabs(pi- PI25DT)); }
resultarr[myid] = mypi;

}

Additional comments on SMM

= OpenMP would allow to implement this example much simpler (but
has otherissues)

m Transparentshared memory has some issuesin practice:
= False sharing (e.g., resultarr(])
= Race conditions(complex mutual exclusion protocols)
= Little tool support (debuggers need some work)

m Achieving performance is harder than it seems!

Distributed Memory Machine Programming

DM
m Programming model: Message Passing (MPI, PVM)

= Communicationthrough messages or group operations (broadcast,
reduce, etc.)

= Synchronization through messages (sometimes unwanted side effect) or
group operations (barrier)

m Explicit communication between PEs
= Message passing or channels

m Onlylocal memory access, no direct access to
remote memory
= No shared resources (well, the network)

= Typically supports message matching and communication contexts

DMM Example: Message Passing

Source: John Mellor-Crummey

Match Receive Yt P’

Send X, Q 't

Addess

Local pocess

Local pocess addess space

addess space

Process P Process Q

= Send specifies buffer to be transmitted

= Recv specifies buffer to receive into

= Implies copy operation between named PEs
= Optional tag matching

= Pair-wise synchronization (cf. happens before)

DMM MPI Compute Pi Example

int main(int argc, char *argv(]) {
// definitions
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double)n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i-0.5); sum +=(4.0/ (1.0 +x*x)); }
mypi=h *sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MP|_COMM_WORLD);
}
t+=MPI_Wtime();

if (Imyid) {
printf("piis approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPI_Finalize();

b

DMM Example: PGAS o | A 2] 2

m Partitioned Global Address Space
= Shared memory emulation for DMM melnory

Usually non-coherent
= “Distributed Shared Memory”
Usually coherent

PGAS

m Simplifiesshared access to distributed data
= Has similar problems as SMM programming
= Sometimes lacks performance transparency

Local vs. remote accesses

= Examples:
= UPC, CAF, Titanium, X10, ...

How to Tame the Beast?

= How to program large machines?

No single approach, PMs are not converging yet
= MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), ...

m Architectures converge

= General purpose nodes connected by general purpose or specialized
networks

= Small scale often uses commodity networks
= Specialized networks become necessary at scale

m Even worse: accelerators (not covered in this class, yet)

Practical SMM Programming: Pthreads

Covered in example, small set of functions for thread creation and management

S S
R EE::

Cuo @un euo Uy

Practical SMM Programming: OpenMP

Source: OpenMP.org
m Fork-join model
master threag LR - -
;.’ ,,,,, | 2 e ._.‘ e > threads ks
{hreads threads
3 &

parallel region parallel region parallel region

m Types of constructs:

I master thread l master thread l master thread
FORK FORK FORK
+ Tasks
%tsam ‘s Q‘IMM l lSI EI team
JOIN JOIN JOIN
I master thread l master thread l master thread Source: Blaise Barne

OpenMP General Code Structure

#include <omp.h>

main () {
intvarl,var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)
{
// Parallel section executed by all threads
// Other OpenMP directives
// Run-time Library calls
// All threads join master thread and disband
}

// Resume serial code

Source: Blaise Barney, LLNL
48

Practical PGAS Programming: UPC

m PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3

b
c[0], c[4],..

Shared

c[1], ¢[5],.. c[2], c[6],.. c[3], ¢[7].-

a a a
Private

= Many helper library functions
= Collectiveand remote allocation
= Collective operations

= Complexconsistency model

Practical DMM Programming: MPI-1

MPI_COMM_WORLD

Helper Functions
© (7]
. ° : POV OV 7”} v
\ \
" P o \ / / \) /
. L) uy
broadcast scatter
o oo groupt group2 © o
e © LS PVOY VoUW
\\ / \\ /
© e 0 © e
o © o © gather reduction
° o 0 1 2 3
00) ©,1) 0.2) ©3)
4 D 6 7
0\0‘ wo | an [as | ay many more
R S]|B[5] Gewototan
o 12 13 14 15
30) [E3)] 32) (33)

Collection of 1D address spaces

Source: Blaise Barney, LLNL

Complete Six Function MPI-1 Example

#include <mpi.h>

int main(int argc, char **argv) {
int myrank, sbuf=23, rbuf=32;
MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank ==0) {
MPI_Send(&sbuf, /* message buffer */
1, /* one data item */
MPI_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */
MPI_COMM_WORLD); /* default communicator */
}Yelse {
MPI_Recv(&rbuf, MPI_DOUBLE, 0,99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

MPI_Finalize();
}

MPI-2/3: Greatly enhanced functionality

] SupportforsharedmemoryinSMMdomains@ @ @ w @
[memory] [memory

09

UMA Uuma
0 1 2 3
m Supportfor Remote Memory Access Programming
= Direct use of RDMA
= Essentially PGAS I mefory
PGAS

= Enhanced support for message passing communication
= Scalabletopologies
= More nonblockingfeatures
® ...many more

L4

Accelerator example: CUDA

Hierarchy of Threads

Host Oevice.
@io1 Source: NVIDIA

vana]l B e
" ©o | oo Complex Memory Model
|
w0 GPU Grid
ftene = dpusteeneo P —
output(threadId] = y: Kend —,'—; 17 Block (0, 0) Block (1, 0)

(o o]

Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Simple Architecture
epler Bloc

8 SMX
1536 CUDA Cores

8 Geometry Units
4 Raster Units
128 Texture Units
32 ROP units
256-bit GDDRS

Accelerator example: CUDA

Host Code

#define N 10

int main(void) {
inta[N], b[N], c[N];
int *dev_a, *dev_b, *dev_c;

// allocate the memory on the GPU
cudaMalloc((void**)&dev_a, N * sizeof(int));
cudaMalloc((void**)&dev_b, N * sizeof(int));

The Kernel

__global__ void add(int *a, int *b, int *c) {
int tid = blockldx.x;
// handle the data at this index
if (tid < N)
c[tid] = a[tid] + b[tid];

cudaMalloc((void**)&dev_c, N * sizeof(int)); }
// fill the arrays 'a'and 'b' on the CPU
for (inti=0; i<N; i++) { a[i] = -i; b[i] =i *i; }

// copy thearrays ‘a'and 'b’ to the GPU

cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
add<<<N,1>>>(dev_a,dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy(¢, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

// free the memory allocated on the GPU

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

}

OpenACC / OpenMP 4.0

= Aims to simplify GPU programming

= Compilersupport
= Annotations!

#define N 10
int main(void) {
inta[N], b[N], c[N];
#pragma acc kernels
for (inti=0;i<N; ++i)
cfi] = a[i] +b[i];
}

More programming models/frameworks

= Notcovered:
= SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
= Directives: OpenHMPP, PVM, ...
= PGAS: Coarray Fortran (Fortran 2008), ...
= HPCS: IBM X10, Fortress, Chapel, ...
= Accelerator: OpenCL, C++AMP, ...

m This class will not describe any model in more detail!
= There are too many and they will change quickly (only MPI made it >15 yrs)

= No consensus, but fundamental questionsremain:
= Data movement
= Synchronization
= Memory Models
= Algorithmics
= Foundations

Goals of this lecture

= Motivate you!

= Whatis parallel computing?
= And why do we need it?

= Whatis high-performance computing?
= What's a Supercomputer and why do we care?

m Basicoverview of
= Programming models
Some examples
= Architectures
Some case-studies

m Provide contextfor coming lectures

DPHPC Lecture

= You will most likely not have access to the largest machines
= But our desktop/laptop will be a “large machine” soon
= HPC is often seen as “Formula 1” of computing (architecture experiments)

= DPHPC will teach you concepts!
®= Enableto understand and use all parallel architectures
®= From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI — same concepts, different syntax
= No particularlanguage (but you should pick/learn one for your project!)
Parallelism is the future:

WENEED TO FINISH YOUR YOU MIGHT NEED

PROGRAM TWICE AS FAST, TO TRALN HIM TELL ME AGATN
S0 TM ADDING A PERSON A LITTLE BEFORE] WHAT THE BIG
TO HELP YOU HES PRODUCTIVE GLOWING

H THING IS

S A et SCOTTROAVER SO COU

%3/-

DPHPC Overview

DPHPC
® locality parallelism
2 -
o
g -caches | vector ISA shared memory distributed memory
£ - memory hierarchy
2 \ cache coherency g
] I !
P | __memory | distributed
a " models ' algorithms
(&)
S locks group commu-
%) lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law |

I 1
& | memory 11 PRAM | LogP |
o) 1T 1T 1
g °-P

1/0O complexity

balance principles | balance principles Il
Little's Law scheduling

