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Project

Implement a parallel implementation of an AVL Tree which is as scalable as
possible in the timeframe of this semester.

• The tree will have the functions contains, insert, delete, succ and
pred.

• Show benchmarks of scalability
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Related work

• G. Bronson, Casper, Chafi and Olukotun: A Practical Concurrent Binary
Search Tree (2009)

• H. Kim, Cameron and Graham: Lock-Free Red-Black Trees Using CAS
(2011)

• Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming
(2008)
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• B. Wicht: Binary Trees Implementations Comparison for Multicore Pro-
gramming (2012)

• Adelson-Velskii, G.; E. M. Landis: An algorithm for the organization of
information (1962)
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Complexity in an AVL Tree

• find: O(log n) operations

• modify: O(1) operations

• rebalance: O(1) operations
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Idea

• contains (find): O(log n) operations

• insert (find + modify + rebalance): O(log n) operations

• remove (find + modify): O(log n) operations

Âť It seems that the most expensive operation is find, so lets optimize our
concurrent algorithm for that.
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Algorithm

• We want fast find

• We dont care that much about scalability of the others

Lets organize our algorithm so that the tree is always consistent for find, effectively
re-using the find algorithm for the sequential case. This operation is wait-free
without helping and scales very well.
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Rebalancing

• We need to always have a consistent tree

• For simplicity, I use a global lock on rebalancing. This can be improved
with using more fine-grained locking, but that is beyond the scope of this
project.

• The operation is based on only change pointers in the tree, which does
not invalidate any concurrent find operations.

• We need to allocate one node to maintain this.
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Results

Setup

• Using the provided 32 core machine

• c++ compiler flags: --std=c++11 -pthread -Wall

• Used gcc 4.7.2 to compile

• 20 runs for each benchmark

• Bronson tree implementation from B. Wicht
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Questions?


