
Fast Concurrent AVL Trees

Erik Henriksson

December 16th, 2013



Fast Concurrent AVL Trees

Outline
Project

Related work

Complexity in an AVL Tree

Idea

Algorithm
Rebalancing

Results

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 2/15



Fast Concurrent AVL Trees

Project

Implement a parallel implementation of an AVL Tree which is as scalable as
possible in the timeframe of this semester.

• The tree will have the functions contains, insert, delete, succ and
pred.

• Show benchmarks of scalability

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 3/15



Fast Concurrent AVL Trees

Related work

• G. Bronson, Casper, Chafi and Olukotun: A Practical Concurrent Binary
Search Tree (2009)

• H. Kim, Cameron and Graham: Lock-Free Red-Black Trees Using CAS
(2011)

• Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming
(2008)

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 4/15



Fast Concurrent AVL Trees

• B. Wicht: Binary Trees Implementations Comparison for Multicore Pro-
gramming (2012)

• Adelson-Velskii, G.; E. M. Landis: An algorithm for the organization of
information (1962)

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 5/15



Fast Concurrent AVL Trees

Complexity in an AVL Tree

• find: O(log n) operations

• modify: O(1) operations

• rebalance: O(1) operations

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 6/15



Fast Concurrent AVL Trees

Idea

• contains (find): O(log n) operations

• insert (find + modify + rebalance): O(log n) operations

• remove (find + modify): O(log n) operations

Âť It seems that the most expensive operation is find, so lets optimize our
concurrent algorithm for that.

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 7/15



Fast Concurrent AVL Trees

Algorithm

• We want fast find

• We dont care that much about scalability of the others

Lets organize our algorithm so that the tree is always consistent for find, effectively
re-using the find algorithm for the sequential case. This operation is wait-free
without helping and scales very well.

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 8/15



Fast Concurrent AVL Trees

Rebalancing

• We need to always have a consistent tree

• For simplicity, I use a global lock on rebalancing. This can be improved
with using more fine-grained locking, but that is beyond the scope of this
project.

• The operation is based on only change pointers in the tree, which does
not invalidate any concurrent find operations.

• We need to allocate one node to maintain this.

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 9/15



Fast Concurrent AVL Trees

Results

Setup

• Using the provided 32 core machine

• c++ compiler flags: --std=c++11 -pthread -Wall

• Used gcc 4.7.2 to compile

• 20 runs for each benchmark

• Bronson tree implementation from B. Wicht

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 10/15



Fast Concurrent AVL Trees

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 8 16 32

o
p
s
/m

s

Threads

Random range [1,200] 20% add, 10% remove, 70% contains

EH Tree
Bronson Tree

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 11/15



Fast Concurrent AVL Trees

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4 5 6 7

o
p
s
/m

s

Threads

Random range [1,2000] 20% add, 10% remove, 70% contains

EH Tree
Bronson Tree

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 12/15



Fast Concurrent AVL Trees

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 2 3 4 8 16 32

o
p
s
/m

s

Threads

Random range [1,20000] 20% add, 10% remove, 70% contains

EH Tree

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 13/15



Fast Concurrent AVL Trees

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 3 4 5 6 7

o
p
s
/m

s

Threads

Random range [1,2000] 50% add, 50% remove

EH Tree
Bronson Tree

Erik Henriksson | Design of Parallel and HP Computing, ETH Zurich 14/15



Questions?


