
Design of Parallel and High-Performance Computing

SPIKE Final Presentation

Otto Bibartiu
Mauro Calderara

Design of Parallel and High-Performance Computing

Solving the linear system

 Solve

x

=

bA =

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

Design of Parallel and High-Performance Computing

Solving the linear system

 Solve

x

=

bA =

 On a super computer

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

Design of Parallel and High-Performance Computing

General SPIKE

 For block tridiagonal matrices

A

=

x=? b

D2 B2C2

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi
=

x b=

=

?

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi

= =Wi

Vi

1

1

1

1

S x x b=

=

=

Di

D

? ?

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi

= =Wi

Vi

1

1

1

1

S x x b=

=

=

Di

D

Di Vi = Bi

=

Di Wi = Ci

= For the spikes:

? ?

Design of Parallel and High-Performance Computing

General SPIKE

=

D G b=

Di

=?
• + Calculate spikes

• + Solve DG=b for G

 Define G := S*x

Design of Parallel and High-Performance Computing

General SPIKE

=

D G b=

Di

=?
• + Calculate spikes

• + Solve DG=b for G

 Define G := S*x

Di Vi = Bi

=

Di Wi = Ci

= For the spikes:

Design of Parallel and High-Performance Computing

What’s the benefit?

Design of Parallel and High-Performance Computing

What’s the benefit?

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

=

1

1

1

1

 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

=

1

1

1

1

 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

↑ Preprocessing ↑
↓ Postprocessing ↓

D-ITET / IIS / Nano-TCAD

ONE SIDED MPI

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 To develop the Spike project we used mpich and openmpi.
 General approach:

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 For the Spike project we used mpich and openmpi.

General approach:

Time

Sequential Part

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Program has two parts
 Preprocess

Di Vi =

= Pre

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Program has two parts
 Preprocess + Postprocess

=

1

1
1

1

Di Vi =

=
Pre Post

Expansion to full

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Communication scheme
 One sided Communication.

MPI Communication

 Remote memory access (RMA) to the master ranks global
shared memory vie PUT and GET

 Master rank cannot trace back who accessed
 Use is not arbitrary, we need some collective calls to

organize communication (fences).

PUT GET

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication: Windows
 Every Rank in the Group has to create a Window.
 A Window denotes a piece of memory which is global for

the other ranks. (collective call)
 MPI_WIN win;

 MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication

 Each rank of the group can PUT memory into the window
of another rank.

 MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);

GET

 PUT

 Each rank of the group can GET (read) memory from the
window of another rank.

 MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication:

 ... are synchronizations call on windows.

 communication restriction

 PUT and GET are asynchronous, a fence waits until all

commutation on the window are finished

 can be customized with assert

Fences MPI_WIN_FENCE(assert, win)

D-ITET / IIS / Nano-TCAD

BENCHMARK RESULTS

Design of Parallel and High-Performance Computing

Strong scaling (not so strong for SPIKE)

Matrix:

size = 40’000

BW = 1’200

Design of Parallel and High-Performance Computing

More partitions → bigger sequential system

Design of Parallel and High-Performance Computing

Weak scaling is stronger

Matrix:

size = 80’000

BW = 2’500

D-ITET / IIS / Nano-TCAD

QUESTIONS?

Design of Parallel and High-Performance Computing

References and documents

 “A parallel hybrid banded system solver: the SPIKE
algorithm”, Polizz & Sameh, 2005 (idea is much older)

 intel SPIKE
 “MPI: A Message-Passing Interface Standard (v. 3.0)”, MPI

Forum

Design of Parallel and High-Performance Computing

Challenges

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

 It all has to run (fast) on the machines we have

Design of Parallel and High-Performance Computing

Some terminology and concepts

Design of Parallel and High-Performance Computing

Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

Design of Parallel and High-Performance Computing

Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

 Dense vs. Sparse Linear Algebra
 Dense:

 stores and operates on full matrices (incl. zeros)
 O(n^3)

 Sparse:
 stores and operates only on non-zero elements
 O(n) (in best case)

Design of Parallel and High-Performance Computing

What you should remember

 There’s this nice trick to parallelize linear system solving

 Parallelization virtually always incurs some extra cost

 There are parameters to tune, but picking them is chiefly
constrained by the structure of your matrix A and the
machine you want to run this on

