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Solving the linear system

 Solve 

x

=

bA =

 On a super computer

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh, 
even a Wikipedia article)
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General SPIKE

 For block tridiagonal matrices
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What’s the benefit?
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 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case
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1
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 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di    Vi  =  Bi

=
 Calculate spikes

 mutually independent → perfectly 
parallel solving

↑ Preprocessing ↑
↓ Postprocessing ↓
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MPI 3.0  One-Sided Communication
 For the Spike project we used mpich and openmpi. 

General approach: 

Time

Sequential Part
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MPI 3.0  One-Sided Communication
 Program has two parts
 Preprocess + Postprocess 

=
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Expansion to full
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MPI 3.0  One-Sided Communication
 Communication scheme
 One sided Communication.    

MPI Communication

 Remote memory access (RMA) to the master ranks global 
shared memory vie PUT and GET

 Master rank cannot trace back who accessed
 Use is not arbitrary, we need some collective calls to 

organize communication (fences).   

PUT GET
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MPI 3.0  One-Sided Communication: Windows
 Every Rank in the Group has to create a Window.
 A Window denotes a piece of memory which is global for 

the other ranks.  (collective call)
 MPI_WIN win;

 MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);
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MPI 3.0  One-Sided Communication

 Each rank of the group can PUT memory into the window 
of another rank. 

 MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp,               
target_count,  target_datatype, win);

GET

 PUT

 Each rank of the group can GET (read) memory from the 
window of another rank. 

 MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, 
target_count, target_datatype, win);
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MPI 3.0  One-Sided Communication:

 ... are synchronizations call on windows.

 communication restriction

 PUT and GET are asynchronous, a fence waits until all 

commutation on the window are finished

 can be customized with assert

Fences   MPI_WIN_FENCE(assert, win)
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BENCHMARK RESULTS
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Strong scaling (not so strong for SPIKE)

Matrix:

size = 40’000

BW = 1’200
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Weak scaling is stronger

Matrix:

size = 80’000

BW = 2’500
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QUESTIONS?
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References and documents

 “A parallel hybrid banded system solver: the SPIKE 
algorithm”, Polizz & Sameh, 2005 (idea is much older)

 intel SPIKE
 “MPI: A Message-Passing Interface Standard (v. 3.0)”, MPI 

Forum
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Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more 

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

 It all has to run (fast) on the machines we have
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Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

 Dense vs. Sparse Linear Algebra
 Dense: 

 stores and operates on full matrices (incl. zeros)
 O(n^3)

 Sparse:
 stores and operates only on non-zero elements
 O(n) (in best case)
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What you should remember

 There’s this nice trick to parallelize linear system solving

 Parallelization virtually always incurs some extra cost

 There are parameters to tune, but picking them is chiefly 
constrained by the structure of your matrix A and the 
machine you want to run this on


