Eddgentnsische Technische Hachschule Zurich
Swihia federal Institete of Technology Zerkch

onstiechmoogle

-

—

—
Departement inform
wnd b rotechs

SPIKE Final Presentation

Otto Bibartiu
Mauro Calderara

Design of Parallel and High-Performance Computing

Solving the linear system

= Solve A-#=50

= Previous Work: intel SPIKE, Pardiso, UMFPACK

= Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

| Design of Parallel and High-Performance Computing

Solving the linear system

Solve A-#=5b

On a super computer

Previous Work: intel SPIKE, Pardiso, UMFPACK

Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

| Design of Parallel and High-Performance Computing

General SPIKE

= For block tridiagonal matrices

Design of Parallel and High-Performance Computing

General SPIKE

= Rewrite A as A=D*S

[

Ci

Design of Parallel and High-Performance Computing

General SPIKE

= Rewrite A as A=D*S

|

Design of Parallel and High-Performance Computing

General SPIKE

Rewrite A as A=D*S

i
wll

For the spikes:

Design of Parallel and High-Performance Computing

ETH

Eddgentissische Technische Machschule Zirich
Swita federal Institete of Technology Zerkh

General SPIKE

= Define G := S*x

* + Calculate spikes

* + Solve DG=b for G

Design of Parallel and High-Performance Computing

General SPIKE

= Define G := S*x

* + Calculate spikes

* + Solve DG=b for G

= For the spikes:

Design of Parallel and High-Performance Computing

What'’s the benefit?

| Design of Parallel and High-Performance Computing

ETH

Eddgentisische Technische Machschule Zurich
Swita federal Institete of Technology Zerkh

What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

Design of Parallel and High-Performance Computing

What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

| Design of Parallel and High-Performance Computing

What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

| Design of Parallel and High-Performance Computing

What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

= Solve Sx=G

System as big as original one
Can be reduced (to p * 2b)

"l

| Design of Parallel and High-Performance Computing

What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

1 Preprocessing 1

| Postprocessing |

= Solve Sx=G

System as big as original one
Can be reduced (to p * 2b)

"l

| Design of Parallel and High-Performance Computing

ETH

Eudgentisische Technische Hachschule Zurich

Swits federal Institete of Technology 2 .

D-ITET / IS / Nano-TCAD

MPI 3.0 One-Sided Communication

= To develop the Spike project we used mpich and openmpi.
= General approach:

| Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication

= For the Spike project we used mpich and openmpi.
General approach:

Sequential Part

| Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication

= Program has two parts
= Preprocess

Rank 0

Rank 1

Rank 2

Rank n

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
= Program has two parts
= Preprocess + Postprocess

Rank 0

Rank 1

Rank 2

Rank n

Expansion to full

| Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication

= Communication scheme
= One sided Communication.

AN D
\ %

L/ Y

MPI Communication
Rank n Xn

Remote memory access (RMA) to the master ranks global
shared memory vie PUT and GET

Master rank cannot trace back who accessed

Use is not arbitrary, we need some collective calls to
organize communication (fences).

| Design of Parallel and High-Performance Computing

L

MPI 3.0 One-Sided Communication: Windows

Every Rank in the Group has to create a Window.

A Window denotes a piece of memory which is global for
the other ranks. (collective call)
MPI_WIN win;

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);

| Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
PUT

= Each rank of the group can PUT memory into the window

of another rank.
MPI_PUT (origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target datatype, win);

GET
Each rank of the group can GET (read) memory from the

window of another rank.
MPI_GET (origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);

| Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication:

Fences MPI_WIN_FENCE(assert, win)

... are synchronizations call on windows.
communication restriction

PUT and GET are asynchronous, a fence waits until all

commutation on the window are finished

can be customized with assert

| Design of Parallel and High-Performance Computing

ETH

Edgentisische Technische K hule Turic

Swita federal Institete of Technology Zerkh

D-ITET / IS / Nano-TCAD

ETH

Eddgentnsische Technische Hachschule Zurich
Swita federal Institete of Technology Zerkh

Strong scaling (not so strong for SPIKE)

Speedup SPIKE

Matrix:
size =40°000
BW = 1’200

" 12

Number of Partitions

Design of Parallel and High-Performance Computing

—
-
Eddgentissische Technische Machschule Zirich) ‘ afans
Deparlement infoemal castechao ogle
Swita federal Institete of Technology Zerkh

ETH =k

More partitions — bigger sequential system

Component runtime

® Expand System
Dist. Xr
= Solve reduced Sys.
m Dist. Gr
Dist. Spike
® Calculate G
= Caculate Spike

12

Number of Partitons

Design of Parallel and High-Performance Computing

ETH

Eddgentasische Technische Machschule Zirich
Swiia federal Institete of Technology Zerkh

Weak scaling is stronger

Weak scaling

.
i
:
2
§
g
3
;

8 10

Number of Partiticns

Design of Parallel and High-Performance Computing

Matrix:
size = 80°000
BW = 2’500

ETH

Eudgentisische Technische Hachschule Zurich

Swits federal Institete of Technology 2 .

D-ITET / IS / Nano-TCAD

References and documents

= “A parallel hybrid banded system solver: the SPIKE
algorithm”, Polizz & Sameh, 2005 (idea is much older)

intel SPIKE
“‘MPI: A Message-Passing Interface Standard (v. 3.0)", MPI

Forum

| Design of Parallel and High-Performance Computing

ETH

Eddgentissische Technische Machschule Zirich
Swihia federal Institete of Technology Zerich

Challenges

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms
Pick good sub-algorithms

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms
Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

| Design of Parallel and High-Performance Computing

A Technology Zerkh

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block

Requires solving a linear system (again)

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms
Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:
Use UMFPACK, Mumps, Pardiso, etc.

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms
Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again
Sequentially: Robust strategy but limited parallelism

| Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again
Sequentially: Robust strategy but limited parallelism

Recursively: Faster, more parallelism and more potential for optimization but more
complicated and bound to hit machine limits because of our thick spikes

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again
Sequentially: Robust strategy but limited parallelism

Recursively: Faster, more parallelism and more potential for optimization but more
complicated and bound to hit machine limits because of our thick spikes

Will use a combination of both

Design of Parallel and High-Performance Computing

Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again
Sequentially: Robust strategy but limited parallelism

Recursively: Faster, more parallelism and more potential for optimization but more
complicated and bound to hit machine limits because of our thick spikes

Will use a combination of both

= |t all has to run (fast) on the machines we have

Design of Parallel and High-Performance Computing

ETH

Eddgentnsische Technische Hachschule Zurich
Swita federal Institete of Technology Zerkh

Some terminology and concepts

Design of Parallel and High-Performance Computing

Some terminology and concepts

= Concurrency paradigms
Message Passing Interface (MPI):

split across CPUs and computers

Threads:

split across CPUs on one computer

Design of Parallel and High-Performance Computing

Some terminology and concepts

= Concurrency paradigms
Message Passing Interface (MPI):

split across CPUs and computers

Threads:

split across CPUs on one computer

= Dense vs. Sparse Linear Algebra

Dense:
stores and operates on full matrices (incl. zeros)
O(n"3)

Sparse:
stores and operates only on non-zero elements
O(n) (in best case)

Design of Parallel and High-Performance Computing

What you should remember

= There’s this nice trick to parallelize linear system solving
Parallelization virtually always incurs some extra cost

There are parameters to tune, but picking them is chiefly
constrained by the structure of your matrix A and the
machine you want to run this on

| Design of Parallel and High-Performance Computing

