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Solving the linear system

= Solve A-#=50

= Previous Work: intel SPIKE, Pardiso, UMFPACK

= Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)
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Solving the linear system

Solve A-#=5b

On a super computer

Previous Work: intel SPIKE, Pardiso, UMFPACK

Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)
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General SPIKE

= For block tridiagonal matrices
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General SPIKE

= Rewrite A as A=D*S
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General SPIKE

Rewrite A as A=D*S
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For the spikes:
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General SPIKE

= Define G := S*x

* + Calculate spikes

* + Solve DG=b for G
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General SPIKE

= Define G := S*x

* + Calculate spikes

* + Solve DG=b for G

= For the spikes:
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What'’s the benefit?
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= Calculate spikes

mutually independent — perfectly
parallel solving
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What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

= Solve Sx=G

System as big as original one
Can be reduced (to p * 2b)
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What'’s the benefit?

= Calculate spikes

mutually independent — perfectly
parallel solving

= Solve DG=b

mutually independent — perfectly parallel solving
completely independent from spike generation
most of RHS is zero anyway in our case

1 Preprocessing 1

| Postprocessing |

= Solve Sx=G

System as big as original one
Can be reduced (to p * 2b)
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MPI 3.0 One-Sided Communication

= To develop the Spike project we used mpich and openmpi.
= General approach:
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MPI 3.0 One-Sided Communication

= For the Spike project we used mpich and openmpi.
General approach:

Sequential Part
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MPI 3.0 One-Sided Communication

= Program has two parts
= Preprocess

Rank 0

Rank 1

Rank 2

Rank n
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MPI 3.0 One-Sided Communication
= Program has two parts
= Preprocess + Postprocess

Rank 0

Rank 1

Rank 2

Rank n

Expansion to full
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MPI 3.0 One-Sided Communication

= Communication scheme
= One sided Communication.

AN D
\ %

L/ Y

MPI Communication
Rank n Xn

Remote memory access (RMA) to the master ranks global
shared memory vie PUT and GET

Master rank cannot trace back who accessed

Use is not arbitrary, we need some collective calls to
organize communication (fences).
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MPI 3.0 One-Sided Communication: Windows

Every Rank in the Group has to create a Window.

A Window denotes a piece of memory which is global for
the other ranks. (collective call)
MPI_WIN win;

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);
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MPI 3.0 One-Sided Communication
PUT

= Each rank of the group can PUT memory into the window

of another rank.
MPI_PUT (origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target datatype, win);

GET
Each rank of the group can GET (read) memory from the

window of another rank.
MPI_GET (origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);
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MPI 3.0 One-Sided Communication:

Fences MPI_WIN_FENCE(assert, win)

... are synchronizations call on windows.
communication restriction

PUT and GET are asynchronous, a fence waits until all

commutation on the window are finished

can be customized with assert
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Strong scaling (not so strong for SPIKE)

Speedup SPIKE

Matrix:
size =40°000
BW = 1’200

" 12

Number of Partitions
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More partitions — bigger sequential system

Component runtime

® Expand System
Dist. Xr
= Solve reduced Sys.
m Dist. Gr
Dist. Spike
® Calculate G
= Caculate Spike

12

Number of Partitons
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Weak scaling is stronger

Weak scaling
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Number of Partiticns
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Matrix:
size = 80°000
BW = 2’500
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References and documents

= “A parallel hybrid banded system solver: the SPIKE
algorithm”, Polizz & Sameh, 2005 (idea is much older)

intel SPIKE
“‘MPI: A Message-Passing Interface Standard (v. 3.0)", MPI

Forum
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Challenges
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Challenges

= Generally: Spike is an algorithm of algorithms
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Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
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Challenges

= Generally: Spike is an algorithm of algorithms

Pick good sub-algorithms
Pick good parameters & strategies
Our bandwidth is comparably big

= Specifically: Getting the spikes of the middle block
Requires solving a linear system (again)
Strategies:

Use UMFPACK, Mumps, Pardiso, etc.
Same problems as above

Use SPIKE again
Sequentially: Robust strategy but limited parallelism

Recursively: Faster, more parallelism and more potential for optimization but more
complicated and bound to hit machine limits because of our thick spikes

Will use a combination of both

= |t all has to run (fast) on the machines we have
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Some terminology and concepts
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Some terminology and concepts

= Concurrency paradigms
Message Passing Interface (MPI):

split across CPUs and computers

Threads:

split across CPUs on one computer
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Some terminology and concepts

= Concurrency paradigms
Message Passing Interface (MPI):

split across CPUs and computers

Threads:

split across CPUs on one computer

= Dense vs. Sparse Linear Algebra

Dense:
stores and operates on full matrices (incl. zeros)
O(n"3)

Sparse:
stores and operates only on non-zero elements
O(n) (in best case)
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What you should remember

= There’s this nice trick to parallelize linear system solving
Parallelization virtually always incurs some extra cost

There are parameters to tune, but picking them is chiefly
constrained by the structure of your matrix A and the
machine you want to run this on
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