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Solving the linear system

 Solve 

x
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 On a super computer

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh, 
even a Wikipedia article)
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General SPIKE

 For block tridiagonal matrices
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What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

=

1

1

1

1

 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di    Vi  =  Bi

=
 Calculate spikes

 mutually independent → perfectly 
parallel solving

↑ Preprocessing ↑
↓ Postprocessing ↓
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MPI 3.0  One-Sided Communication
 For the Spike project we used mpich and openmpi. 

General approach: 

Time

Sequential Part
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MPI 3.0  One-Sided Communication
 Program has two parts
 Preprocess + Postprocess 
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MPI 3.0  One-Sided Communication
 Communication scheme
 One sided Communication.    

MPI Communication

 Remote memory access (RMA) to the master ranks global 
shared memory vie PUT and GET

 Master rank cannot trace back who accessed
 Use is not arbitrary, we need some collective calls to 

organize communication (fences).   

PUT GET
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MPI 3.0  One-Sided Communication: Windows
 Every Rank in the Group has to create a Window.
 A Window denotes a piece of memory which is global for 

the other ranks.  (collective call)
 MPI_WIN win;

 MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);
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MPI 3.0  One-Sided Communication

 Each rank of the group can PUT memory into the window 
of another rank. 

 MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp,               
target_count,  target_datatype, win);

GET

 PUT

 Each rank of the group can GET (read) memory from the 
window of another rank. 

 MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, 
target_count, target_datatype, win);
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MPI 3.0  One-Sided Communication:

 ... are synchronizations call on windows.

 communication restriction

 PUT and GET are asynchronous, a fence waits until all 

commutation on the window are finished

 can be customized with assert

Fences   MPI_WIN_FENCE(assert, win)
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BENCHMARK RESULTS
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Strong scaling (not so strong for SPIKE)

Matrix:

size = 40’000

BW = 1’200
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More partitions → bigger sequential system
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Weak scaling is stronger

Matrix:

size = 80’000

BW = 2’500
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QUESTIONS?
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References and documents

 “A parallel hybrid banded system solver: the SPIKE 
algorithm”, Polizz & Sameh, 2005 (idea is much older)

 intel SPIKE
 “MPI: A Message-Passing Interface Standard (v. 3.0)”, MPI 

Forum
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Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more 

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

 It all has to run (fast) on the machines we have
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Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

 Dense vs. Sparse Linear Algebra
 Dense: 

 stores and operates on full matrices (incl. zeros)
 O(n^3)

 Sparse:
 stores and operates only on non-zero elements
 O(n) (in best case)
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What you should remember

 There’s this nice trick to parallelize linear system solving

 Parallelization virtually always incurs some extra cost

 There are parameters to tune, but picking them is chiefly 
constrained by the structure of your matrix A and the 
machine you want to run this on


