
Design of Parallel and High-Performance Computing

SPIKE Final Presentation

Otto Bibartiu
Mauro Calderara

Design of Parallel and High-Performance Computing

Solving the linear system

 Solve

x

=

bA =

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

Design of Parallel and High-Performance Computing

Solving the linear system

 Solve

x

=

bA =

 On a super computer

N0’000

~ 500

 Previous Work: intel SPIKE, Pardiso, UMFPACK

 Algorithm well documented (papers by Polizzi & Sameh,
even a Wikipedia article)

Design of Parallel and High-Performance Computing

General SPIKE

 For block tridiagonal matrices

A

=

x=? b

D2 B2C2

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi
=

x b=

=

?

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi

= =Wi

Vi

1

1

1

1

S x x b=

=

=

Di

D

? ?

Design of Parallel and High-Performance Computing

General SPIKE

 Rewrite A as A=D*S

A

Di BiCi

= =Wi

Vi

1

1

1

1

S x x b=

=

=

Di

D

Di Vi = Bi

=

Di Wi = Ci

= For the spikes:

? ?

Design of Parallel and High-Performance Computing

General SPIKE

=

D G b=

Di

=?
• + Calculate spikes

• + Solve DG=b for G

 Define G := S*x

Design of Parallel and High-Performance Computing

General SPIKE

=

D G b=

Di

=?
• + Calculate spikes

• + Solve DG=b for G

 Define G := S*x

Di Vi = Bi

=

Di Wi = Ci

= For the spikes:

Design of Parallel and High-Performance Computing

What’s the benefit?

Design of Parallel and High-Performance Computing

What’s the benefit?

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

=

1

1

1

1

 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

Design of Parallel and High-Performance Computing

What’s the benefit?

=

 Solve DG=b
 mutually independent → perfectly parallel solving
 completely independent from spike generation
 most of RHS is zero anyway in our case

=

1

1

1

1

 Solve Sx=G
 System as big as original one
 Can be reduced (to p * 2b)

Di Vi = Bi

=
 Calculate spikes

 mutually independent → perfectly
parallel solving

↑ Preprocessing ↑
↓ Postprocessing ↓

D-ITET / IIS / Nano-TCAD

ONE SIDED MPI

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 To develop the Spike project we used mpich and openmpi.
 General approach:

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 For the Spike project we used mpich and openmpi.

General approach:

Time

Sequential Part

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Program has two parts
 Preprocess

Di Vi =

= Pre

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Program has two parts
 Preprocess + Postprocess

=

1

1
1

1

Di Vi =

=
Pre Post

Expansion to full

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication
 Communication scheme
 One sided Communication.

MPI Communication

 Remote memory access (RMA) to the master ranks global
shared memory vie PUT and GET

 Master rank cannot trace back who accessed
 Use is not arbitrary, we need some collective calls to

organize communication (fences).

PUT GET

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication: Windows
 Every Rank in the Group has to create a Window.
 A Window denotes a piece of memory which is global for

the other ranks. (collective call)
 MPI_WIN win;

 MPI_WIN_CREATE(base, size, disp_unit, info, comm, win);

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication

 Each rank of the group can PUT memory into the window
of another rank.

 MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);

GET

 PUT

 Each rank of the group can GET (read) memory from the
window of another rank.

 MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, win);

Design of Parallel and High-Performance Computing

MPI 3.0 One-Sided Communication:

 ... are synchronizations call on windows.

 communication restriction

 PUT and GET are asynchronous, a fence waits until all

commutation on the window are finished

 can be customized with assert

Fences MPI_WIN_FENCE(assert, win)

D-ITET / IIS / Nano-TCAD

BENCHMARK RESULTS

Design of Parallel and High-Performance Computing

Strong scaling (not so strong for SPIKE)

Matrix:

size = 40’000

BW = 1’200

Design of Parallel and High-Performance Computing

More partitions → bigger sequential system

Design of Parallel and High-Performance Computing

Weak scaling is stronger

Matrix:

size = 80’000

BW = 2’500

D-ITET / IIS / Nano-TCAD

QUESTIONS?

Design of Parallel and High-Performance Computing

References and documents

 “A parallel hybrid banded system solver: the SPIKE
algorithm”, Polizz & Sameh, 2005 (idea is much older)

 intel SPIKE
 “MPI: A Message-Passing Interface Standard (v. 3.0)”, MPI

Forum

Design of Parallel and High-Performance Computing

Challenges

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

Design of Parallel and High-Performance Computing

Challenges

 Generally: Spike is an algorithm of algorithms
 Pick good sub-algorithms
 Pick good parameters & strategies
 Our bandwidth is comparably big

 Specifically: Getting the spikes of the middle block
 Requires solving a linear system (again)
 Strategies:

 Use UMFPACK, Mumps, Pardiso, etc.
 Same problems as above

 Use SPIKE again
 Sequentially: Robust strategy but limited parallelism
 Recursively: Faster, more parallelism and more potential for optimization but more

complicated and bound to hit machine limits because of our thick spikes
 Will use a combination of both

 It all has to run (fast) on the machines we have

Design of Parallel and High-Performance Computing

Some terminology and concepts

Design of Parallel and High-Performance Computing

Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

Design of Parallel and High-Performance Computing

Some terminology and concepts

 Concurrency paradigms
 Message Passing Interface (MPI):

 split across CPUs and computers
 Threads:

 split across CPUs on one computer

 Dense vs. Sparse Linear Algebra
 Dense:

 stores and operates on full matrices (incl. zeros)
 O(n^3)

 Sparse:
 stores and operates only on non-zero elements
 O(n) (in best case)

Design of Parallel and High-Performance Computing

What you should remember

 There’s this nice trick to parallelize linear system solving

 Parallelization virtually always incurs some extra cost

 There are parameters to tune, but picking them is chiefly
constrained by the structure of your matrix A and the
machine you want to run this on

