
Parallel A* pathfinding algorithm

Giuseppe Accaputo
Pascal Iselin

December 16, 2013



Parallel A* pathfinding algorithm

Overview

I Goal

I Literature Review

I Approaches

I Results



Parallel A* pathfinding algorithm

Goal

Our Goals were

I Implement a correct parallel A* algorithm

I Make it faster than the serial version



Parallel A* pathfinding algorithm

Goal

Our Goals were

I Implement a correct parallel A* algorithm X

I Make it faster than the serial version



Parallel A* pathfinding algorithm

Goal

Our Goals were

I Implement a correct parallel A* algorithm X

I Make it faster than the serial version X



Parallel A* pathfinding algorithm

A* Shortest Path

Best first heuristic search

f(n) = g(n)︸︷︷︸
exact cost

+ h(n)︸︷︷︸
estimated cost



Parallel A* pathfinding algorithm

Literature Review

Parallel A* in the literature

I Shared Priority Queue: Threads produce and consume
simultaneously. Does not perform well!
[Cohen et al., 2010]

I Bidirectional Search: Run two searches. Does not scale!
[Rios, Luis Henrique Oliveira, and Luiz Chaimowicz. PNBA*:
A Parallel Bidirectional Heuristic Search Algorithm.]

I Sacrifice path quality for speed: Converge towards other
algorithms
[Sandy Brand, and Rafael Bidarra. Multicore scalable and
efficient pathfinding with Parallel Ripple Search. Comp.
Anim. Virtual Worlds 23.2 (2012)]

I Clustering: Too complicated
[Rafia, Inam. A* Algorithm for Multicore Graphics Processors.
(2010).]



Parallel A* pathfinding algorithm

Approaches

Ideas we implemented

I Concurrent Neighbor Expansion

I Shared Priority Queue

I Atomic ClosedFlags + Shared JobQueue

Same underlying datastructure for all the Implementations.
SquareLattice filled with Objects of Type MapNode



Parallel A* pathfinding algorithm

Approaches

Concurrent Neighbor Expansion

Concurrent calculation of the neighbors in each step. This does
not scale but it’s easy!



Parallel A* pathfinding algorithm

Approaches

Shared Priority Queue

I concurrent priority queue (CPQ) from Intel’s Thread Building
Blocks (TBB)

I CPQ does not allow rebalancing
I Recursive call of the search function with a counter
I One lock per node



Parallel A* pathfinding algorithm

Approaches

Atomic ClosedFlags + Shared JobQueue

I Run serial A* until we have enough open nodes
I Run a new A* in parallel on each of the open nodes
I Each thread has its own priority queue
I Threads communicate through a shared grid of closed flags
I Use atomic CAS to set the flags



Parallel A* pathfinding algorithm

Approaches

Atomic ClosedFlags + Shared JobQueue

I Run serial A* until we have enough open nodes

I Run a new A* in parallel on each of the open nodes

I Each thread has it’s own priority queue

I Threads communicate through a shared grid of closed flags

I Use atomic CAS to set the flags

I How to make sure threads don’t just terminate? → Shared
JobQueue

I How to guarantee the shortest path?



Parallel A* pathfinding algorithm

Approaches

How to guarantee the shortest path?



Parallel A* pathfinding algorithm

Approaches

How to guarantee the shortest path?



Parallel A* pathfinding algorithm

Approaches

How to guarantee the shortest path?

Just take the green path... NO! That would be fringe search!



Parallel A* pathfinding algorithm

Results

Test setup
I Tested on Kanifushi

(32 Cores Intel Xeon E7-4830 @ 2.13Ghz)
I Compiled with GCC 4.7 and TBB 3.0
I 10 runs per test case
I 90% of random map was walkable



Parallel A* pathfinding algorithm

Results

0

2

4

6

8

10

12

14

Size of square lattice

Serial A* vs. Boost A* run time (Random Map)
E

x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

 

 

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000

Boost A*

Serial A*



Parallel A* pathfinding algorithm

Results

0

5

10

15

20

25

Size of square lattice

Serial A* vs. Boost A* run time (Wall map)
E

x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

 

 

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000

Boost A*

Serial A*



Parallel A* pathfinding algorithm

Results

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Size of square lattice

Serial A* vs. Parallel Neighbor Expanding A* run time (Random map)
E

x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

 

 

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000

Parallel Neighbor Expanding A*

Serial A*



Parallel A* pathfinding algorithm

Results

−1

0

1

2

3

4

5

6

7

8

9

Size of square lattice

Serial A* vs. Parallel Neighbor Expanding A* run time (Wall map)
E

x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

 

 

N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000

Parallel Neighbor Expanding A*

Serial A*



Parallel A* pathfinding algorithm

Results

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of threads

Serial A* vs. Parallel A* run time (Random map)
E

x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Parallel A*

Serial A*



Parallel A* pathfinding algorithm

Results

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of threads

Serial A* vs. Parallel A* run time (Wall map)
E

x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Parallel A*

Serial A*



Parallel A* pathfinding algorithm

Results

0

0.5

1

1.5

2

2.5

3

Number of threads

Parallel Neighbor Expanding A* vs. Parallel A* run time (Random map, N=1000)
E

x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Parallel A*

Parallel Neighbor Expanding A*



Parallel A* pathfinding algorithm

Results

0

1

2

3

4

5

6

7

Number of threads

Parallel Neighbor Expanding A* vs. Parallel A* run time (Wall map, N=1000)
E

x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Parallel A*

Parallel Neighbor Expanding A*



Parallel A* pathfinding algorithm

Results

Conclusions

I We comply with the literature!

I One must sacrifice path quality for speed
I There are much better alternatives out there:

I Ripple Search [Brand et al., 2012 ]
I Fringe Search


	Goal
	Goal
	Goal
	A* Shortest Path
	Literature Review
	Approaches
	Results

