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A* Shortest Path

Best first heuristic search

f(n) = g(n)︸︷︷︸
exact cost

+ h(n)︸︷︷︸
estimated cost
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Literature Review

Parallel A* in the literature

I Shared Priority Queue: Threads produce and consume
simultaneously. Does not perform well!
[Cohen et al., 2010]

I Bidirectional Search: Run two searches. Does not scale!
[Rios, Luis Henrique Oliveira, and Luiz Chaimowicz. PNBA*:
A Parallel Bidirectional Heuristic Search Algorithm.]

I Sacrifice path quality for speed: Converge towards other
algorithms
[Sandy Brand, and Rafael Bidarra. Multicore scalable and
efficient pathfinding with Parallel Ripple Search. Comp.
Anim. Virtual Worlds 23.2 (2012)]

I Clustering: Too complicated
[Rafia, Inam. A* Algorithm for Multicore Graphics Processors.
(2010).]
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Approaches

Ideas we implemented

I Concurrent Neighbor Expansion

I Shared Priority Queue

I Atomic ClosedFlags + Shared JobQueue

Same underlying datastructure for all the Implementations.
SquareLattice filled with Objects of Type MapNode
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Concurrent Neighbor Expansion

Concurrent calculation of the neighbors in each step. This does
not scale but it’s easy!
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Approaches

Shared Priority Queue

I concurrent priority queue (CPQ) from Intel’s Thread Building
Blocks (TBB)

I CPQ does not allow rebalancing
I Recursive call of the search function with a counter
I One lock per node
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Approaches

Atomic ClosedFlags + Shared JobQueue

I Run serial A* until we have enough open nodes
I Run a new A* in parallel on each of the open nodes
I Each thread has its own priority queue
I Threads communicate through a shared grid of closed flags
I Use atomic CAS to set the flags
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Approaches

Atomic ClosedFlags + Shared JobQueue

I Run serial A* until we have enough open nodes

I Run a new A* in parallel on each of the open nodes

I Each thread has it’s own priority queue

I Threads communicate through a shared grid of closed flags

I Use atomic CAS to set the flags

I How to make sure threads don’t just terminate? → Shared
JobQueue

I How to guarantee the shortest path?
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Approaches

How to guarantee the shortest path?

Just take the green path... NO! That would be fringe search!
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Results

Test setup
I Tested on Kanifushi

(32 Cores Intel Xeon E7-4830 @ 2.13Ghz)
I Compiled with GCC 4.7 and TBB 3.0
I 10 runs per test case
I 90% of random map was walkable
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Results

Conclusions

I We comply with the literature!

I One must sacrifice path quality for speed
I There are much better alternatives out there:

I Ripple Search [Brand et al., 2012 ]
I Fringe Search
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