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Goal

* Pick a concurrent data structure:
Skiplist
— Apply the techniques from the lectures

— Get a better understanding of
concurrency

— Write a parallel implementation that
scales well



Recap - Skiplists
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Related Work

A Simple Optimistic Skiplist Algorithm
by Y.Lev et al.
— Fine-grained locking

* A lock-free concurrent skiplist with
walt-free contains operator by M.
Herliny et al.



Outlook: What we did

Solved the deadlock!
Lock-free implementation
Lock-based with backoff

Experiments



Recap - Lock-based




Recap - Lock-based
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Recap - Lock-based
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Lock-based with backoff
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Lock-based with backoff

* Use exponential backoff
—Try to lock the node
— Sleep if unsuccessful

— Increase sleep time if repeatedly
unsuccessful



Lock-free
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Lock-free

e Each level can be seen as a lock-free
linked list

* Differences to lock-based skiplist

— Skiplist property doesn’t (necessarily)
hold during execution

— Helper method removes marked nodes



Testing

— Skiplist has to be still sorted

— Skiplist does not contain duplicates

— Skiplist property holds

— #of elements = #of inserts - #of
deletes




Testing - Linearizability

* Lock-based setting only
* Linearization points (l.p.) are explicit
— Every thread logs its |.p.

— Merge all logs and sort them by time
— Execute the logs sequentially

* Placing l.p. for unsuccessful
operations hard



Experimental Setup

 Kanifushi: 32-cores

 Benchmarks:
— Fixed number of operations per thread
— Fixed range of numbers

— Fixed percentage of insertions, deletions and
finds

— Compare lock-based, lock-based with backoff,
lock-free and sequential to
ConcurrentSkipListSet (Java)



Results
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Conclusion

* Backoff did not help as much as we
thought

« Compared to Java built-in, we're
doing good

* Input is artificial



Conclusion

e What did we learn?

— Parallel programming is hard
* Deadlocks are introduced fast

— Better understanding of Java
Concurrency, Linearizability, ...



Questions?
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