Concurrent Skiplists

Final Presentation

Christine Zeller
Karolos Antoniadis



Goal

* Pick a concurrent data structure:
Skiplist
— Apply the techniques from the lectures

— Get a better understanding of
concurrency

— Write a parallel implementation that
scales well



Recap - Skiplists

f > 5 12 > 25 28 > +inf
insert
find - O(log n) in Expectation
delete



Related Work

A Simple Optimistic Skiplist Algorithm
by Y.Lev et al.
— Fine-grained locking

* A lock-free concurrent skiplist with
walt-free contains operator by M.
Herliny et al.



Outlook: What we did

Solved the deadlock!
Lock-free implementation
Lock-based with backoff

Experiments



Recap - Lock-based




Recap - Lock-based

,_5 :'15'JJ — 25

» 28




Recap - Lock-based

\ 48\
N —— A :

—h/r

-inffyY=—>_5 ('1 - > ) » 28 —> +in

oS



Lock-based with backoff

A
[
= ~

-inf f=——{_5 /,19 0 ) » 28 —> +inf

oo

—h/r




Lock-based with backoff

* Use exponential backoff
—Try to lock the node
— Sleep if unsuccessful

— Increase sleep time if repeatedly
unsuccessful



Lock-free

RN

-inf

> 5 1,12 =X
CA

[
—l

—| 25 —1 28
7
[

» +inf




Lock-free

e Each level can be seen as a lock-free
linked list

* Differences to lock-based skiplist

— Skiplist property doesn’t (necessarily)
hold during execution

— Helper method removes marked nodes



Testing

— Skiplist has to be still sorted

— Skiplist does not contain duplicates

— Skiplist property holds

— #of elements = #of inserts - #of
deletes




Testing - Linearizability

* Lock-based setting only
* Linearization points (l.p.) are explicit
— Every thread logs its |.p.

— Merge all logs and sort them by time
— Execute the logs sequentially

* Placing l.p. for unsuccessful
operations hard



Experimental Setup

 Kanifushi: 32-cores

 Benchmarks:
— Fixed number of operations per thread
— Fixed range of numbers

— Fixed percentage of insertions, deletions and
finds

— Compare lock-based, lock-based with backoff,
lock-free and sequential to
ConcurrentSkipListSet (Java)



Results

Throughput [op/ms]

2000
1500
—@&— Java Built-in
1000 —&—— |B-With-Backoff
—— lock-Based
* Lock-Free
—#— Sequential
500
&
0 I I I I I I I
1 2 4 8 16 32 64

Threads

9% insertions, 1% deletions, 90% finds
Range: 2'000'000 numbers, 1'000'000 operations




Results

Throughput [op/ms]

2400

2200

2000

1800 —

1600

1400

—&— Java Built-in
——&—— |B-With-Backoff
—#— lock-Based

* Lock-Free
—#— Sequential

1200

1000 —

800

600 —

400

200

1 2 4 8 16 32 64
Threads

20% insertions, 10% deletions, 70% finds
Range: 2'000'000 numbers, 1'000'000 operations




Results

Throughput [op/ms]

2000
1800
1600
1400
1200
—@®— Java Built-in
1000 ——&—— |B-With-Backoff
—— Lock-Based
* Lock-Free
800 — —#— Sequential
600 —
400 — *
s
200 -
0 I I I I I I I
1 2 4 8 16 32 64

Threads

50% insertions, 50% deletions, 0% finds
Range: 200°000 numbers, 1'000°000 operations




Conclusion

* Backoff did not help as much as we
thought

« Compared to Java built-in, we're
doing good

* Input is artificial



Conclusion

e What did we learn?

— Parallel programming is hard
* Deadlocks are introduced fast

— Better understanding of Java
Concurrency, Linearizability, ...



Questions?



	Concurrent Skiplists
	Slide 2
	Recap - Skiplists
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 19
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Questions?

