
Concurrent Skiplists

Final Presentation
Christine Zeller

Karolos Antoniadis



Goal

• Pick a concurrent data structure: 
Skiplist
– Apply the techniques from the lectures
– Get a better understanding of 

concurrency
– Write a parallel implementation that 

scales well



Recap - Skiplists

12 285-inf 25 +inf

insert
find
delete

O(log n) in Expectation



Related Work

• A Simple Optimistic Skiplist Algorithm 
by Y.Lev et al.
– Fine-grained locking

• A lock-free concurrent skiplist with 
wait-free contains operator by M. 
Herlihy et al.



Outlook: What we did

• Solved the deadlock!

• Lock-free implementation

• Lock-based with backoff

• Experiments



Recap - Lock-based

12 285-inf 25 +inf

find
29

find 
12



12 285-inf 25 +inf

find
25

Insert 
13

Recap - Lock-based



Recap - Lock-based

12 2853 25 4212 285-inf 25 +inf

delete 
25

insert 
13



Lock-based with backoff

12 2853 25 4212 285-inf 25 +inf

delete 
25

insert 
13

zzzZZz



Lock-based with backoff

• Use exponential backoff
– Try to lock the node
– Sleep if unsuccessful
– Increase sleep time if repeatedly 

unsuccessful



Lock-free

12 285-inf 25 +inf

find
25

Insert 
13 13

CAS()



Lock-free

• Each level can be seen as a lock-free 
linked list

• Differences to lock-based skiplist
– Skiplist property doesn’t (necessarily) 

hold during execution
– Helper method removes marked nodes



Testing

• Verify:
– Skiplist has to be still sorted
– Skiplist does not contain duplicates
– Skiplist property holds
– #of elements = #of inserts - #of 

deletes



Testing - Linearizability

• Lock-based setting only
• Linearization points (l.p.) are explicit

– Every thread logs its l.p.
– Merge all logs and sort them by time
– Execute the logs sequentially

• Placing l.p. for unsuccessful 
operations hard



Experimental Setup

• Kanifushi: 32-cores

• Benchmarks:
– Fixed number of operations per thread
– Fixed range of numbers
– Fixed percentage of insertions, deletions and 

finds
– Compare lock-based, lock-based with backoff, 

lock-free and sequential to 
ConcurrentSkipListSet (Java)



Results

9% insertions, 1% deletions, 90% finds
Range: 2’000’000 numbers, 1’000’000 operations



Results

20% insertions, 10% deletions, 70% finds
Range: 2’000’000 numbers, 1’000’000 operations



Results

50% insertions, 50% deletions, 0% finds
Range: 200’000 numbers, 1’000’000 operations



Conclusion

• Backoff did not help as much as we 
thought

• Compared to Java built-in, we’re 
doing good

• Input is artificial



Conclusion

• What did we learn?
– Parallel programming is hard

• Deadlocks are introduced fast

– Better understanding of Java 
Concurrency, Linearizability, ...



Questions?


	Concurrent Skiplists
	Slide 2
	Recap - Skiplists
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 19
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Questions?

