
Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Connected Components

Benjamin Ulmer and Tobias Wicky

December 16, 2013

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Connected Components

Determine the number and size of the connected components of a
given graph.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

boost graph library1

provides function to compute number of connected
components

uses DFS

1Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph
Library: User Guide and Reference Manual, The. Pearson Education, 2001.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

parallel boost graph library 2

provides function to compute number of connected
components

uses hooking approach similar to ligra

implemented using boost MPI for distributed memory

2Douglas Gregor and Andrew Lumsdaine. “The Parallel BGL: A generic
library for distributed graph computations”. In: Parallel Object-Oriented
Scientific Computing (POOSC) (2005).

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

Ligra3

lightweight graph processing framework for shared memory

provides two functions: VertexMap and EdgeMap

many examples implemented e.g. Connected Components

3Julian Shun and Guy E Blelloch. “Ligra: a lightweight graph processing
framework for shared memory”. In: Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming. ACM. 2013,
pp. 135–146.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

Ligra: provided Functions

Vertex Map

Returns all vertices u ∈ U with F (u) == 1

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

Ligra: provided Functions

Edge Map Dense

Loops through all vertices i in the Graph

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

Ligra: provided Functions

Edge Map Dense

Loops through vertices in given Subset U.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

boost graph library (BGL)
parallel boost graph library (PBGL)
Ligra

ligra: connected components

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

adaption of ligra algorithm

Idea

Algorithmic approach stays the same, but EdgeMap function needs
not to be as generic as in the ligra version.

no Condition Function C

our EdgeMap sparse and dense follow the EMsparse algorithm
because our dense version is already significantly faster than
ligra

we change only the data structure for the frontier

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

adaption of ligra algorithm

Idea

Algorithmic approach stays the same, but EdgeMap function needs
not to be as generic as in the ligra version.

no Condition Function C

our EdgeMap sparse and dense follow the EMsparse algorithm
because our dense version is already significantly faster than
ligra

we change only the data structure for the frontier

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

Frontier Dense: boolean array

Non-zero entry means vertex in frontier.

+ no race conditions

+ no duplicates in frontier

+ read fully parallelizable

- if frontier gets sparser many 0 entries

Frontier Sparse: 2D vector

Each thread adds to its own frontier vector.

+ no race conditions, no atomic write needed

+ few for small frontier

- duplicates may occur. Remove duplicates too expensive

- implicit barriers slow down read from frontier

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

Frontier Dense: boolean array

Non-zero entry means vertex in frontier.

+ no race conditions

+ no duplicates in frontier

+ read fully parallelizable

- if frontier gets sparser many 0 entries

Frontier Sparse: 2D vector

Each thread adds to its own frontier vector.

+ no race conditions, no atomic write needed

+ few for small frontier

- duplicates may occur. Remove duplicates too expensive

- implicit barriers slow down read from frontier

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

Atomic writes

used in two different ways:

update frontier

uses atomic write introduced in OpenMP 3.14

write minimum id to node

uses compare and swap written in inline assembly

4ARB OpenMP. OpenMP Application Program Interface, v. 3.1. 2008.
Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Algorithm
Datastructures
Atomic writes

Atomic writes

used in two different ways:

update frontier

uses atomic write introduced in OpenMP 3.14

write minimum id to node

uses compare and swap written in inline assembly

4ARB OpenMP. OpenMP Application Program Interface, v. 3.1. 2008.
Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Read Graph from file

compute CC O(V + E ) and read graph as well O(V + E )

⇒ banchmark time is algorithm time only

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Read Graph from file

Requirement for reads to not count them in the
benchmarking

No information gain except list of neighbors and out degree
while reading

No sorting of nodes

If that is not fulfilled one can write algorithms that calculate the
number of connected components while reading the graph

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Sketch of O(1) CC-Algo

Number Components = N
Node(i).id = i

add edge(i,j){
o1=find orig id(i)
o2=find orig id(j)
if(o1!=o2){

o1=o2
Number of Components - -

}
}

5J. Hoshen and R. Kopelman. “Percolation and cluster distribution. I.
Cluster multiple labeling technique and critical concentration algorithm”. In:
Phys. Rev. B 14 (8 1976), pp. 3438–3445. doi: 10.1103/PhysRevB.14.3438.
url: http://link.aps.org/doi/10.1103/PhysRevB.14.3438.

Benjamin Ulmer and Tobias Wicky Connected Components

http://dx.doi.org/10.1103/PhysRevB.14.3438
http://link.aps.org/doi/10.1103/PhysRevB.14.3438


Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Problem with this

Read with calculation Read normal
Flickr-Graph (19’674’428 Edges)

2’668’856 µs 1’458’167 µs

Wikipedia Graph (90’060’778 Edges)
2’238’214’340 µs 11’420’153 µs

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Environment and Testgraphs

Test environment

Experiments were preformed on a 32-Core Intel machine with 4x
2.13 GHz Intel 8 Core-Xenon E7 4830 Processors.
The programms were compiled with gcc 4.9.0 with the -O3 flag

rMat Graphs

All GraphX and rMat24 Graph are created with a random Graph
generator from problem based benchmark suitea with parameters

a = 0.5, b = 0.1, c = 0.1, d = 0.3

aJulian Shun et al. “Brief announcement: the problem based benchmark
suite”. In: Proceedinbgs of the 24th ACM symposium on Parallelism in
algorithms and architectures. ACM. 2012, pp. 68–70.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Preliminaries
Hoshen Kopelman adaption5

Environment and Testgraphs

Environment and Testgraphs

Test environment

Experiments were preformed on a 32-Core Intel machine with 4x
2.13 GHz Intel 8 Core-Xenon E7 4830 Processors.
The programms were compiled with gcc 4.9.0 with the -O3 flag

rMat Graphs

All GraphX and rMat24 Graph are created with a random Graph
generator from problem based benchmark suitea with parameters

a = 0.5, b = 0.1, c = 0.1, d = 0.3

aJulian Shun et al. “Brief announcement: the problem based benchmark
suite”. In: Proceedinbgs of the 24th ACM symposium on Parallelism in
algorithms and architectures. ACM. 2012, pp. 68–70.

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Boost parallel preconditions

Tested on small graphs with a given number of cores that
communicate over MPI
Graph Parameters:

Graph0:

V: 131072

E: 2508284

CC: 762

Graph1:

V: 262144

E: 5066324

CC: 1765

Graph2:

V: 524288

E: 10211482

CC: 4190

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Boost parallel results I

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9
x 10

6

Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

boost parallel (MPI)

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Boost parallel results II

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9
x 10

6

Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

boost parallel (MPI)

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Boost parallel results III

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9
x 10

6

Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

boost parallel (MPI)

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Serial vs Parallel preconditions

Testing Boost serial against our parallel alogrithm to see if
parallelizing is worth:
Graph Parameters:

rMat24:

V: 16777216

E: 166976680

CC: 935879

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Serial vs Parallel results I

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

boost serial

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Serial vs Parallel results II

2

4

6

8

10

12

14

16

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Serial vs Parallel results II

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Number of cores used

ti
m

e
 u

s
e

d
 [

u
s
e

c
]

 

 

boost serial

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix preconditions

Having a sparse and a dense implementation we wanted to see how
they preform against each other
Graph Parameters:

rMat24:

V: 16777216

E: 166976680

CC: 935879

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results I

2

4

6

8

10

12

14

16

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results II

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
7

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation sparse

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results III

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
7

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation threshold

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results IV

2

4

6

8

10

12

14

16

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation manual

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results V

0.5

1

1.5

2

2.5

x 10
7

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Sparse vs Dense vs Mix results VI

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5
x 10

7

Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation manual

our implementation sparse

our implementation threshold

our implementation dense

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Strong Scaling preconditions

Analyzing the scaling of the algorithms
Graph Parameters:

rMat24:

V: 16777216

E: 166976680

CC: 935879

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Strong Scaling results I

2

4

6

8

10

12

14

16

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation manaul

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Strong Scaling results II

0.5

1

1.5

2

2.5

x 10
7

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation manaul

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Weak Scaling preconditions

Analyzing the scaling of the algorithms:

Ew (p) = T (1)
T (p)

Graph Parameters:

Graph1:

V: 262144

E: 5066324

CC: 1765

Graph2:

V: 524288

E: 10211482

CC: 4190

Graph3:

V: 1048576

E: 20544690

CC: 9803

Graph4:

V: 2097152

E: 41280250

CC: 22753

Graph5:

V: 4194304

E: 82857080

CC: 51611

Graph6:

V: 8388608

E: 166177454

CC: 116372
Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Weak Scaling results

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Problem Size

E
ff

ic
ie

n
c
y

 

 

our implementation th

our implementation dense

our implementation sparse

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

US Roads preconditions

Adapting the algorithms to real world problems:
Graph Parameters:

US-Roads:

V: 129164

E: 330870

CC: 56

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

US Roads results I

0

1

2

3

4

5

6

7

8

9

10
x 10

5

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation sparse

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

US Roads results II

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
5

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

US Roads results III

5

6

7

8

9

10

x 10
4

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

US Roads results IV

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of cores used

ti
m

e
 u

s
e

d
 [

u
s
e

c
]

 

 

our implementation sparse

our implementation dense

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Flickr preconditions

More real world problems: Graph Parameters:

Flickr:

V: 820878

E: 19674428

CC: 1

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Flickr results I

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x 10
5

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Flickr results II

1.5

2

2.5

3

x 10
5

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation sparse

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Flickr results III

1.5

2

2.5

3

x 10
5

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Flickr results IV

1 2 4 8 16 32
1

1.5

2

2.5

3

3.5
x 10

5

Number of cores used

ti
m

e
 u

s
e

d
 [

u
s
e

c
]

 

 

our implementation sparse

our implementation dense

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Wikipedia preconditions

More real world problems: Graph Parameters:

Wikipedia:

V: 3566907

E: 90060778

CC: 52922

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Wikipedia results I

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation dense

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Wikipedia results II

1

1.5

2

2.5

3

3.5

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

our implementation sparse

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Wikipedia results III

1

1.5

2

2.5

3

3.5

4

x 10
6

1 2 4 8 16 32
Number of cores used

ti
m

e
 u

s
e
d
 [
u
s
e
c
]

 

 

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Boost Parallel
Serial vs Parallel
Sparse vs Dense vs Mix
Strong Scaling
Weak Scaling
Real World Graphs

Wikipedia results IV

1 2 4 8 16 32
0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Number of cores used

ti
m

e
 u

s
e

d
 [

u
s
e

c
]

 

 

our implementation sparse

our implementation dense

ligra

Benjamin Ulmer and Tobias Wicky Connected Components



Connected Components
Related Work

Our Work
Experiments

Results
Conclusion

Conclusion

we found an implementation which is faster than ligra on
some real world graphs

ligra has a better scaling behavior on rMat graphs, but
consumes twice as much memory

sparse representation has only little advantage because of big
overhead for switching between representations

Benjamin Ulmer and Tobias Wicky Connected Components


	Connected Components
	Related Work
	boost graph library (BGL)
	parallel boost graph library (PBGL)
	Ligra

	Our Work
	Algorithm
	Datastructures
	Atomic writes

	Experiments
	Preliminaries
	Hoshen Kopelman adaption5
	Environment and Testgraphs

	Results
	Boost Parallel
	Serial vs Parallel
	Sparse vs Dense vs Mix
	Strong Scaling
	Weak Scaling
	Real World Graphs

	Conclusion

