Bitwise reproducible sum

Project D-HPC
Xavier Lapillonne and Boris Peltekov
17.12.2013

* Motivations and algorithms

Motivations

* The problem:

— Floating point addition is not associative :
On a parallel architecture, different decomposition may lead to
different results

* For scientific applications bitwise reproducibility could be needed:

— to redo runs on different systems, e.g. to have new diagnostics, more
outputs

— for validation purpose
— for debugging

Double Sweep Sum (DS)

« [Demmel, SCA, 2013]
-> Double sweep sum

Idea : apply some pre-rounding before summing.
— WewantS=2v, AllReduce

— Introduce extractor M(max(v))), q,=(v,(+ M)-M.
-> Partial contribution T* = % g

— Improve accuracy by using the remainder r,= v;-q;
Introduce new extractor M2
-> Partial contribution T2

— Sum contributions of same level from all process (no need for a deterministic
reduce)

Reduce([T,,T,...], SUM)

— =T, +T,+... Reduce

Single Sweep Sum (SS)

 [Arteaga et al. IPDPS, 2014]
-> Single sweep sum

Idea: Use only one communication

— compute dynamically on each process an appropriate extractor (no
global max)

— Each process computes partial contribution for different levels T°,T?,...

— Use a custom reduce operation to sum partial contributions which
correspond to the same level
Reduce([T,,T,...], Mergelevels)

— t=T+T,+...

custom reduce :
Mergelevels

* Reduce implementation

Simple data exchange approaches

Sender driven

Sender Receiver

/ Set start
/
/

Wait start k

|

Copydata »
\\ v
3 Spin on flag

Done Done

Requires 2 cache lines

e Start flag

* Data + ready flag
Good for 1 to 1 communication
Used in Reduce and Dissemination

Receiver driven

Sender Receiver

Setstart » o
~

~
R Wait start

= Copy data
_ Notify
Y Pl
Wait notify e
Done Done

Requires 2 cache lines

e Startflag + data

* Notify flag
Good for 1 to N communication
Benefits from reading cache-line in
Shared state
Used in Broadcast

Reduce implementations: SingleNotify & MultiNotify

Similarities:

* They work on arbitrary trees (given on input) / \

* Every thread is bound to a single node

Supported operations: /V\ \
> Sum

> Max / \
» Mergelevels (needed for the Single Sweep algorithm)

Similar storage space requirements: (#children+ 1 or 2) cache lines

Both use sender-driven communication between each node and its children

No need for synchronization barriers or memory fences (proved for x86 only)

Differences:
* In SingleNotify every node first waits for its children, then applies the operation
* Whereas in MultiNotify every node continuously scans the results from its kids
and applies the operation on-the-fly
» Reduces the congestion caused by the atomic increment of notify count
» Allows overlapping between waiting for results and application of a
reduction
» The flag and the data always reside on a single cache line, so they are
transferred together, not incurring extra cost
» Not surprisingly, turned out to be faster ©

AllIReduce implementations

(Reduce +) Broadcast:

* Uses the same generic trees as the reductions

* Based on receiver-driven communication

* Every node needs 2 cache lines -> (data & flag) and (notication_count)
* Doesn’t require any barriers or memfences

Dissemination:
* Based on sender-driven communication Step 0 Om

 Difficult to implement — every thread acts as
sender and as receiver at the same time
 Causes a lot of CC traffic when used on core from Step 1 0@9
different sockets
* Possible to combine with broadcast on later stages
* Our implementation is only for n = 2k threads
* Thread x on step t sends to thread (x + 2t) mod n

* Runsin k-1 steps
* |f used without data => essentially a barrier

[Li, HPDC, 2013]

Correctness

Testing against serial versions and parallel OpenMP and MPI versions.
Validation of bit identical results for the whole algorithms

Implementation difficulties due to the nature of the problem
» Lockouts
» Internal data state invariant maintenance
» Problems with multiple instances of reduce / broadcast issued by the
same thread

How we got rid of the synchronization barriers
» 0dd / even ping pong method
» Enables certain amount of overlapping / pipelining in case of unfair
scheduling
» Could be done even better (modulo N)

Why we don’t need any memory fences (on x86 machines)
» Weak memory model analysis

(Simplified) Example for SingleReduce

Get data from child Reduce Send the result up
LOCK—
Parent: W, Ry —™ R, —™> W, W’
Child: W”. B R} —> W, —> W,

I

* We do not need the crossed-out parts

* We only care that the reduce results will be
propagated upwards: Wy -> W’ & W’ -> W No W->R on x86

(Simplified) Example for SingleReduce

Parent: W, Ry /™ R, —™> W,
3 ®_
\ S
y S
Y hEN
S
Child: Rak —> W, —> W,

Add data
dependencies

A No W->R on x86

(Simplified) Example for SingleReduce

Parent: W, > Ry —> R, —> W,
\ R\ ;‘7
\ N
\ .)’\
Y RN
Y
Child: R —> W, —> W,
LOCK

Infer transitive
relations

Now we know:
v" The results of the child are written before

being read by the parent
v’ Each thread'’s actions are observed in-order
->
by the others (only in this domain) A No W->R on x86

HWLOC Library

* NUMA aware library [Broquedis, ECPDNP, 2010]
* Enables to get topological information at runtime on the current processor

 Used to bind nodes close to each other in the tree to cores on the same
sockets [Li, HPDC, 2013]

4 N
Socket O / \

L
/ \\ Socket 1

Reduce intersocket

memory access / '\ / '\

|

o /

e Results

Performance of the reduce operation

Test system : 2 Intel Sandy bridge sockets node with 16 cores
Test : reduce 16 doubles, calling reduce inside a timing loop 10° times

Time (us)

O B N W B~ U1 O

s-notify hwloc k-tree3 k-tree4 m-notify

Best performance with binary Tree
HWLOC (NUMA aware) reduces time by a factor 1.7x
Multinotify (m-notify) get best performance overall

Comparison with MPI and OMP libraries : reduce

e Test:reduce N doubles using N cores

Time (us)
10 |

ORFRLNW,MAUIO N
W
X

cores

* Overall our implementation performs better
* Largest differences when using 2 sockets (3x improvement)

Comparison with MPI and OMP libraries : All reduce

 Test:reduce N doubles using N cores

Time (us)
16
14
12
10 / Dissemination
8 7 MPI
6
4 //' m-notify
2 M + broadcast
0 T T T 1
0 5 10 15 20
cores

* Better performance with reduce + broadcast than dissemination
e Similar performance on average than MPI but much lower fluctuations

Performance of the Double Sweep sum

e Test: Sum of v[problem size] using 16 cores

Time (us)

Operation

d
l

100

ol T

4096

500 5000

Problem size

e Largest difference for smaller problem size

| v

MPI

16384 50000

* For large enough vector the sum operation dominates the reduction

Scaling : Double Sweep sum

e Stong scaling

N = 4096 N =16384
Speed up Speed up

9 9 m-notify

8 K 8

7 Pl 7

6 ,' 6

5 5

4 4

3 3

2 2

1 1

0 T . T ! 0

0 5 10 15 20 0 5 10 15 20

cores # cores

* For small problem decrease in performance when using all cores
* m-notify extends the scaling curve

Comparison between Double Sweep and Single Sweep sum

e Test: Sum of v[problem size] using 16 cores

Time (us)
100

DS SS

10

500 5000 50000

Problem size

e Overall better performance of SS when using all cores

Scaling of double Sweep and Single Sweep sum

Strong scaling considering a problem size N = 4096 or 16384

Time (us)

100

10

SS - 4096

DS - 4096

cores

For large problem the Single and Double sweep methods have similar performance

For small problem the Single Sweep is better when using 2 sockets

Conclusion

We have implemented different reduce and all reduce NUMA-aware
operations to be applied to the bitwise reproducible sum

The reduce operations do not require any synchronizations

Our implementation generally performs better than the MPl and OMP
version (up to 3x)

The main advantage of the Single Sweep versus Double Sweep method is
obtained when using more than one sockets, as it only requires one
reduction

