Design of Parallel and High Performance Computing *HS 2013 Markus Püschel, Torsten Hoefler Department of Computer Science ETH Zurich*

Homework 9 Out: 2013-12-12 Revision: 1

Consensus

Give a constructive proof that the consensus number (for wait-free consensus) of fetch-and-add is (at least) two. Give a constructive proof that the consensus number (for wait-free consensus) of compare-and-swap is unbounded.

Wait-free consensus among n Processes using compare and swap

```
// reg is initialized to X which is different than all possible inputs
int decide(val) {
  first = compare_and_swap(reg, X, val);
  if (first = X) return(val);
  else return(first);
}
```

Wait-free consensus among 2 Processes using fetch-and-add

```
// reg is initialized to 0
int decide(val) {
    prefer[thread-id] = val;
    if (fetch-and-add(reg, 1) == 0)
        return(prefer[thread-id]);
    else
        return(prefer[thread-id+1%2]);
}
```

Design of Parallel and High Performance Computing *HS 2013 Markus Püschel, Torsten Hoefler Department of Computer Science ETH Zurich*

Homework 9 Out: 2013-12-12 Revision: 1

Broadcast in the α - β -Model

The time taken to send a message of size s from one process to another is $T(s) = \alpha + s\beta$. If a process sends a message of size s at the time t_0 it can not send another message before $t_0 + T(s)$.

For $\alpha = 10$ and $\beta = 1$ evaluate three different algorithms which replicate a data item of sizes $s_1 = 1$, $s_2 = 500$, and $s_3 = 40000000$, available on process 0, to all P = 1000 processes.

If your algorithm depends on more parameters than α , β and s, also explain how suitable values for those parameters can be found.

Solution: Broadcast in the α - β -Model

Linear: $T(s) = (P-1) * (\alpha + s\beta)$

k-ary Tree: $T(s) = log_k(P) * k * (\alpha + s\beta)$ (optimal k: 3)

k-nomial Tree: $T(s) = log_k(P) * (k-1) * (\alpha + s\beta)$ (optimal k: 2)

Pipelined with segmentsize z: $T(s) = (s/z + P - 1) * (\alpha + z\beta)$ (optimal z: $\sqrt{\frac{s\alpha}{(P-2)\beta}}$)

 $\text{Pipelined Tree: } T(s) = (s/z + log_2(P) - 1) * 2 * (\alpha + s\beta) \text{ (optimal z: } \sqrt{\frac{s\alpha}{\beta(log_2(P) - 1)}} \text{)}$

Parameters	$P = 1000, \alpha = 10, \beta = 2, s = 1$
Linear	11988
k-ary Tree (k=3)	252
k-nomial Tree (k=2)	120

Parameters:	$P = 1000, \alpha = 10, \beta = 2, s = 500$
Linear:	1008990
k-ary Tree (k=3)	21210
k-nomial Tree (k=2)	10100
Pipeline (z=2)	17486
Pipelined Tree (z=17, k=2)	3432

Parameters:	$P = 1000, \alpha = 10, \beta = 2, s = 40000000$
Linear:	79920009990
k-ary Tree (k=3):	1680000210
k-nomial Tree (k=2):	800000100
Pipeline (z=448):	81798210
Pipelined Tree (z=4715, k=2)	160347840