
A BF Sketches for Single Sets
We provide extended results for BF for single sets.

A.1 Enhancing the Estimator by
Swamidass [113]

The estimator by Swamidass et al. [113], is divergent6 in its original

form. To alleviate this, we replace 𝐵𝑋,1 with 𝐵𝑋,1 ≡ 𝐵𝑋,1− I[𝐵𝑋,1 =
𝐵𝑋 ], where, for a given proposition 𝑃 , I[𝑃] is 1 if 𝑃 holds, and

0 otherwise. 𝐵𝑋,1 only differs from 𝐵𝑋,1 in the unlikely case of

𝐵𝑋,1 = 𝐵𝑋 . Thanks to this modification, our estimator |̂𝑋 | has,
unlike Swamidass et al.’s, a finite expectation (as it is bounded).

The final form of the estimator is

̂̃|𝑋 | = −𝐵𝑋
𝑏

log

(
1 −

𝐵𝑋,1

𝐵𝑋

)
A.2 Proof of consistency and asymptotic

unbiasedness
We need to show that |̂𝑋 |𝑆 = −𝐵𝑋

𝑏
log

(
1 − 𝐵𝑋,1

𝐵𝑋

)
is consistent and

asymptotically unbiased as 𝐵𝑋 → ∞. We provide here an intuitive

formulation based on the false positive probability which can be

easily made more rigorous by direct application of the definition of

consistency which we omit for the sake of simplicity. First of all, as

shown in eq.(4), we can notice that |̂𝑋 |𝑆 ∼ |̂𝑋 |𝐿 as the Bloom Filter

size diverges. This means that the proof is valid for both estimators

because they are asymptotically equivalent. Now we can look at

the probability of false positives as 𝐵𝑋 → ∞ for fixed and finite 𝑏

and |𝑋 |:

lim

𝐵𝑋→∞

[
1 −

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |]𝑏
→ 0

The result above tells us that false positive matches cannot hap-

pen anymore in the limit. Each element of |𝑋 | will then be hashed in
a personal bit and counting the number of ones in 𝐵𝑋 (and dividing

by 𝑏 in case of multiple hash functions) will always deliver |𝑋 | at a
given precision as |𝑋 | is fixed and 𝐵𝑋 → ∞. Thus we can conclude

that
𝐵𝑋,1
𝑏

𝑝
→ |𝑋 | which proves consistency. Asymptotic unbiased-

ness follows from consistency in our case as the variance of both

estimators is bounded (see the proof of Proposition 1). The same

reasoning can be easily extended to show consistency and asymp-

totic unbiasedness also for
�|𝑋 ∩ 𝑌 |𝐴𝑁𝐷 and

�|𝑋 ∩ 𝑌 |𝑂𝑅 presented

in section 5.1.

A.3 Proposition 1
Proof. We now prove Proposition 1 from Section 4. Before

bounding the mean squared error, we need to prove several simple

bounds. Let 𝜇 = 𝐸 [𝐵0,𝑋 ] = 𝐵𝑋
(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |
. It holds:

6
An estimator whose moments are not finite. In the case of the estimator Swamidass et al. [113], the

expectation of |̂𝑋 |, and thus also the higher moments, diverge, which happens for 𝐵𝑋,1 = 𝐵𝑋

𝜇 ≥ 𝐵𝑋

(
1 − 1

𝐵𝑋

)
0.499𝐵𝑋 log𝐵𝑋

≥ 𝐵𝑋 exp(−0.499 log𝐵𝑋

1 − 1/𝐵𝑋
)

= 𝐵
0.501−𝑜 (1)
𝑋

Let us fix some 𝜀 > 0. Let E be the event that 𝐵0,𝑋 ≥ 𝜇/(1 + 𝜀).
Kamath et al. [76, Theorem 2] prove that:

𝑃 (E) ≥ 1 − exp(−Ω(𝜇2/𝐵𝑋 )) ≥ 1 − exp(−𝐵Ω (1)
𝑋

).
We have |̂𝑋 | = −𝐵𝑋

𝑏
log(𝐵𝑋,0/𝐵𝑋 + I[𝐵𝑋,0 = 0]) ≤ 𝐵𝑋 log𝐵𝑋 and

by our assumption, |𝑋 | ≤ 𝑏 |𝑋 | ≤ 0.499𝐵𝑋 log𝐵𝑋 . It thus holds

( |̂𝑋 | − |𝑋 |)2 ≤ 𝑂 (𝐵2
𝑋
log

2 𝐵𝑋 ). Let 𝜅 = −𝐵𝑋
𝑏

log

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |
=

−𝐵𝑋 |𝑋 | log
(
1 − 1

𝐵𝑋

)
. Moreover for 𝐵𝑋 → ∞, we have log(1 −

1/𝐵𝑋 ) = −1/𝐵𝑋 +𝑂 (1/𝐵2
𝑋
). Therefore, it holds 𝜅 = |𝑋 | + 𝑜 (1).

Now we can bound the mean squared error as follows:

𝐸 [( |̂𝑋 | − |𝑋 |)2] (15)

=𝐸 [( |̂𝑋 | − |𝑋 |)2 |E]𝑃 (E) + 𝐸 [( |̂𝑋 | − |𝑋 |)2 |¬E]𝑃 (¬E) (16)

≤(1 + 𝜀)𝐸 [( |̂𝑋 | − 𝜅)2 |E] + 1 + 𝜀
𝜀

𝐸 [(𝜅 − |𝑋 |)2 |E] (17)

+𝑂 (𝐵2𝑋 log
2 𝐵𝑋 ) · exp(−𝐵Ω (1)

𝑋
) (18)

≤
(1 + 𝜀)𝐵2

𝑋

𝑏2
𝐸 [(log(𝐵𝑋,0/𝐵𝑋 ) − log(1 − 1/𝐵𝑋 )𝑏 |𝑋 |)2 |E] (19)

+𝑂 ((𝜅 − |𝑋 |)2) + exp(−𝐵Ω (1)
𝑋

) (20)

≤
(1 + 𝜀)𝐵2

𝑋

𝑏2
𝐸 [(log(𝐵𝑋,0/𝐵𝑋 ) − log(1 − 1/𝐵𝑋 )𝑏 |𝑋 |)2 |E] (21)

+𝑂 ( |𝑋 |/𝐵𝑋 ) (22)

≤
(1 + 𝜀)2𝐵2

𝑋

𝑏2
𝑒2𝑏 |𝑋 |/𝐵𝑋 𝐸 [(𝐵𝑋,0/𝐵𝑋 − (1 − 1/𝐵𝑋 )𝑏 |𝑋 |)2 |E] (23)

+𝑂 ( |𝑋 |/𝐵𝑋 ) (24)

≤
(1 + 𝜀)2𝐵2

𝑋

𝑏2
𝑒2𝑏 |𝑋 |/(𝐵𝑋−1)

(25)

· 𝐸 [(𝐵𝑋,0/𝐵𝑋 − (1 − 1/𝐵𝑋 )𝑏 |𝑋 |)2]/𝑃 [E] +𝑂 ( |𝑋 |/𝐵𝑋 ) (26)

=
(
(1 + 𝜀)2 + 𝑜 (1)

) 𝐵2𝑋
𝑏2
𝑒2𝑏 |𝑋 |/(𝐵𝑋−1)

(27)

· 𝐸 [(𝐵𝑋,0/𝐵𝑋 − (1 − 1/𝐵𝑋 )𝑏 |𝑋 |)2] +𝑂 ( |𝑋 |/𝐵𝑋 ) (28)

=
(
(1 + 𝜀)2 + 𝑜 (1)

) 𝑒2𝑏 |𝑋 |/(𝐵𝑋−1)

𝑏2
𝑉𝑎𝑟 [𝐵𝑋,0] +𝑂 ( |𝑋 |/𝐵𝑋 ) (29)

≤
(
(1 + 𝜀)2 + 𝑜 (1)

)
𝑒2𝑏 |𝑋 |/(𝐵𝑋−1)

(30)

·
(
𝑒
−𝑏 |𝑋 |
𝐵𝑋

𝐵𝑋

𝑏2
− 𝐵𝑋 /𝑏2 − |𝑋 |/𝑏

)
+𝑂 ( |𝑋 |/𝐵𝑋 ) (31)

≤
(
(1 + 𝜀)2 + 𝑜 (1)

) (
𝑒 |𝑋 |𝑏/(𝐵𝑋−1) 𝐵𝑋

𝑏2
− 𝐵𝑋 /𝑏2 − |𝑋 |/𝑏

)
(32)

+𝑂 ( |𝑋 |/𝐵𝑋 ) (33)

≤
(
(1 + 𝜀)2 + 𝑜 (1)

) (
𝑒 |𝑋 |𝑏/(𝐵𝑋−1) 𝐵𝑋

𝑏2
− 𝐵𝑋 /𝑏2 − |𝑋 |/𝑏

)
(34)
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where eq. (18) holds because for any 𝑎, 𝑏, 𝑐 ∈ R and 𝜀 > 0, it

holds
7 (𝑎 − 𝑏)2 ≤ (1 + 𝜀) (𝑎 − 𝑐)2 + 1+𝜀

𝜀 (𝑐 − 𝑏)2. Eq. (23) holds
because on E, given 𝐵𝑋,0 ≥ 𝜇/(1 + 𝜀), log(𝐵𝑋,0/𝐵𝑋 ) is 𝑐-lipschitz

for 𝑐 = (1 + 𝜀)𝐵𝑋 /𝜇 ≤ (1 + 𝜀)𝑒
2𝑏 |𝑋 |

𝐵𝑋 (1−1/𝐵𝑋 ) = (1 + 𝜀)𝑒
2𝑏 |𝑋 |
𝐵𝑋 −1

. Eq. (29)

holds because 𝐸 [𝐵𝑋,0/𝐵𝑋 ] = (1 − 1/𝐵𝑋 )𝑏 |𝑋 |
and eq. (31) holds

because 𝑉𝑎𝑟 (𝐵𝑋,0) ∼ 𝐵𝑋 𝑒
−𝑏 |𝑋 |
𝐵𝑋 − 𝐵𝑋

(
𝑏 |𝑋 |
𝐵𝑋

+ 1

)
𝑒
− 2𝑏 |𝑋 |
𝐵𝑋 [71]. By

sending 𝜀 → 0, we get that
8
:

𝐸 [( |̂𝑋 | − |𝑋 |)2] ≤ (1 + 𝑜 (1))
(
𝑒 |𝑋 |𝑏/(𝐵𝑋−1) 𝐵𝑋

𝑏2
− 𝐵𝑋 /𝑏2 − |𝑋 |/𝑏

)
□

A.4 Proposition 2
Proof. We now prove Proposition 2 from Section 4. We start by

the well known MSE decomposition:

𝐸

[(
|̂𝑋 |• − |𝑋 |

)
2

]
= 𝐸

[(
|̂𝑋 |• − |𝑋 |

)]
2

+ 𝑉𝑎𝑟 ( |̂𝑋 |•) (35)

Now notice that 𝐸 [𝐵0,𝑋 ] = 𝐵𝑋

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |
. Then, since |̂𝑋 |• =

𝛿𝐵𝑋 ,𝑏 𝐵𝑋,1, we can easily derive:

𝐸
[
𝛿𝐵𝑋 ,𝑏 𝐵𝑋,1

]
= 𝐸

[
𝛿𝐵𝑋 ,𝑏 (𝐵𝑋 − 𝐵𝑋,0)

]
= 𝛿𝐵𝑋 ,𝑏 𝐵𝑋

[
1 −

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |]
On the other hand, to bound the variance of the simplified es-

timator, we follow the same reasoning outlined in Proposition 1.

Indeed it holds that 𝑉𝑎𝑟 (𝐵𝑋,0) ∼ 𝐵𝑋
[
𝑒
− |𝑋 |𝑏
𝐵𝑋 −

(
1 + |𝑋 |𝑏

𝐵𝑋

)
𝑒
− 2|𝑋 |𝑏
𝐵𝑋

]
as shown in [71]. Now notice that 𝑉𝑎𝑟 (𝐵𝑋,1) = 𝑉𝑎𝑟 (𝐵𝑋 − 𝐵𝑋,0) =
𝑉𝑎𝑟 (𝐵𝑋,0). At this point we can substitute in eq. (35) the squared

bias and variance of |̂𝑋 |• to conclude that:

𝐸

[(
|̂𝑋 |• − |𝑋 |

)
2

]
≤

{
|𝑋 | − 𝛿𝐵𝑋 ,𝑏 𝐵𝑋

[
1 −

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |]}2

+𝛿2
𝐵𝑋 ,𝑏

𝐵𝑋

[
𝑒
− |𝑋 |𝑏
𝐵𝑋 −

(
1 + |𝑋 |𝑏

𝐵𝑋

)
𝑒
− 2|𝑋 |𝑏
𝐵𝑋

]
which ends the proof. To enhance the interpretation of the bound,

we use that fact that

(
1 − 1

𝐵𝑋

)𝑏 |𝑋 |
∼ 𝑒

− |𝑋 |𝑏
𝐵𝑋 in the statement of

Proposition 2.

□

B MinHash Sketches for Set Intersection
B.1 Expectation formula
Since in the case of 𝑘-hash, |𝑀𝑋 ∩ 𝑀𝑌 | ∼ 𝐵𝑖𝑛( 𝑘 , 𝐽𝑋,𝑌 ), and
for 1-hash, |𝑀1

𝑋
∩𝑀1

𝑌
| ∼ 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 ( |𝑋 ∪ 𝑌 |, |𝑋 ∩ 𝑌 |, 𝑘), we

have:

7
This inequality is equivalent to (1 + 𝜀) (𝑎 − 𝑐)2 + 1+𝜀

𝜀
(𝑐 − 𝑏)2 − (𝑎 − 𝑏)2 ≥ 0. The

left-hand side can be simplified to
(𝜀𝑎+𝑏−𝑐 (1+𝜀 ) )2

𝜀
and the inequality thus holds.

8
It is well known that if 𝑓 (𝑥) ≤ (1 + 𝜀)𝑔 (𝑥) for any 𝜀 > 0, then 𝑓 (𝑥) ≤ (1 +
𝑜 (1))𝑔 (𝑥) .

E[�|𝑋 ∩𝑌 |𝑘𝐻 ] = ( |𝑋 | + |𝑌 |)
𝑘∑
𝑠=0

(
𝑘

𝑠

)
( 𝐽𝑋,𝑌 )𝑠 (1 − 𝐽𝑋,𝑌 )𝑘−𝑠

𝑠

𝑘 + 𝑠 (36)

E[�|𝑋 ∩𝑌 |
1𝐻 ] = ( |𝑋 | + |𝑌 |)

𝑘∑
𝑠=0

( |𝑋∩𝑌 |
𝑠

) ( |𝑋∪𝑌 |−|𝑋∩𝑌 |
𝑘−𝑠

)( |𝑋∪𝑌 |
𝑘

) 𝑠

𝑘 + 𝑠 (37)

There exists an involved closed form expression for equation

(36) which is beyond the scope of this paper. We refer the interested

reader to [41] for a clear derivation of a similar problem.

B.2 Proof of consistency and asymptotic
unbiasedness

We start to show that
�|𝑋 ∩ 𝑌 |𝑘𝐻 is consistent. This follows respec-

tively from Proposition 4 statement. Indeed by taking the limit for

𝑘 → ∞ with fixed and finite |𝑋 | and |𝑌 | we obtain:

lim

𝑘→∞
𝑃

(����|𝑋 ∩ 𝑌 |𝑘𝐻 − |𝑋 ∩ 𝑌 |
��� ≥ 𝑡 ) ≤ lim

𝑘→∞
2𝑒

− 𝑘 𝑡2

2( |𝑋 |+|𝑌 |)2 → 0

The above implies that
�|𝑋 ∩ 𝑌 |𝑘𝐻

𝑝
→ |𝑋 ∩𝑌 |. On the other hand,

for
�|𝑋 ∩ 𝑌 |

1𝐻 we are in the sampling without replacement scheme.

This means that the population size (i.e. |𝑋 ∪ 𝑌 |) is finite and by

taking the limit for 𝑘 → |𝑋 ∪ 𝑌 | in Proposition 5, with fixed and

finite |𝑋 | and |𝑌 |, we have already sampled the entire population

contrarily to the 𝑘-Hash case. Thus
�|𝑋 ∩ 𝑌 |

1𝐻 is also a consistent

estimator of |𝑋 ∩ 𝑌 |. Then, for both estimators, the asymptotic

unbiasedness follows from consistency and by noticing that both�|𝑋 ∩ 𝑌 |𝑘𝐻 and
�|𝑋 ∩ 𝑌 |

1𝐻 have a bounded variance.

B.3 Sub-Gaussian preliminaries
We recall some key notions of sub-gaussian random variables as

they are necessary for the following proofs. First of all, we define

𝜓𝑋 (𝜆) = log(E[𝑒𝜆𝑋 ]) as the logarithmic moment generating func-

tion (i.e. cumulant) of a generic random variable 𝑋 . For example,

if 𝑍 is a centered normal random variable with variance 𝜎2, we

have that 𝜓𝑍 (𝜆) = 𝜆2𝜎2

2
. It can be shown, we refer the interested

reader to chapter 2 of [35] for a detailed explanation, that Chernoff’s

inequality in this case implies, for all 𝑡 > 0, that:

𝑃 (𝑍 ≥ 𝑡) ≤ 𝑒−
𝑡2

2𝜎2 (38)

The bound above, characterize the decay of the tail probabilities

of a centered normal random variable. If the tail probabilities of a

generic centered random variable 𝑋 , decrease at least as rapidly as

the ones in (38) then 𝑋 is sub-gaussian. More formally, a centered

random variable 𝑋 is said to be sub-gaussian with variance factor

𝜎2 if:

𝜓𝑋 (𝜆) ≤ 𝜆2𝜎2

2

∀𝜆 ∈ R (39)

We underline that (39) only requires 𝑉𝑎𝑟 (𝑋 ) ≤ 𝜎2. Moreover,

if we call G(𝜎2) the collection of random variables for which (39)

holds (e.g. all bounded random variables belongs to G(𝜎2)), we can
state that:
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Lemma B.1. Let𝑋1, . . . , 𝑋𝑛 be independent random variables, such
that for every 𝑖 we have 𝑋𝑖 ∈ G(𝜎2

𝑖
). Then ∑𝑛

𝑖=1 𝑋𝑖 ∈ G(∑𝑛𝑖=1 𝜎2𝑖 ).
This is due to the fact that (39) implies a bound on the mo-

ment generating function whose properties help to verify the above

statement. For a more detailed discussion on B.1 and for alternative

characterizations of sub-gaussianity in terms of growth of moments,

we refer the interested reader to chapter 2 of [35].

B.4 Concentration bounds for k-Hash and
1-Hash

We present below the proof of Propositions 4 and 5. First, we show

to following lemma which we will also use later.

Lemma B.2.

𝑃 ( |𝐽1 − 𝐽 | ≥ 𝑡), 𝑃 ( |𝐽𝑘 − 𝐽 | ≥ 𝑡) ≤ 2𝑒−2𝑡
2𝑘

(40)

Proof. The random variables 𝑘 𝐽1 and 𝑘 𝐽𝑘 follow the hyper-

geometric and binomial distributions, respectively. Applying the

Hoeffding’s inequalities in the binomial case, we get the desired

inequality. The Serfling’s bound can be applied in the case of the hy-

pergeometric distribution. The Serfling’s bound always gives better

bounds than the Hoeffding’s, proving the inequality for 𝐽1. □

We can now show concentration of the sum of the estimators

and, therefore also of the individual estimators (by fixing 𝑛 = 1).

Theorem B.3. Let 𝑌1 =
∑𝑛
𝑖 𝐶𝑖

𝐽1

1+𝐽1
, 𝑌𝑘 =

∑𝑛
𝑖 𝐶𝑖

𝐽𝑘

1+𝐽𝑘
. Then for any

non-negative constants 𝐶𝑖 and 𝑆 =
∑𝑛
𝑖=1𝐶𝑖

𝐽
1+𝐽

𝑃 ( |𝑌1 − 𝑆 | > 𝑡), 𝑃 ( |𝑌𝑘 − 𝑆 | > 𝑡) ≤ 2 exp

(
− 𝑘𝑡2

2(∑𝑛𝑖 𝐶𝑖 )2
)

(41)

Proof. The function
𝑋
1+𝑋 is 1-Lipschitz and it, therefore, holds

that ���� 𝑋

1 + 𝑋 − 𝑋 ′

1 + 𝑋 ′

���� ≤ |𝑋 − 𝑋 ′ |

The concentration results from Lemma B.2 therefore also hold

for
𝐽1

1+𝐽1
and

𝐽𝑘

1+𝐽𝑘
. The random variables

𝐽1

1 + 𝐽1
− 𝐽

1 + 𝐽
𝐽𝑘

1 + 𝐽𝑘
− 𝐽

1 + 𝐽

are therefore subgaussian with coefficient 1/
√
𝑘 (see eq. (38), (39)

and in general section B.3). Multiplying by𝐶𝑖 ’s and taking the sum,

we get that 𝑌1 − 𝑆 and 𝑌𝑘 − 𝑠 are subgaussian with coefficients∑𝑛
𝑖=1𝐶𝑖√
𝑘

The theorem follows by Lemma B.1. □

C KMV Sketches for Single Sets
We also state an existing result on the KMV sketching; we use it later

to provide a KMV sketch for |𝑋 ∩ 𝑌 | [46]. The hash function used

with a KMV maps elements from 𝑋 to real numbers in (0, 1] u.a.r.9.
Thus, the hashes should be evenly spaced and one can estimate |𝑋 |
by dividing the size 𝑘 − 1 of 𝐾𝑋 by the largest hash in 𝐾𝑋 .

|̂𝑋 |𝐾 =
𝑘 − 1

max{𝑥 |𝑥 ∈ 𝐾𝑋 }
(42)

As noted in [46, §2.1], the 𝑘-th smallest value follows the beta

distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) with shape parameters 𝛼 = 𝑘 and 𝛽 = |𝑋 | −
𝑘 + 1. Now we can get concentration bounds for the estimator:

indeed, similarly to [28], we can show that:

Proposition 6. Consider |̂𝑋 |𝐾 in Eq. (42), then the probability of
deviation from the true set size, at a given distance 𝑡 ≥ 0, is

𝑃

(��� |̂𝑋 | − |𝑋 |
��� ≤ 𝑡 ) = 𝐼𝑢 ( |𝑋 |,𝑘,𝑡/|𝑋 |) (𝑘, |𝑋 | − 𝑘 + 1) −

𝐼𝑙 ( |𝑋 |,𝑘,𝑡/|𝑋 |) (𝑘, |𝑋 | − 𝑘 + 1)

where 𝑢 ( |𝑋 |, 𝑘, 𝑡/|𝑋 |) = 𝑘−1
|𝑋 |−𝑡 and 𝑙 ( |𝑋 |, 𝑘, 𝑡/|𝑋 |) = 𝑘−1

|𝑋 |+𝑡 and
𝐼𝑥 (𝑎, 𝑏) is the regularized incomplete beta function.

In the case of a KMV estimator bound, we can evaluate:

𝐼𝑥 (𝑘, |𝑋 | − 𝑘 + 1) =
|𝑋 |∑
𝑖=𝑘

(
|𝑋 |
𝑖

)
𝑥𝑖 (1 − 𝑥) |𝑋 |−𝑖

D KMV Sketches for |𝑋 ∩ 𝑌 |
Given K𝑋 and K𝑌 of size 𝑘𝑋 and 𝑘𝑌 , one can construct a KMV

K𝑋∪𝑌 by taking the 𝑘 = min{𝑘𝑋 , 𝑘𝑌 } smallest elements from 𝐾𝑋 ∪
𝐾𝑌 .

�|𝑋 ∪ 𝑌 |𝐾 , |̂𝑋 |𝐾 and |̂𝑌 |𝐾 can be computed using the following

equations (note that the second one uses the exact sizes of 𝑋,𝑌

instead of their estimators).

�|𝑋 ∩ 𝑌 |𝐾 = |̂𝑋 |𝐾 + |̂𝑌 |𝐾 − �|𝑋 ∪ 𝑌 |𝐾 (43)

�|𝑋 ∩ 𝑌 |𝐾 = |𝑋 | + |𝑌 | − �|𝑋 ∪ 𝑌 |𝐾 (44)

We present now a simple upper bound (using union bound) on

the probability that
�|𝑋 ∩ 𝑌 |𝐾 deviates by more than 𝑡 from the

true value. Yet, if we know the exact size of 𝑋 and 𝑌 (a reasonable

assumption for graph algorithms as the degrees can be easily pre-

computed), we can get a considerably better bound. The following

is a simple application of the identity |𝑋 ∩ 𝑌 | = |𝑋 | + |𝑌 | − |𝑋 ∪ 𝑌 |
and Proposition 6 on the estimator of |𝑋 ∪ 𝑌 |:

Proposition 7. Let �|𝑋 ∩ 𝑌 |𝐾 be the estimator from (44), then

𝑃

(
|�|𝑋 ∩𝑌 |𝐾 − |𝑋 ∩𝑌 | | ≥ 𝑡

)
= 𝐼𝑢 ( |𝑋∪𝑌 |,𝑘,𝑡/|𝑋∪𝑌 |) (𝑘, |𝑋 ∪𝑌 | − 𝑘 + 1)

− 𝐼𝑙 ( |𝑋∪𝑌 |,𝑘,𝑡/|𝑋∪𝑌 |) (𝑘, |𝑋 ∪𝑌 | − 𝑘 + 1)

9
uniformly at random
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E Results & Derivations for Triangle Counts
E.1 Proof of consistency and asymptotic

unbiasedness
Any estimator for triangle count analyzed in PG, is simply a sum of

cardinalities
�|𝑋 ∩ 𝑌 | for different neighborhoods 𝑋 and 𝑌 (cf. Sec-

tion 3):

𝑇𝐶★ =
1

3

∑
(𝑢,𝑣) ∈𝐸

�|𝑁𝑢 ∩ 𝑁𝑣 |★

where ★ indicates a specific
�|𝑋 ∩ 𝑌 |★ estimator (cf. Table 3). Since

we have already proven consistency and asymptotic unbiasedness

for each of the
�|𝑋 ∩ 𝑌 |★ estimators presented in PG, we now can

address jointly the consistency of the triangle count estimators. To

do so we just need to acknowledge the fact that a sum of consistent

estimators is itself a consistent estimator. Indeed this is a direct

consequence of the more general Slutsky theorem which enable us

to state that𝑇𝐶★
𝑝
→ 𝑇𝐶 . The asymptotic unbiasedness then follows

from consistency and by noticing that all 𝑇𝐶★ estimators have a

bounded variance (see all the proofs presented below).

E.2 MinHash
We can show the concentration of the sum of the set intersection

estimators using theorem B.3 presented in Appendix B. Then for

the edge 𝑒𝑖 = 𝑢𝑣 , we define 𝐶𝑖 = deg(𝑢) + deg(𝑣) thus giving us

𝑆 = 1

3

∑𝑛
𝑖=1𝐶𝑖

𝐽
1+𝐽 = 𝑇𝐶 . We will not consider the scaling factor

1

3

till the final expressions of the bounds to ease the notation. Thus

we can write:

𝑚∑
𝑖=1

𝐶𝑖 =

𝑚∑
𝑖=1,𝑒𝑖=𝑢𝑣

deg(𝑢) + deg(𝑣) =

=
∑
𝑣∈𝑉

deg(𝑣)2

Combining the above result with theorem B.3, we obtain the

triangle count bound for MinHash presented in Theorem 6.1.

However this bound can be improved if we assume more inde-

pendence, which will be satisfied in the case of triangle counting

when the maximum degree is not too large. We now prove a tighter

bound under these conditions.

Theorem E.1. Let 𝑌1 =
∑𝑛
𝑖 𝐶𝑖

𝐽1

1+𝐽1
, 𝑌𝑘 =

∑𝑛
𝑖 𝐶𝑖

𝐽𝑘

1+𝐽𝑘
, and assume

we partition the set of estimators into groups X1, · · · ,X𝜒 such that
estimators from each set are mutually independent. Then for any
non-negative constants 𝐶𝑖 and 𝑆 =

∑𝑛
𝑖=1𝐶𝑖

𝐽
1+𝐽

𝑃 ( |𝑌1 − 𝑆 | > 𝑡 ), 𝑃 ( |𝑌𝑘 − 𝑆 | > 𝑡 ) ≤ 2 exp

©­­«−
𝑘 (max(0, 𝑡 − 2𝑆/𝑘))2

2(∑𝜒

𝑖

√∑
𝑑∈X𝑖 𝐶

2

𝑑
)2

ª®®¬
≤ 2 exp

(
−𝑘 (max(0, 𝑡 − 2𝑆/𝑘))2

2𝜒
∑𝑛
𝑖 𝐶

2

𝑖

)

Proof. We modify the proof of Theorem B.3 by instead consid-

ering the random variables

𝐽1

1 + 𝐽1
− 𝐽

1 + 𝐽 − 𝜇1

𝐽𝑘

1 + 𝐽𝑘
− 𝐽

1 + 𝐽 − 𝜇𝑘

where 𝜇1 and 𝜇𝑘 are chosen so as to make this random variable

have mean zero.

We then first sum estimators from each group separately using

Lemma B.1, which gives us subgaussian coefficient of

√∑
𝑑∈X𝑖 𝐶

2

𝑑
.

Adding the groups together, we get using again Lemma B.1, that

the subgaussian coefficient is 𝜎X =
∑𝜒

𝑖

√∑
𝑑∈X𝑖 𝐶

2

𝑑
. To finish the

proof of the first inequality, we have to show a bound on

∑
𝐶𝑖𝜇1

and

∑
𝐶𝑖𝜇𝑘 . We show the argument for the case of 1-hash, the

argument for 𝑘-hash is analogous. Note that 𝜇1 is the jensen gap of

𝐽1

1+𝐽1
. Since Var(𝐽1) ≤ 𝐽/𝑘 , by Theorem 1 from [82], we have−𝐽/𝑘 ≤

𝐸 [ 𝐽𝑘

1+𝐽𝑘
] − 𝐽

1+𝐽 ≤ 0. We can bound −𝐽/𝑘 ≥ 2/𝑘 𝐽
1+𝐽 . Therefore, we

can bound

−2𝑆/𝑘 ≤
∑

𝐶𝑖𝜇1 ≤ 0

To prove the second inequality, we define the following opti-

mization problem

maximize

𝑛∑
𝑖=1

√
𝑥𝑛

subject to

∑
𝑥𝑖 = 𝑐

Set 𝑥𝑖 =
∑
𝑑∈X𝑖 𝐶

2

𝑑
and 𝑐 =

∑
𝐶2

𝑖
. We see that for every possible

assignment of the estimators to the sets {X𝑖 }𝜒𝑖=1, we have a feasible
solution with objective value equal to the subgaussian coefficient

𝜎X . Therefore, the subgaussian coefficient for any assignment to the

groups is dominated by the optimum of this optimization problem.

Optimum of this optimization problem is when all 𝑥𝑖 ’s have the

same value – otherwise one can pick 𝑖, 𝑗 such that 𝑥𝑖 < 𝑥 𝑗 and

0 < 𝜀 ≤ (𝑥 𝑗 − 𝑥𝑖 )/2 and then replace 𝑥𝑖 by 𝑥𝑖 + 𝜀 and similarly 𝑥 𝑗
by 𝑥 𝑗 − 𝜀, increasing the objective while retaining feasibility. This

gives us objective value of 𝜒

√∑𝑛
𝑖=1𝐶

2

𝑖
/𝜒 =

√
𝜒
∑𝑛
𝑖 𝐶

2

𝑖
□

To show the final expression of the bound, we use Theorem E.1.

Then by Vizing’s theorem, 𝜒 ≤ Δ + 1 and by the same substitution

done for the first bound, we have:

𝑚∑
𝑖=1

𝐶2

𝑖 =

𝑚∑
𝑖=1,𝑒𝑖=𝑢𝑣

(deg(𝑢) + deg(𝑣))2 ≤

≤
𝑚∑

𝑖=1,𝑒𝑖=𝑢𝑣

2(deg(𝑢)2 + deg(𝑣)2) = 2

∑
𝑣∈𝑉

deg(𝑣)3

Indeed combining the above result with Theorem E.1, we obtain

the triangle count bound for MinHash presented in Theorem 6.1 if

the maximum degree is Δ.
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E.3 Bloom Filters
To show the concentration for the Bloom Filters triangle count

estimators (i.e. 𝑇𝐶•), we need to bound their mean squared error:

𝐸 [(𝑇𝐶 −𝑇𝐶•)2] = 𝑉𝑎𝑟 (𝑇𝐶•) + (𝐸 [𝑇𝐶•] −𝑇𝐶)2

Now we can use directly the expectation 𝐸

[ �|𝑁𝑢 ∩ 𝑁𝑣 |•
]
and the

standard deviation 𝜎 (𝑢,𝑣) • of
�|𝑁𝑢 ∩ 𝑁𝑣 |• as described in Section 5.1

to obtain the final expression for each specific estimator. As done

for the MinHash case, we will not consider the scaling factor
1

3

till the final expressions of the bounds to ease the notation. In the

particular case of
�|𝑁𝑢 ∩ 𝑁𝑣 |𝐴𝑁𝐷 we have:

𝐸 [ �|𝑁𝑢 ∩ 𝑁𝑣 |𝐴𝑁𝐷 = 𝛿𝐵𝑁𝑢∩𝑁𝑣 ,𝑏 𝐵𝑁𝑢∩𝑁𝑣

(
1 − 𝑒−

|𝑁𝑢∩𝑁𝑣 |𝑏
𝐵𝑁𝑢∩𝑁𝑣

)
(45)

and

𝑉𝑎𝑟 (
∑

(𝑢,𝑣)∈𝐸

�|𝑁𝑢 ∩ 𝑁𝑣 |𝐴𝑁𝐷 ) ≤
∑

(𝑢,𝑣)∈𝐸

∑
(𝑞,𝑟 )∈𝐸

√
𝑉𝑎𝑟 ( �|𝑁𝑢 ∩ 𝑁𝑣 |𝐴𝑁𝐷 )

·
√
𝑉𝑎𝑟 ( �|𝑁𝑞 ∩ 𝑁𝑟 |𝐴𝑁𝐷 )

=
∑

(𝑢,𝑣)∈𝐸

∑
(𝑞,𝑟 )∈𝐸

𝜎 (𝑢,𝑣)𝜎 (𝑞,𝑟 ) (46)

where the above holds for the covariance inequality (also known

as Cauchy-Schwarz inequality). Moreover, thanks to the result in

[71], we can write the actual expression of the variance as:

𝑉𝑎𝑟 ( �|𝑁𝑢 ∩ 𝑁𝑣 |𝐴𝑁𝐷 ) ∼ 𝛿2𝐵𝑁𝑢∩𝑁𝑣 ,𝑏 𝐵𝑁𝑢∩𝑁𝑣

·
[
𝑒
− |𝑁𝑢∩𝑁𝑣 |𝑏
𝐵𝑁𝑢∩𝑁𝑣 −

(
1 + |𝑁𝑢 ∩ 𝑁𝑣 |𝑏

𝐵𝑁𝑢∩𝑁𝑣

)
𝑒
− 2|𝑁𝑢∩𝑁𝑣 |𝑏
𝐵𝑁𝑢∩𝑁𝑣

]
Thus we can now combine eq. (45) and (46) to obtain a bound for

the mean squared error of the estimator. Finally thanks to Cheby-

chev inequality, we have the final expression of the bound pre-

sented in Theorem 6.1 for the AND estimator. The bound also holds

for 𝑇𝐶𝐿 considering 𝐸

[ �|𝑁𝑢 ∩ 𝑁𝑣 |
]
and 𝜎 (𝑢,𝑣) as the expectation

and the standard deviation of
�|𝑁𝑢 ∩ 𝑁𝑣 |𝐿 . Similarly, to obtain the

bounds for the BF based on OR, one can use the above equations

and substitute |𝑁𝑢 ∩ 𝑁𝑣 | with |𝑁𝑢 ∪ 𝑁𝑣 | as described in Section 5.1.
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