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Abstract
We propose Atomic Active Messages (AAM), a mecha-
nism that accelerates graph computations on both shared-
and distributed-memory machines. The key idea behind
AAM is that hardware transactional memory (HTM) can
be used for simple and high performance processing of
irregular structures in highly parallel environments. We
illustrate techniques such as coarsening and coalescing
that enable hardware transactions to achieve consider-
able speedups in graph processing. We conduct a de-
tailed performance analysis of AAM on Intel Haswell
and IBM Blue Gene/Q and we illustrate various perfor-
mance tradeoffs between different HTM parameters that
impact the efficiency of graph processing. AAM can be
used to implement abstractions offered by existing pro-
gramming models and to improve the performance of
graph analytics codes such as Graph500 or Galois.

1 Introduction

Big graphs stand behind many computational problems
in social network analysis, machine-learning, computa-
tional science, and others [23]. Yet, designing efficient
parallel graph algorithms is challenging due to intricate
properties of graph computations. First, they are often
data-driven and unstructured, making parallelism based
on partitioning of data difficult to express. Second, they
are usually fine-grained and have poor locality. Finally,
implementing synchronization based on locks or atom-
ics is tedious, error prone, and typically requires concur-
rency specialists [23].

Recent implementations of hardware transactional
memory (HTM) [12] promise a faster and simpler pro-
gramming for parallel algorithms. The key function-
ality is that complex instructions or instruction se-
quences execute in isolation and become visible to other
threads atomically. Available HTM implementations
show promising performance in scientific codes and in-
dustrial benchmarks [37, 33]. In this work, we show

that the ease of programming and performance benefits
are even more promising for fine-grained, irregular, and
data-driven graph computations.

Another challenge of graph analytics is the size of
the input that often requires distributed memory ma-
chines [24]. Such machines generally contain manycore
compute nodes that may support HTM (cf. IBM Blue
Gene/Q [33]). Still, it is unclear how to handle transac-
tions accessing vertices on both local and remote nodes.

In this paper we propose a mechanism called Atomic
Active Messages (AAM) that accelerates graph analyt-
ics by combining the active messaging (AM) model [32]
with HTM. In AAM, fine units of graph computation
(e.g., marking a vertex in BFS) are coarsened and ex-
ecuted as hardware transactions. While software-based
coarsening was proposed in the past [16], in this pa-
per we focus on developing high performance hardware-
supported techniques to implement this mechanism on
both shared- and distributed-memory machines, on es-
tablishing principles and practice of the use of HTM for
the processing of graphs, and on illustrating various per-
formance tradeoffs between different HTM parameters in
the context of graph analytics. Figure 1 motivates AAM
by showing the time to perform each phase in a synchro-
nized BFS traversal using traditional fine-grained atom-
ics and AAM based on coarser hardware transactions.

Another key insight of our work is that AAM consti-
tutes a hierarchy of atomic actives messages that can be
used to accelerate graph computations on both shared-
and distributed-memory machines. We analyze this hi-
erarchy in detail and conclude that AAM can be used to
improve the performance of generic graph analytics tools
such as Galois or Graph500. The key contributions of our
work are:

• We design the generic AAM mechanism that uses
state-of-the-art HTM implementations to accelerate
both shared- and distributed-memory graph computa-
tions.
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Figure 1: Comparison of the duration of an intra-
node BFS traversal implemented with Blue Gene/Q
fine-grained atomics and coarse hardware transactions
(AAM-HTM). One transaction modifies 27 vertices. We use
64 threads and a Kronecker graph [21] with a power-law
vertex degree distribution.

• We establish the principles and practice of the use of
HTM for graph computations. Specifically, we de-
velop protocols for spawning remote/distributed hard-
ware transactions.

• We introduce a performance model and we conduct a
detailed performance analysis of AAM based on Intel
Haswell HTM [37] and IBM Blue Gene/Q HTM [33]
to illustrate various performance tradeoffs between
different HTM parameters in the context of graph an-
alytics. Specifically, we find optimum transaction
sizes for x86 and PowerPC machines that accelerate
Graph500 [27] BFS code by >100%.

• We show that AAM can be seamlessly used to acceler-
ate state-of-the-art graph analytics engines for the pro-
cessing of various synthetic and real-world graphs.

2 Background

We now describe active messages, atomics, transactional
memory, and how they are used in graph computations.

2.1 Active Messages
In the active messaging (AM) model [32] processes ex-
change messages that carry: the address of a user-level
handler function, handler parameters, and optional pay-
load. When a message arrives, the parameters and the
payload are extracted from the network and the related
handler runs at the receiver [35]. Thus, AMs are con-
ceptually similar to lightweight Remote Procedure Calls
(RPCs).

Active messages are often used to implement low-
level performance-centric libraries that serve as a basis
for developing higher-level libraries and runtime sys-
tems. Example libraries are Myrinet Express (MX),

IBM’s Deep Computing Messaging Framework (DCMF)
for BlueGene/P, IBM’s Parallel Active Message Interface
(PAMI) for BlueGene/Q, GASNet [2], and AM++ [35].

2.2 Active Messages in Graph Computa-
tions

A challenging part of designing a distributed graph al-
gorithm is managing its data flow. One way is to use a
distributed data structure (e.g., a distributed queue) that
spans all of its intra-node instances. Such structures are
often hard to construct and debug [8]. A BFS algorithm
that uses a distributed queue is presented in Listing 1.

if (source is local) Q.push(source);
while (!Q.empty()) {

for (Vertex v : Q)
if (v.visited == false) {

v.visited = true;
for (Vertex w : v.neighbors ()) {Q.add(w); } } }

Listing 1: Distributed BFS using a distributed queue [10]
(§ 2.2)

Another approach uses active messages to express the
data flow of the program dynamically. When a pro-
cess schedules computation for a vertex, it first checks
whether it is the owner of this vertex. If yes, it performs
the computation. Otherwise, the computation is sent in
an active message to a different node for processing in a
remote handler [36]. Thus, no distributed data structures
have to be used. We illustrate BFS using this approach
in Listing 2.

struct bfs_AM_handler {
bool operator ()(const pair <Vertex , int >& x) {

if (x.second < x.first.distance) {
x.first.distance = x.second;
send_active_message(x.first , x.second + 1); } }

};

Listing 2: Distributed BFS using active messages [36]
(§ 2.2)

2.3 Atomic Operations
Atomic operations appear to the rest of the system as if
they occur instantaneously. Atomics are used in lock-
free graph computations to perform fine-grained up-
dates [10, 27]. Yet, they are limited to a single word
and thus require complex protocols for protecting opera-
tions involving multiple words. We now present relevant
atomics:

Accumulate(*target, arg, op) (ACC): it applies an op-
eration op (e.g., sum) to *target using an argument
arg.
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Fetch-and-Op(*target, arg, op) (FAO): similar to
Accumulate but it also returns the previous value of
*target.

Compare-and-Swap(*target, compare, value, *result) (CAS):
if *target == compare then value is written into
*target and the function sets *result to true, other-
wise it does not change *target and sets *result to
false.

2.4 Transactional Memory

Transactional Memory (TM) [12] is a technique in which
portions of code (transactions) are executed in isola-
tion and their memory effects become visible atomically.
Thus, such code portions are linearizable and easy to
reason about. The underlying TM mechanism detects
dependencies between transactions accessing the same
memory locations and solves any potential conflicts be-
tween such accesses. It must also record all modifica-
tions to specific memory locations and then commit them
atomically. TM can be based on software emulation [31]
(software transactional memory; STM) or native hard-
ware support [12] (HTM).

Several vendors introduced HTM implementations:
IBM, Sun, and Azul added HTM to Blue Gene/Q (BG/Q)
machines [33], the Rock processor [6], and the Vega
CPUs [5], respectively. Intel implemented two HTM
instruction sets in the Haswell processor: Hardware
Lock Elision (HLE) and Restricted Transactional Mem-
ory (RTM) that together constitute Transactional Syn-
chronization Extensions (TSX) [37]. HLE allows for fast
and simple porting of legacy lock-based code into code
that uses TM. RTM enables programmers to define trans-
actional regions in a more flexible manner than that pos-
sible with HLE [37].

There are few existing studies on STM in graph com-
putations [14]. Using HTM in graph processing has
been largely unaddressed and only a few initial works
exist [7, 34].

3 Atomic Active Messages

Atomic Active Messages (AAM) is a mechanism mo-
tivated by recent advances in deploying transactional
memory in hardware. An atomic active message is a
message that, upon its arrival, executes a user-specified
handler called an operator. A spawner is a process (or a
thread within this process, depending on the context) that
issues atomic active messages. An activity is the compu-
tation that takes place as a result of executing an operator.
Activities run speculatively, isolated from one another,
and they either commit atomically or do not commit at

all. We distinguish between operators and the activities
to keep our discussion generic.

To use AAM, the developer specifies the operator
code that modifies elements (vertices or edges) of the
graph. We use single-element operators for easy and in-
tuitive programming of graph algorithms. Still, multiple-
element coarse operators can be specified by experienced
users. The developer also determines the structure of a
vertex or an edge and defines the failure handler, an ad-
ditional piece of code executed in certain types of algo-
rithms (explained in § 3.2).

Our runtime system executes algorithms by exchang-
ing messages, spawning activities to run the operator
code, running failure handlers, and optimizing the exe-
cution. An activity can be coarse: it may execute several
operators atomically. Note that operators are (optionally)
coarsened by the developer while activities are coarsened
by the runtime.

The implementation determines how activities are iso-
lated from one another. An activity can execute as a crit-
ical section guarded by locks, or (if it modifies one ele-
ment) as an atomic operation (e.g., CAS in BFS). How-
ever, we argue that in many cases running activities as
hardware transactions provides the highest speedup; we
support this claim with a detailed performance study in
Sections 5 and 6.

3.1 Definitions and Notation

Assume there are N processes p1, ..., pN in the system.
A process pi runs on a compute node ni,1 ≥ i ≥ N and
it may contain up to T threads. Then, we model the an-
alyzed graph G as a tuple (V,E); V is a set of vertices
and E ⊆V ×V is a set of edges between vertices. With-
out loss of generality we assume that G is partitioned and
distributed using a one-dimensional scheme [4]: V is di-
vided into N subsets Vi and every Vi⊆V is stored on node
ni. We call process pi the owner of every vertex v ∈ Vi
and every edge (v,w) such that v ∈Vi,w ∈V . We denote
the average degree in G as d̄.

3.2 Types of Atomic Active Messages

AAM accelerates graph computations that run on a sin-
gle (N = 1) or multiple (N > 1) nodes. If N = 1 then
messages only spawn intra-node activities. If N > 1 then
a message may also be sent over the network to execute
a remote activity. Now, we identify two further key crite-
ria of categorizing messages: direction of data flow and
activity commits. They enable four types of messages;
each type improves the performance of different graph
algorithms.
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3.2.1 Direction of Data Flow

This criteria determines if an activity has to communi-
cate some data back to its spawner. In some graph algo-
rithms the data flow is unidirectional and messages are
Fire-and-Forget (FF): they start activities that do not re-
turn any data. Other algorithms require the activity to
return some data to the spawner to run a failure han-
dler. We name a message that executes such an activ-
ity a Fire-and-Return (FR) message (the flow of data is
bidirectional).

3.2.2 Activity Commits

In some graph algorithms messages belong to the type
Always-Succeed (AS): they spawn activities that have to
successfully commit, even if it requires multiple roll-
backs or serialized execution. An example such algo-
rithm is PageRank [3] where each vertex v has a param-
eter rank that is augmented with the normalized ranks
of v’s neighbors. Now, if we implement activities with
transactions, then such transactions may conflict while
concurrently updating the rank of the same vertex v, but
finally each of them has to succeed to add its normalized
rank. The other type are May-Fail (MF) messages that
spawn activities that may also fail ultimately and not re-
execute after a rollback. An example is BFS in which
two activities, which concurrently change the distance
of the same vertex, conflict and only one of them suc-
ceeds. Note that we distinguish between rollbacks of ac-
tivities at the algorithm level, and aborts of transactions
due to cache eviction, context switches, and other rea-
sons caused by hardware/OS. In the latter case the trans-
action is reexecuted by the runtime to ensure correctness.

Our criteria entail four message types: FF&AS,
FF&MF, FR&AS, FR&MF. We now show examples on
how each of these types can be used to program graph
algorithms.

3.3 Example Case Studies

In AAM, a single graph algorithm uses only one type of
atomic active messages. This type determines the form
of the related operator and the existence of the failure
handler. Here, we focus on the operator as the most com-
plex part of graph algorithms. We show C-like code to
implement the operator in isolation. Our implementa-
tion utilizes system annotations to mark atomic regions
in C. We present the code of five single-element oper-
ators. When necessary, we discuss the failure handlers.
We describe multiple-element operators at the end of this
section.

3.3.1 PageRank (FF & AS)

PageRank (PR) [3] is an iterative algorithm that calcu-
lates the rank of each vertex v ∈ V : rank(v) = 1−d

|V | +

∑w∈n(v)(d ·
rank(w)

out deg(w) ). n(v) is the set of v’s neighbors, d
is the dump factor [3] and out deg(w) is the number of
links leaving w. Depending on the operator design, PR
may be either vertex-centric and edge-centric.

The pseudocode of the vertex-centric variant is pre-
sented in Listing 3. The operator increases the ranks of
v’s neighbors with a factor d · rank(v)

out deg(v) . It also adds 1−d
|V |

to rank(v). The copies of stale ranks from a previous it-
eration are kept and used for calculating new ranks. As-
suming that each vertex v is processed by one activity,
this PR variant uses AS messages: each activity has to
successfully add the factors to the ranks of respective ver-
tices (which may require serialization). Data flow is uni-
directional (messages are FF) because activities do not
have to communicate any results back to their spawners.
Thus, the operator returns void.

void Operator(Vertex v) {
v.rank += (1 - d) / vertices_nr;
for(int i = 0; i < v.neighbors.length; i++) {

v.neighbors[i].rank += d * v.old_rank/v.out_deg;
} }

Listing 3: The operator in the vertex-centric PageRank
variant (§ 3.3.1)

There exist other PR variants. Specifically, one can
analyze incoming edges to dispose of conflicts. We will
later (Section 6) show that a careful AAM design out-
performs such approaches used in various codes such as
PBGL.

3.3.2 Breadth First Search (FF & MF)

Breadth First Search (BFS) uses FF & MF messages.
Spawners do not have to wait for any results, but some
activities may fail when concurrently updating vertices
using different distance values. Such a conflict is solved
at the node owning the vertex and no information has
to be sent back to any of the spawners, thus the opera-
tor returns void. We present the operator pseudocode in
Listing 4.

void Operator(Vertex v, int new_distance) {
if(v.distance > new_dist) {v.distance = new_dist ;}

}

Listing 4: BFS operator (§ 3.3.2)
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3.3.3 Boruvka Minimum Spanning Tree (FF & MF)

Boruvka is an algorithm for finding the minimum span-
ning tree of a graph with weighted edges. First, a super-
vertex is created out of each vertex. The activity finds the
smallest-weight edge incident to each accessed superver-
tex, merges two supervertices connected with this edge,
and appropriately modifies the remaining incident edges.
Boruvka uses May-Fail messages: if two concurrent ac-
tivities conflict, then one of them will fail. Messages are
also Fire-and-Return as the activity has to communicate
back whether it succeeded or failed, so that the spawner
may choose to either retry or, e.g., backoff for some time.
Listing 5 illustrates the operator pseudocode.

void Operator(Supervertex v) {
Edge edge = get_smallest_weight_edge(v);

forall(Edge e: get_incident_edges(edge.dest))
{

if(e.dest == v) continue;
//set 'v' as a new destination for e
e.change_edge_dest(v);

}
edge.dest.delete ();

}

Listing 5: Boruvka operator (§ 3.3.3)

3.3.4 ST Connectivity (FR & AS)

ST connectivity [28] determines if two given vertices (s
and t) are connected. First, the algorithm marks each
vertex as “white”. Then, it starts two concurrent BFS
traversals from s and t. Both traversals use different col-
ors (“grey” and “green”) to mark vertices as visited. Each
activity returns the information on the colors of visited
vertices. In case of “white” no action is taken and the
operator returns false. If the found color is used by the
other BFS, then s and t are connected, the operator re-
turns true, and the runtime executes a failure handler at
the spawner that terminates the algorithm. The operator
is presented in Listing 6.

bool Operator(Vertex v, Color new_col) {
if(v.color != WHITE && v.color != new_col) return

true;
v.color = new_col; return false; }

Listing 6: ST Connectivity operator (§ 3.3.4)

3.3.5 Boman Graph Coloring (FR & MF)

Graph coloring proposed by Boman et al. [1] is a heuris-
tic algorithm that minimizes the number of colors as-
signed to graph vertices. In this algorithm as expressed
using AAM (see Listing 7), an activity changes the color
or vertex v to X . Then, if any of v’s neighbors has color

X , either v or the neighbor has to change its color; the
choice is random. Activities are spawned by MF & FR
messages because multiple processes trying to update v’s
color may conflict and the spawners have to be notified if
they need to assign new colors to v’s neighbors in failure
handlers.

int Operator(Vertex v, Color X) {
v.Color = X;
if(v.hasNeighborWithColor(X)) {

// return the ID of a vertex to be recolored
if(rand ([0;1]) < 0.5) return v.neighborWithCol(X)

.ID;
else return v.ID;

} else { // NO_VERTEX_ID means no vertex is
recolored

return NO_VERTEX_ID; }

Listing 7: Boman graph coloring operator (§ 3.3.5)

3.4 Discussion

The introduced AAM operators modify single vertices.
Thus, they enable intuitive developing and reasoning
about graph computations that are also fine-grained by
nature. Still, some users may want to specify coarser op-
erators to use additional knowledge that they have about
the graph structure for higher performance. Here, the
user determines the number of elements to be modified in
the operator and the policy of their selection (e.g., the op-
erator may choose each vertex randomly, or try to mod-
ify elements stored in a contiguous block of memory to
avoid HTM aborts).

Manual coarsening of operators may be challenging.
Our runtime system automatically coarsens activities for
easier AAM programming. We now discuss the imple-
mentation details of coarsening and other optimizations.
While single-element operators can be implemented with
atomics or fine-grained locks, we argue that a more per-
formant approach is based on coarse transactions.

4 Implementing Activities

We now discuss the details of implementing activities;
we skip most of the issues related to the runtime as they
were properly addressed in other studies [35, 8, 36].

4.1 Implementing Activities with HTM

In this paper we advocate for using HTM to implement
activities. However, locks and atomics would also match
the activity semantics (atomics can implement fine ac-
tivities that modify single words). We thus compared
the performance of all the three mechanisms to illustrate
HTM’s advantages.
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Transactions can implement an activity of any size.
We use Intel Haswell HLE and RTM ISAs1 and IBM
BG/Q HTM. RTM provides two key functions: XBEGIN
that starts a transaction and XEND that performs a com-
mit. Yet, it does not guarantee progress. Thus, we repeat
aborted transactions and we use exponential backoff to
avoid livelock. The HTM in BG/Q automatically retries
aborted transactions and it serializes the execution when
the number of retries is equal to a certain value; we use
the default value (10). HLE performs serialization after
the first abort. We illustrate the utilized compiler HTM
intrinsics for implementing activities in Listing 8.

/* *************** IBM BG/Q HTM ******************** */
#pragma tm_atomic {

Activity(vertices , new_distance); //run
speculatively }

/* *************** Intel RTM HTM ******************* */
bool committed = false;
while (! committed) {

/* We start an RTM transaction with _xbegin ().
XBEGIN_STARTED indicates that it began successfully

*/
if(( status = _xbegin ()) == _XBEGIN_STARTED) {

Activity(vertices , new_distance); //run
speculatively

_xend (); // commit the transaction
} else { //an abort occured

exponential_backoff (); continue; // rollback
} committed = true; }

/* *************** Intel HLE HTM ******************* */
// Acquire lock with lock elision
while (__atomic_exchange_n (&lockvar , 1,

__ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE)) {
_mm_pause (); /* fallback path */ }
Activity(vertices , new_distance); //run

speculatively
__atomic_store_n (&lockvar , 0, __ATOMIC_RELEASE|

__ATOMIC_HLE_RELEASE);

Listing 8: Implementing BFS activities with HTM
(§ 4.1).

4.2 Optimizing the Execution of Activities
Two most significant optimizations applied by the run-
time are coarsening and coalescing of activities. First,
in the intra-node computations, the runtime coarsens ac-
tivities by atomically executing more than one operator;
an example is presented in Listing 9. We denote activ-
ities that are not coarse as fine. Coarsening amortizes
the overhead of starting and committing an activity; it
also reduces the amount of fine-grained synchronization.
Second, activities targeted at the same remote node are
sent in a single message, i.e., coalesced. This reduces
the overhead of sending and receiving an atomic active
message and saves bandwidth. Finally, we also use var-
ious optimizations that attempt to reduce the amount of

1We verify the correctness of all the results to ensure that the lim-
itations of TSX [13] do not affect our evaluation and the conclusions
drawn.

synchronization even further. For example, the runtime
avoids executing the BFS operator for each vertex by ver-
ifying if the vertex has already been visited.

void Activity(Vertex vertices[], int new_distance) {
forall(Vertex v: vertices) {

//call the BFS operator from Listing 5
Operator(v, new_distance); } }

Listing 9: A BFS coarse activity (§ 4.2)

4.3 A Protocol for Distributed Activities

The ownership protocol enables activities implemented
as hardware transactions that access or modify data from
remote nodes. The basic idea behind the protocol is that
a handler running such an activity has to first physically
relocate all required vertices/edges to the memory of the
node where the activity executes. This approach is dic-
tated by the fact that a hardware transaction cannot sim-
ply send a message because it would not be able to roll-
back remote changes that this message caused. In addi-
tion, most HTM implementations prevent many types of
operations (e.g., system calls) from being executed inside
a transaction [33].

Our protocol assumes that each graph element has an
ownership marker that can be modified atomically by
any process. Each marker is initially set to a value ⊥
different from any process id. When a transaction from
a node ni accesses a remote graph element, it aborts and
the runtime uses CAS or a different mechanism (e.g., an
active message) to set the marker of this element to the id
of process pi. If the CAS succeeds, the marked element
is transferred to node ni and the transaction restarts. If
the CAS fails, the handler sets all previously marked ele-
ments to⊥ and backs off for a random amount of time. If
a local transaction attempts to access a marked element,
it aborts. This mechanism is repeated until all remote
elements are cached locally. Finally, after the transac-
tion succeeds, the elements are sent back to their original
nodes and their markers are set to ⊥.

5 Performance Model & Analysis

We now introduce a simple performance model that
shows the tradeoffs between atomics and HTM. Then,
we analyze the performance of AAM and answer the
following research questions: (1) what are HTM’s ad-
vantages over atomics for implementing AAM activi-
ties, (2) what are performance tradeoffs related to various
HTM parameters, and (3) what are the optimum transac-
tion sizes for analyzed architectures that enable highest
speedups in selected graph algorithms.
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Figure 2: The analysis of the performance of intra-node activities implemented with atomics and HTMs (§ 5.4).
Figures 2a and 2b illustrate the time it takes to mark a vertex as visited. Numbers in figures are sums of HTM aborts
for a given datapoint (we report values for T = 4 for Has/BGQ; we also plot numbers for T = 8 (Has) and T = 64
(BGQ) to illustrate the numbers of aborts generated by all the supported hardware threads). s indicates the point
where the latency of Haswell atomics stops to grow. Table 2c shows the distribution of the reasons of aborts for
T = 64 (BGQ) and T = 8 (Haswell). We skip Has-HLE as it does not provide functions to gather such statistics. A
similar performance analysis for incrementing the rank of a vertex is presented in Figures 2d-2e and Table 2f.
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5.1 Experimental Setup

We compile the code with gcc-4.8 (on Haswell) and with
IBM XLC v12.1 (on BG/Q). We use the following ma-
chines:

ALCF BG/Q Vesta (BGQ) is a supercomputing ma-
chine where each compute node contains 16 1.6 GHz
PowerPC A2 4-way multi-threaded cores, giving the to-
tal of 64 hardware threads per node. Each core has 16 kB
of L1 cache. Every node has 32 MB of shared L2 cache
and 16 GB of RAM. Nodes are connected with a 5D pro-
prietary torus network. This machine represents mas-
sively parallel supercomputers with HTM implemented
in the shared last-level cache.

Trivium V70.05 (Has-C) is a commodity off-the-
shelf server where the processor (Intel Core i7-4770)
contains 4 3.4 GHz Haswell 2-way multi-threaded cores,
giving the total of 8 hardware threads. Each core has
32 KB of L1 and 256 KB of L2 cache. The CPU has 8
MB of shared L3 cache and 8 GB of RAM. This option
speaks for commodity computers with HTM operating in
private caches.

Greina (Has-P) is a high-performance cluster that
contains two nodes connected with InfiniBand FDR fab-
ric. Each node hosts an Intel Xeon CPU E5-2680 CPU
with 12 2-way 2.50GHz multi-threaded cores; the total
of 24 hardware threads. Each core contains 64 KB of
L1 and 256 KB of L2 cache. The CPU has 30 MB of
shared L3 cache and 66 GB of RAM. This machine rep-
resents high-performance clusters deploying HTM in pri-
vate caches.

5.2 Considered Hardware Mechanisms

For Haswell we compare the following mecha-
nisms: RTM (Has-RTM), HLE (Has-HLE), GCC
sync bool compare and swap (Has-CAS), and GCC
sync add and fetch (Has-ACC). We select CAS and

ACC because they can be used in miscellaneous
graph codes such as BFS (a FF&MF algorithm),
PR (a FF&AS algorithm), and ST Connectivity (a
FR&AS algorithm) [27]. For BG/Q we analyze:
IBM XLC compare and swap (BGQ-CAS) and GCC
sync add and fetch (BGQ-ACC). We compare two

modes of HTM in BG/Q: the short running mode [33]
(BGQ-HTM-S) that bypasses L1 cache and performs better
for shorter transactions, and the long running mode [33]
(BGQ-HTM-L) that keeps speculative states in L1 and is
better suited for longer transactions [33].
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Figure 4: (§ 5.3) The validation of the performance
model.

5.3 Performance Model

Our performance model targets graph processing and we
argue in terms of activities and accessed vertices. We
predict that an activity implemented as a transaction that
modifies one vertex is more computationally expensive
than an equivalent single atomic. Yet, the transactional
overheads (starting and committing) may be amortized
with coarser transactions and respective activities would
outperform a series of atomics for a certain number of
accessed vertices.

We now model the performance to determine the ex-
istence of crossing points; out model includes both the
execution of the operations and fetching the operands
from the memory. The total time to execute an activity
that modifies N vertices (using either atomics or HTM)
can be modeled with a simple linear function with N as
the argument. We denote the slope and the intercept pa-
rameters of a function that targets atomics as AAT and
BAT ; the respective parameters for HTM are AHT M and
BHT M . We predict that BHT M > BAT due to high trans-
actional overheads. On the contrary, we conjecture that
AHT M < AAT because HTM overheads will grow at a
significantly lower rate (determined by accesses to the
memory subsystem) than that of atomics.

We illustrate the model validation for CAS in Figure 4;
we plot only the results for RTM on Has-C and the long
mode HTM on BGQ because all the other results differ
marginally and follow similar performance patterns. We
use linear regression to calculate AAT , BAT , AHT M , and
BHT M . The analysis indicates that the model matches
the data. While a more extended model is beyond the
scope of this paper, our analysis illustrates that it is pos-
sible to amortize the transactional overhead with coarser
activities. We now proceed to a performance analysis
that illustrates various tradeoffs between respective HTM
parameters.

8



2.4

2.6

2.8

3.0

3.2

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
ti
m

e
 [

s
]

BGQ mechanism

HTM−Long−Mode
HTM−Short−Mode

No aborts due to

bu er over ows

Atomic CAS

(a) BFS runtime (T = 1) (§ 5.5.1).

0.35

0.40

0.45

0.50

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
ti
m

e
 [

s
]

BGQ mechanism

HTM−Long−Mode
HTM−Short−Mode

3.2%

3.7%

4%

4%
2%

0.6%

0.002%

0.4%

Atomic
CAS

(b) BFS runtime (T = 16) (§ 5.5.1).

0.2

0.3

0.4

0.5

0.6

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
ti
m

e
 [

s
]

BGQ mechanism

HTM−Long−Mode
HTM−Short−Mode

5.7%

5.5%

5.9%

5.5%

5.5%

5.9%

6.7%

0.03%

0%

Atomic CAS

(c) BFS runtime (T = 64) (§ 5.5.1).

1e+02

1e+04

1e+06

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
n
u

m
b

e
r

Transactions

Aborts

Aborts due to
reaching the max.
number of allowed
rollbacks (bu er

over ows, memory
con icts)

(d) BG/Q events (T = 64) (§ 5.5.1).

0.20

0.25

0.30

0.35

0.40

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
ti
m

e
 [

s
]

Has−C mechanism

HTM−HLE
HTM−RTM

3.9%

13%

75%

96%

<1%

96%

98%

Atomic CAS

(e) BFS runtime (T = 1) (§ 5.5.2).

0.075

0.100

0.125

0.150

0 100 200 300

Transaction size (M) [vertices]

T
o

ta
l 
ti
m

e
 [

s
]

Has−C mechanism

HTM−HLE
HTM−RTM

71%

68%

78%

88%
97%

88%

<1%

Atomic CAS

(f) BFS runtime (T = 4) (§ 5.5.2).
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(g) BFS runtime (T = 8) (§ 5.5.2).
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Figure 3: (§ 5.5) The analysis of the performance of Graph500 OpenMP BFS implemented with hardware transactions
on BGQ (Figures 3a-3d), Has-C (Figures 3e-3h), and Has-P (Figures 3i-3l). In each figure we vary the size of the
transactions M (i.e., the number of vertices visited). We also present the results for BFS implemented with atomics
(horizontal lines). For BGQ, the percentages indicate the ratios of the numbers of serializations caused by reaching the
maximum possible number of rollbacks to the numbers of all the aborts. For Haswell, the percentages are the ratios
of the aborts due to HTM buffer overflows to all the aborts. Bolded numbers indicate the points with the minimum
runtime per figure. We do not include the numbers for Haswell HLE because it does not enable gathering more detailed
statistics [37]. Figures 3d, 3h, and 3l present the total number of HTM events (transactions, aborts, buffer overflows)
for every analyzed M.
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5.4 Single-vertex Activities

First, we analyze the performance of single-vertex activ-
ities. The results are illustrated in Figure 2. Has-C and
Has-P follow similar performance trends and we show
only the former (denoted as Has); we thus illustrate the
results for both a multicore off-the-shelf system and a
manycore high performance machine (BGQ).

5.4.1 Activity 1: Marking a Vertex as Visited

Here, each thread uses a CAS or an equivalent HTM code
to atomically mark a single vertex; see Fig. 2a-2b, Ta-
ble 2c. This activity may be used in BFS or any other
related algorithm such as Single Source Shortest Path
(SSSP). We analyze a negligibly contended scenario that
addresses sparse graphs (Fig. 2a; a vertex is marked 10
times to simulate low contention) and a more contended
case for dense graphs with high d̄ (Fig. 2b; a vertex is
marked 100 times). We repeat the benchmark 1000 times
and derive the average total time to finish the operations.

Figure 2a shows that Has-CAS finishes fastest and is
slightly impacted by the increasing T (≈50% of differ-
ence between the results for T = 4 and T = 8). This
is because Has-CAS locks the respective cache line, caus-
ing contention in the memory system. Both Has-RTM and
Has-HLE have 1.5-3x higher latency than Has-CAS, with
Has-RTM being 5-15% faster than Has-HLE. Their per-
formance is not influenced by the increasing T as they
rarely abort. Then, BGQ-HTM-S and BGQ-HTM-L are more
sensitive to the growing T and their performance drops
11x when switching from T = 1 to T = 64 due to ex-
pensive aborts. As expected, BGQ-HTM-S is faster than
BGQ-HTM-L, but as T increases it also aborts more fre-
quently, and becomes ≈2x less efficient (T = 64) with
37.5% more aborts. BGQ-CAS is least affected by the in-
creasing T .

Figure 2b shows that Has-RTM, BGQ-CAS, BGQ-HTM-S,
and BGQ-HTM-L follow similar performance patterns
when threads access the vertex 100 times. The perfor-
mance of Has-HLE drops rapidly as it always performs
the costly serialization after the first abort and thus forces
all other transactions to abort. The latency of Has-CAS
grows proportionally to the contention in the memory
system. It stabilizes at T = 8 as for T > 8 no more oper-
ations can be issued in parallel.

5.4.2 Activity 2: Incrementing Vertex Rank

This activity can be used to implement PR. Here, each
thread increments the rank of a single vertex 10 times
(Figure 2d) and 100 times (Figure 2e) with an ACC or
an equivalent HTM code; see Table 2c for details. The
most significant difference between the previous and the

current benchmark is that the total time and the num-
ber of aborts of Has-RTM and Has-HLE grow very rapidly
in both scenarios as T scales. This is because in the
HTM implementation of ACC, the rank of the vertex
is modified by each transaction, generating a consider-
able number of conflicts and thus aborts. On the con-
trary, the HTM implementation of CAS generates few
memory conflicts: once the vertex id is swapped, other
threads only read it and do not modify it. BGQ-HTM-S and
BGQ-HTM-L follow a similar trend, with ≈3x more aborts
than in the previous CAS benchmark.
Discussion We present the details of the above analysis
in Tables 2c and 2f. We show that the considered single-
vertex activities are in most cases best implemented with
atomics. HTM is more performant only in processing
dense graphs with algorithms that use CAS (e.g., BFS)
on Haswell. We also conclude that while atomic CAS is
more expensive than ACC, HTM implementation of sin-
gle ACC is slower (≈100x for RTM and ≈10x for BG/Q
HTM) than that of CAS as it generates more memory
conflicts and thus costly aborts.

5.5 Multi-vertex Activities

The performance analysis of single-vertex intra-node ac-
tivities illustrates that in most cases a transaction modi-
fying a single vertex is slower than an atomic operation.
We now analyze if it is possible to amortize the cost of
starting and aborting transactions by enlarging their size,
i.e., coarsening. This section extends the model analy-
sis (§ 5.3) by introducing effects such as memory con-
flicts or HTM buffer overflows. We perform the anal-
ysis for the highly-optimized OpenMP BFS Graph500
code [27]. We modify the code so that a single trans-
action atomically visits M vertices and we evaluate the
modified code for M between 1 and 320 with the inter-
val of 16. We present the results for three scenarios: a
single-threaded execution (T = 1 for BGQ, Has-C, and
Has-P), a single thread per core (T = 16 for BG/Q, T = 4
for Has-C, and T = 12 for Has-P), and a single thread
per SMT hardware resource (T = 64 for BG/Q, T = 8
for Has-C, and T = 24 for Has-P). We use Kronecker
graphs [21] with the power-law vertex degree distribu-
tion and |V | = 220, |E| = 224. The results are shown in
Figure 3.

5.5.1 BG/Q (Supercomputer)

Figures 3a-3d present the analysis for BG/Q. For T = 1
the runtime of both HTM-Long-Mode and HTM-Short-Mode

is always higher than that of Atomic-CAS and it decreases
initially with the increasing M because higher M reduces
the number of transactions required to process the whole
graph and thus amortizes the overhead of starting and
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Figure 5: (§ 5.5 & § 5.6) The comparison of the percentage of the reasons of aborts on Has-C and Has-P (Figures 5a
and 5b) and the analysis of the performance of inter-node activities on BG/Q and Has-P. The results for BG/Q are
following: marking a remote vertex as visited (Figures 5c and 5d), incrementing a vertex’ rank (Figures 5e and 5f),
and executing distributed transactions (Figure 5i). The results for Haswell are following: marking a remote vertex as
visited (Figure 5g) and incrementing a vertex’ rank (Figure 5h).

committing transactions. The runtime of HTM-Short-Mode
becomes higher with the increasing M > 32 because this
mode is better suited for short transactions. The runtime
of HTM-Long-Mode decreases as expected and it stabilizes
at M ≈ 240. For T = 16, initially the runtime drops
rapidly for both HTM modes to reach the minimum (ob-
tained for Mmin = 80 in HTM-Short-Mode). Again, this
effect is caused by amortizing the overheads of com-
mits/aborts with coarser transactions. Beyond Mmin the
runtime slowly increases with M due to more frequent
serializations caused by reaching the maximum number
of allowed rollbacks (BGQ does not enable gathering
more detailed statistics but we predict that these serial-
izations are due to the higher number of HTM buffer
overflows and memory conflicts). HTM-Long-Mode is never
more performant than Atomic-CAS. HTM-Short-Mode be-
comes more efficient than Atomic-CAS for M = 32 and
achieves the speedup of 1.11 at Mmin = 80. A similar
performance pattern can be observed for T = 64; this
time Mmin = 144 in HTM-Short-Mode with the speedup of
1.49 over Atomic-CAS. The runtime becomes dominated
by aborts for M > 144; cf. Figure 3d with more detailed
numbers of aborts.

5.5.2 Has-C (Commodity Machine)

The results of the analysis for Has-C are presented in
Figures 3e-3h. In each scenario (T = 1,4,8) the per-

formance of both HTM-RTM and HTM-HLE decreases with
increasing M. Several outliers are caused by disadvan-
tageous graph data layouts that entail more aborts due to
the limited associativity of L1 cache (8-way associative
cache) that stores speculative states in Haswell [37]. We
perform a more detailed analysis for M ∈ {1, ...,16} to
find out that Mmin = 2. HTM-RTM becomes less performant
than HTM-HLE at M≈200 because the cost of serializations
due to the HTM buffer overflows dominates the runtime
of HTM-RTM beyond this point (serializations in HTM-HLE

are implemented in hardware [37], while in HTM-RTM they
have to be implemented in software).

5.5.3 Has-P (High-Performance Server)

The analysis of Has-P is presented in Figures 3i-3l. The
performance trends are partially similar to the observa-
tions for Has-C; especially for lower thread counts (T ≤
4). A distinctive feature is a significantly lower number
of HTM buffer overflows than in Has-C. To gain more
insight we performed an additional analysis to compare
the number of memory conflicts and HTM buffer over-
flows with varying T for fixed M = 2. We present the
results in Figures 5a-5b. Surprisingly, we observe Has-
C has significantly more buffer overflows than memory
conflicts for the increasing T ; a reverse trend is observed
on Has-P. This interesting insight may help improve the
design of future HTM architectures.
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Figure 6: (§ 6.1) The overview of the performance of intra-node Graph500 BFS implemented with atomics
(Graph500-BGQ, Graph500-Haswell), AAM RTM (AAM-Haswell), and the short mode BG/Q HTM (AAM-BGQ). We vary
|V | and d̄; T = 64 (on BG/Q) and T = 8 (on Has-C).

Discussion Our analysis shows that RTM is more
vulnerable to aborts than BG/Q HTM. The difference
between the number of transactions and aborts never
drops below 25% for HTM in BG/Q for any analyzed M
(cf. Figure 3d), while for RTM this threshold is achieved
for M = 144 (Has-C). Another discovery is that Has-P
is only marginally impacted by buffer overflows (¡1% of
all the aborts for T = 24 and M = 320). On the con-
trary, aborts in Has-C are dominated by HTM buffer
overflows that constitute more than 90% of all the aborts
for M > 64. The only exception are the data points where
the number of overflows drops rapidly as aborts become
dominated by the limited L1 cache associativity (a simi-
lar effect is visible for Has-P). This effect is not visible in
BG/Q because it stores its speculative states in its L2 16-
way associative cache [33], while both Has-P and Has-C
have 8-way associative L1s.

We conclude that the coarsening of transactions
provides significant speedups (up to 1.51) over the
Atomic-CAS baseline on BGQ and Has-C; Has-P does not
offer any speedups due to the overheads generated by
memory conflicts. We find the following optimum trans-
action sizes for PowerPC in BG/Q: Mmin = 80 (T = 16),
Mmin = 144 (T = 64). For x86 (Has-C) Mmin = 2 for
T ∈ {4,8}. We will use these values in Section 6 to ac-
celerate Graph500 [27] for different types of graphs.

5.6 Activities Spawned on a Remote Node

We now analyze the performance of activities spawned
on a remote node. We implement such activities as hard-
ware transactions triggered upon receiving an atomic ac-
tive message. We again test both the long and the short
running mode (on BG/Q) and RTM/HLE (on Haswell).

To reduce the overhead of sending and receiving an
atomic active message and save bandwidth, we use ac-
tivity coalescing: activities flowing to the same target are
sent in a single message.

We run the benchmarks on BG/Q and Greina (Has-P);
we skip Has-C because the Trivium server is not a dis-
tributed memory machine. On BG/Q, we compare inter-
node activities to optimized remote one-sided CAS and
ACC atomics provided by the generic function PAMI Rmw
in the IBM PAMI communication library [17]. On Has-P
we compare activities to remote atomic operations pro-
vided by MPI-3 RMA [26] implemented over the Infini-
Band fabric. We evaluate the performance of marking
a remote vertex as visited (addressing distributed BFS
computations) and incrementing the rank of a remote
vertex (addressing distributed PageRank).

5.6.1 BG/Q (Supercomputer)

We first measure the time it takes a process pi to mark
213 vertices stored on a node n j as visited (targeting dis-
tributed BFS). The results are presented in Figure 5c.
Without coalescing, HTM activities (Inter-node-HTM-L
for the long and Inter-node-HTM-S for the short mode)
are ≈5x slower than PAMI atomics (Inter-node-CAS).
Still, for Ccross = 16 Inter-node-HTM-S becomes more
performant. Second, we scale the number of nodes N.
Figure 5d shows the time to mark a vertex stored in pro-
cess pN’s memory by N−1 other processes. We use the
short HTM mode. Coalesced AAMs (Inter-node-HTM-C)
outperform Inter-node-CAS ≈5-7 times.

We also evaluate an inter-node activity that increments
the rank of a vertex (targeting distributed PR). We per-
form analogous benchmarks as for the remote CAS; we
present the results in Figures 5e-5f. Implementing ACC
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using HTM again generates costly aborts that dominate
the runtime; however coalescing enables a speedup of
≈20% (for the short HTM running mode) over highly
optimized PAMI atomics.

5.6.2 Has-P (High-Performance Server)

Here, we test the performance of inter-node activities im-
plemented on Has-P. Our testbed has two nodes, thus we
only vary C. We present the results in Figures 5g (CAS)
and 5h (ACC). Here, setting C = 2 enables AAM to out-
perform remote atomics provided by MPI-3 RMA.

5.7 Distributed Activities
Finally, we test the ownership protocol for executing ac-
tivities that span multiple nodes (see Figure 5i for BGQ
results). Here, each process issues x transactions; each
transaction marks a local and b remote randomly selected
vertices. We compare four scenarios: O-1 (x = 103,a =
5,b = 1), O-2 (x = 104,a = 5,b = 1), O-3 (x = 103,a =
7,b= 3), and O-4 (x= 104,a= 7,b= 3). We measure the
total time to execute transactions. O-1 finishes fastest, O-3
is slower as more remote vertices have to be acquired.
O-2 and O-4 follow the same performance patterns; ad-
ditional overheads are due to the backoff scheme. If no
time is spent on backoff, then the protocol may livelock
and may make no progress.

We conclude that AAM can be used in various envi-
ronments (e.g., IBM networks or InfiniBand) to enable
remote transactions and to accelerate distributed process-
ing.

6 Evaluation

We now use AAM to accelerate the processing of large
Kronecker [21] and Erdős-Renyi [9] (ER) graphs with
different vertex distributions (power-law, binomial, Pois-
son). We also evaluate real-world SNAP graphs2. We
evaluate BFS and PR because they are the basis of vari-
ous data analytics benchmarks such as Graph500 and be-
cause they are proxies of many algorithms such as Ford-
Fulkerson.

6.1 BFS: Massively-Parallel Manycores
We first evaluate the speedup that AAM delivers in
highly-parallel multi- and manycore environments.
Comparison Baseline: Here, we use the

OpenMP Graph500 highly optimized reference code [27]
(Graph500-BGQ, Graph500-Haswell) based on atomics as
the comparison baseline. The baseline applies several

2Available at https://snap.stanford.edu/data/index.html.

optimizations; among others it reduces the amount of
fine-grained synchronization by checking if the vertex
was visited before executing an atomic.

We compare the Graph500 baseline with the coarsened
variants that use the short mode HTM in BG/Q (AAM-BGQ)
and RTM in Haswell (AAM-Haswell). Here, we only use
Has-C (denoted as Haswell) because it provides higher
speedups over atomics than Has-P as we show in Fig-
ure 3. The long mode and HLE are omitted as they fol-
low similar performance patterns and vary by up to 10%.
We set T = 64 (for BG/Q) and T = 8 (for Haswell) for
full parallelism.

6.1.1 Processing Kronecker Power-Law Graphs

Here, we use the results of the analysis in Section 5
and set Mmin ∈ {2,80,144} for the most advantageous
size of transactions on BG/Q and Haswell. We present
the results in Figure 6. We scale |V | from 220 to 228,
and we use d̄ ∈ {1,2, ...,256}; highest values generate
graphs that fill the whole available memory. For BG/Q,
AAM-BGQ outperforms Graph500-BGQ by up to 102% for a
graph with ≈2 millions vertices and d̄ = 4. For higher
d̄ AAM-BGQ becomes comparable to Graph500-BGQ. This
is because adding more edges for fixed |V | generates
more transactions that conflict and abort more often. For
Haswell, AAM consistently outperforms Graph500 by
up to 27%. The speedup does not change significantly
when increasing d̄. This is because we use smaller trans-
actions in AAM-Haswell (M = 2) than in AAM-BGQ (M =
144) and thus they do not incur considerably more mem-
ory conflicts when d̄ is increased.

6.1.2 Processing Real-World Graphs

Next, we evaluate AAM for real-world graphs (see Ta-
ble 1). For this, we extend Graph500 so that it can
read graphs from a file. We selected directed/undirected
graphs with |V | > 250k that could fit in memory and
we excluded graphs that could not easily be loaded into
Graph500 framework (e.g., amazon0505).

BlueGene/Q: The tested graphs are generally
sparser than the analyzed Kronecker graphs. We discov-
ered that the optimum M is smaller than 144 (we set it
to 24). This is because in dense graphs more data is
contiguous in memory and thus can be processed more
efficiently by larger transactions. The results show that
graphs with similar structure entail similar performance
gains. The highest S (speedup) is achieved for CNs (up
to 3.67) and WGs (up to 1.91). SNs, PNs, and CGs offer
moderate S (1.14-1.67). RNs entail no significant change
in performance. We also searched for optimum values
of M for specific graphs; this improves S across all the
groups. The results indicate that respective groups have
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Input graph properties BG/Q analysis Haswell analysis

Type ID Name |V | |E| S over g500
(M = 24) M S over

g500

S over
g500

(M = 2)

S over
Galois

(M = 2)
M S over

g500
S over
Galois

S over
HAMA

S over
SNAP

Comm. networks
(CNs)

cWT wiki-Talk 2.4M 5M 2.82 48 3.35 0.91 1.22 6 0.96 1.28 344 > 104

cEU email-EuAll 265k 420k 3.67 32 4.36 0.76 0.88 4 0.97 1.12 1448 273

Social
networks

(SNs)

sLV soc-LiveJ. 4.8M 69M 1.44 12 1.56 1.05 1.1 3 1.07 1.12 > 104 > 104

sOR com-orkut 3M 117M 1.22 20 1.27 1.06 0.69 4 1.13 0.74 > 104 > 104

sLJ com-lj 4M 34M 1.44 12 1.54 1.03 1.03 4 1.04 1.04 603 > 104

sYT com-youtube 1.1M 2.9M 1.67 8 1.84 0.96 1.1 5 0.98 1.11 670 6164
sDB com-dblp 317k 1M 1.33 8 1.80 ≈1 2.5 2 ≈1 2.53 2160 2172
sAM com-amazon 334k 925k 1.14 8 1.62 1.04 1.64 2 1.04 1.64 1426 1356

Purchase
network (PNs) pAM amazon0601 403k 3.3M 1.45 8 1.91 ≈1 1.25 3 1.03 1.30 618 2878

Road networks
(RNs)

rCA roadNet-CA 1.9M 5.5M ≈1 2 1.59 1.33 1.74 8 1.38 1.80 > 104 > 104

rTX roadNet-TX 1.3M 3.8M ≈1 2 1.53 1.29 1.89 6 1.42 2.08 > 104 > 104

rPA roadNet-PA 1M 3M ≈1 2 1.52 ≈1 2.00 9 1.07 2.16 > 104 > 104

Citation
graphs (CGs) ciP cit-Patents 3.7M 16.5M 1.16 8 1.57 1.01 1.26 2 1.01 1.26 1875 > 104

Web graphs
(WGs)

wGL web-Google 875k 5.1M 1.78 12 2.08 0.98 1.26 6 1.06 1.35 365 3950
wBS web-BerkStan 685k 7.6M 1.91 24 1.91 0.93 1.31 5 1.07 1.40 755 7125
wSF web-Stanford 281k 2.3M 1.89 24 1.89 0.98 1.54 5 1.07 1.58 1077 1570

Table 1: (§ 6.1.2) The performance of AAM for real-world graphs. S and g500 denote speedup and Graph500. ≈1
indicates that the given S ∈ (0.99;1.01).

similar optimum values of M. The differences are due
to the structures of the graphs that may either facilitate
coarsening and reduce the number of costly aborts (CNs
and WGs) or entail more significant overheads (RNs).

Haswell: Here, we compare AAM to several state-
of-the-art graph processing engines: SNAP [20] (repre-
sents network analysis and data mining libraries), Ga-
lois [16] (represents runtime systems that exploit amor-
phous data-parallelism), and HAMA [30] (an engine
similar to Pregel [24] that represents Hadoop-based BSP
processing engines). We do not evaluate these engines on
BG/Q due to various compatibility problems (e.g., BG/Q
does not support Java required by HAMA). BFS in Ga-
lois only returns the diameter. We modified it (with fine
locks) so that it constructs a full BFS tree, analogously
to AAM and Graph500.

First, we set M = 2. While AAM is in general faster
than Graph500 (up to 33% for rCA), several inputs entail
longer AAM BFS traversals. AAM is up to a factor of
two faster than Galois but is slower for two inputs (cEU
and sOR). There is some diversity in the results because
AAM on Haswell is significantly more sensitive to small
changes of M than on BG/Q. Thus, we again searched
for the optimum M for each input separately which re-
sulted in higher AAM’s speedups. The performance of
HAMA and SNAP is generally much lower than AAM.
HAMA suffers from overheads caused by the underly-
ing MapReduce architecture and expensive synchroniza-
tion. The analyzed real-world graphs have usually high
diameters (e.g., 33 for sAM) and thus require many BSP
steps that are expensive in HAMA. This is especially vis-
ible for RNs that have particularly big diameters (554 for

rCA) and accordingly long runtimes. As we will show
in the next section, processing Kronecker graphs with
lower diameters reduces these overheads. We also inves-
tigated SNAP and we found out that it is particularly in-
efficient for undirected graphs and it does not efficiently
use threading. Our final discovery is that, similarly to
BG/Q, respective groups of graphs have similar optimum
values of M.

6.1.3 Evaluating the Scalability of AAM

Finally, we evaluate the scalability of AAM by varying
T . The results are presented in Figure 7a (BG/Q) and 7b
(Haswell). We use a Kronecker graph with 221 vertices
and 224 edges. We vary T between 1 and the number of
available hardware threads. The BG/Q results indicate
that AAM utilizes onnode parallelism more efficiently
than Graph500. For Haswell, the performance patterns
for AAM and Graph500 are similar; both frameworks
deliver positive speedups for any T and outperform other
schemes by ≈20-50% (Galois) and ≈2 orders of mag-
nitude (HAMA). We skip SNAP for clarity; it is consis-
tently 2-3x slower than HAMA.

6.2 PR: Distributed Memory Machines
As the last step, we provide an initial large-scale evalu-
ation of AAM in a distributed environment. We select
PR to illustrate that expensive and numerous aborts gen-
erated by the HTM implementation of ACC (cf. § 5.4.2)
can be amortized with the coalescing of activities. We
compare AAM to a version of Parallel Boost Graph
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Figure 7: The analysis of the performance of BFS when varying T (§ 6.1.3, Figures 7a-7b), and the overview of the
performance of distributed PR (§ 6.2, Figures 7c-7e).

Library (PBGL) [10] based on active messages. The
utilized variant of PBGL applies various optimizations;
for example it processes incoming edges to reduce the
amount of synchronization and to limit the performance
overheads caused by atomics. We run the bench-
marks on BG/Q to enable large-scale evaluation. We
use ER graphs with the probability parameter ER ∈
{0.005,0.0005} and the number of vertices up to 223.
PBGL does not support threading, we thus spawn multi-
ple processes per node and an equal number of threads in
AAM; we scale T until PBGL fills in the whole memory.

The results of the analysis are presented in Figure 7.
We scale N (Figure 7c), T (Figure 7d), and |Vi| (Fig-
ure 7e). In each scenario AAM outperforms PBGL ≈3-
10 times thanks to the coalescing of activities and more
efficient utilization of intra-node parallelism.

7 Related Work and Discussion

The challenges connected with the processing of graphs
are presented by Lumsdaine et al. [23]. Exam-
ple frameworks for parallel graph computations are
Pregel [24], PBGL [10], HAMA [30], GraphLab [22],
and Spark [38]. A recent comparison of various engines
was done by Satish et al. [29]. AAM differs from these
designs as it is a mechanism that can be used to imple-
ment abstractions and to accelerate processing engines.
It uses HTM to reduce the amount of synchronization
and thus to accelerate graph analytics.

GraphBLAS [25] is an emerging standard for express-
ing graph computations in terms of linear algebra opera-
tions. AAM can be used to implement the GraphBLAS
abstraction and to accelerate the performance of graph
analytics based on sparse linear algebra computations.

The Galois runtime [15] optimizes graph processing
by coarsening fine graph updates. AAM can be inte-
grated with Galois. In AAM, we focus on scalable tech-
niques for implementing coarsening with HTM. First,
we provide a detailed performance analysis of HTM for

graph computations, a core paper contribution. Instead,
Galois mostly addresses locking [16]. Second, contrary
to Galois, AAM targets both shared- and distributed-
memory systems. Third, our work performs a holistic
extensive performance analysis of coarsening. Instead,
coarsening in Galois is not evaluated on its own. We con-
clude that AAM’s techniques and analysis can be used to
accelerate the Galois runtime.

Active Messages (AM) were introduced by Eicken
et al. [32]. Various AM implementations were pro-
posed [8, 35, 36, 17, 2]. Our work enhances these de-
signs by combining AM with HTM. We illustrate how to
program AAM and we conduct an extensive analysis to
show how to tune AAM’s performance on state-of-the-
art manycore architectures.

Transactional memory was introduced by Herlihy et
al. [12]. Several implementations of HTM were intro-
duced, but their performance was not extensively ana-
lyzed [37, 33, 7, 6]. Yoo et al. [37] present performance
gains from using Haswell HTM in scientific workloads
such as simulated annealing. Our analysis generalizes
these findings, proposes a simple performance model,
and provides a deep insight into the performance of both
BG/Q and Haswell HTM for a broad range of transaction
sizes and other parameters in the context of data analyt-
ics.

Finally, we envision that the potential of AAM could
be further expanded by combining it with some ideas re-
lated to code analysis. For example, one could envision
a simple compiler pass that pattern-matches each single-
vertex transaction against the set of atomic operations to
transform it if possible to accelerate graph processing.
However, such an analysis is outside the scope of this
paper.

8 Conclusion

Designing efficient algorithms for massively parallel and
distributed graph computations is becoming one of the
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key challenges for the parallel programming commu-
nity [16]. Graph processing is fine-grained by nature
and its traditional implementations based on atomics or
fine locks are error-prone and may entail significant over-
heads [16].

We propose Atomic Active Messages (AAM), a mech-
anism that reduces that amount of fine-grained synchro-
nization in graph analytics. AAM is motivated by recent
advances towards implementing transactional memory in
hardware. AAM provides several high performance tech-
niques for executing fine-grained graph modifications as
coarse transactions; it facilitates the utilization of state-
of-the-art hardware mechanisms and resources and can
be used to accelerate highly optimized codes such as
Graph500 by more than 100%.

AAM targets highly-parallel multi- and manycore ar-
chitectures and distributed-memory machines. It pro-
vides a novel classification of atomic active messages
that can be used to design and program both shared-
and distributed-memory graph computations. AAM en-
ables different optimizations from both of these worlds
such as coarsening intra-node transactions and coalesc-
ing inter-node activities. We illustrate how to implement
AAM with HTM; however other mechanisms such as
distributed STM [19], flat-combining [11], or optimistic
locking [18] could also be used.

Finally, to the best of our knowledge, our work is the
first detailed performance analysis of hardware transac-
tional memory in the context of graph computations and
the first to compare HTMs implemented in Intel Haswell
and IBM Blue Gene/Q. Among others, we conjecture
that implementing HTM in the bigger L2 cache (BG/Q)
enables higher performance than in the smaller L1 cache
(Haswell). We believe our analysis and data can be used
by architects and engineers to develop a more performant
HTM that would offer even higher speedups for irregular
data analytics.

We thank Hussein Harake and the whole CSCS team for the
access to the Greina and Monte Rosa machines and for their
excellent technical support.
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