
GDI: A Graph Database Interface Standard

Maciej Besta∗†, Robert Gerstenberger∗†, Nils Blach, Marc Fischer‡, Torsten Hoefler†

ETH Zurich

∗Alphabetical order †Contact authors
‡The author contributed to the specification while at ETH Zurich

Version 0.9 February 7, 2023

1

Contents

1 Overview 4
1.1 GDI and Its Goals . 4
1.2 Labeled Property Graph Model . 4

1.2.1 Additions and Restrictions to the LPG Model 4
1.3 Context of GDI . 5
1.4 Execution and Consistency . 5
1.5 Following Established and Time-Tested Specifications 6
1.6 Low-Level of Specification . 6
1.7 Document Structure . 6

2 Terms and Conventions 7
2.1 Abbreviations and Terms . 7
2.2 Separation of Responsibilities . 7
2.3 Document Notation . 7
2.4 Function Specification . 8
2.5 Semantic Terms . 8
2.6 Data Types . 8

2.6.1 Opaque Objects . 8
2.6.2 Array Arguments . 9
2.6.3 State . 9
2.6.4 Named Constants . 9
2.6.5 Choice . 10
2.6.6 Convention For Strings As Function Parameters 10

2.7 Naming Objects . 10
2.8 Error Handling . 11
2.9 File Path and Access . 12

3 Initialization and Completion 13

4 Databases 14

5 Labels 15

6 Properties 18
6.1 Property Type Creation, Destruction and Update 18
6.2 Predefined Property Types . 21
6.3 Property Type Retrieval . 22
6.4 Property Type Attributes . 23

7 Vertices 25
7.1 Temporary Vertex Object Creation . 25
7.2 Vertex Destruction . 26
7.3 Vertex Edge Handling . 26
7.4 Vertex Label Handling . 27
7.5 Vertex Property Handling . 28

8 Edges 33
8.1 Temporary Edge Object Creation . 33
8.2 Edge Destruction . 33
8.3 Edge Attributes . 34
8.4 Edge Label Handling . 35
8.5 Edge Property Handling . 36

2

9 Indexes 40
9.1 Explicit Index Creation and Destruction . 41
9.2 Index Label Handling . 41
9.3 Index Property Type Handling . 42
9.4 Index Bulk Update . 43
9.5 Querying Indexes . 45

9.5.1 Implicit Indexes . 45
9.5.2 Explicit Indexes . 46

9.6 Index Attributes . 47

10 Basic Datatypes 49
10.1 Character Datatype . 49
10.2 Integer Numeric Datatypes . 49
10.3 Floating Point Numeric Datatypes . 50
10.4 Fixed Point Numeric Datatype . 50
10.5 Time Datatypes . 51
10.6 Arbitrary Data . 53
10.7 Datatype Size . 54
10.8 Conversion . 54
10.9 GDI Operations . 54

11 Transactions 56
11.1 Single Process Transactions . 56
11.2 Collective Read Transactions . 57
11.3 Transaction Attributes . 58

12 Constraints 60
12.1 Creation and Destruction . 61
12.2 Label Conditions . 63
12.3 Property Conditions . 63
12.4 Constraint Handling . 66

13 Error Handling 67

14 Execution Model: Remarks 72
14.1 Primary-Secondary . 72
14.2 Distributed Model . 72

15 Bulk Data Loading 73
15.1 Vertex Loading . 74
15.2 Edge Loading . 76
15.3 Assertions . 78

GDI Constant and Predefined Handle Index 79

GDI Function Index 81

References 83

3

1 Overview

This section outlines the Graph Database Interface (GDI).

1.1 GDI and Its Goals

GDI is a key ingredient in an effort to solve four key challenges of graph databases: high
performance, scalability, programmability, and portability.

GDI is a storage engine layer interface for distributed graph databases. As such, its main
purpose is to abstract the low-level storage layer such that higher-level parts (query methods,
query planners, execution engines, and others) of the graph database can run vendor agnostic.
This also allows to distribute the graph over a network to multiple storage backends (multiple
machines) which might rely on main-memory, hard disks, SSDs, and others. The interface
provides a short list of methods offering CRUD (create, read, update, delete) functionality for
common graph data concepts, including edges, vertices, properties, and labels. The focus lies
on methods with clear semantics such that high-performance implementations are possible that
scale to thousands of cores. Simultaneously, the provided semantics are rich and support different
graph database features such as ACID transaction handling.

This document outlines GDI, consisting of conventions, function definitions and their seman-
tic. The goal of GDI is to help to develop a widely used standard for writing highly scalable
distributed graph databases that is established in both academia and industry.

1.2 Labeled Property Graph Model

A graph is a tuple G = (V,E), where an object v ∈ V is called a vertex. An edge represents a
relation and denotes an unordered pair of vertices that connects said vertices: e = {u, v}. The
set of edges is denoted by E ⊆ V × V . If the relation has an associated direction, an edge is
said to be directed and denotes the ordered pair e = (u, v) of vertices that connects said vertices.
The term origin specifies the starting point of a directed edge and target the end point. From
the origin’s perspective, an edge is outgoing and from the target’s perspective it is incoming.

GDI extends graphs and implements the labeled property graph model (LPG) [2]. LPG
adds labels and properties to the simple graph model G = (V,E). Labels differentiate subsets
of vertices and edges. In addition to labels, each vertex and edge can feature a non-negative
number of properties (sometimes referenced as attributes in scientific literature). A property
is a (key, value) pair, where the key works as an identifier with value being the corresponding
value. A label property graph can formally be modeled as a tuple:

LPG = (V,E, L, lV , lE ,K,W, pV , pE)

V and E are defined in the same way as in the simple graph model above. L denotes the set
of labels. lV and lE describe labeling functions, which map vertices and edges respectively to
a subset of labels: lV : V 7→ P(L) and lE : E 7→ P(L) with P(L) being the power set of
L, meaning all possible subsets of L. In addition to labels, each vertex and edge can have an
arbitrary non-negative number of properties, which are key-value pairs p = (key, value). K is
the set of all possible keys where as W denotes the set of all possible values. So every property
satisfies key ∈ K and value ∈ W . pV (u) describes the set of properties of a vertex u for every
u ∈ V , and pE(e) expresses the set of properties for every edge e ∈ E. Note that only the pair
(key, value) must be unique. Therefore it is allowed to assign multiple properties with the same
key to vertices and edges.

1.2.1 Additions and Restrictions to the LPG Model

To increase the flexibility of the data model, GDI allows to have multiple identical edges between
the same vertices. Also, it is possible to have edges that connect a vertex to itself (loop). Further,
it is possible to have both directed and undirected edges in the same graph.

Additionally, vertices can have identifiers that are specified by the client; this follows the
requirement set by the LDBC council [1] in the SNB benchmark specification [4]. GDI limits
the use of identifiers: All vertex identifiers within a label are unique, but vertices of different

4

labels might share the same identifier. An exception to this rule is when vertices do not have a
label, then it is possible to have multiple vertices with the same identifier.

1.3 Context of GDI

GDI acts as storage engine interface for a distributed graph database. As such, it is the task of
GDI to ensure data consistency, transactional data access, low response times and high through-
put. If the data is distributed among multiple machines, implementations must consider the
CAP-theorem and explicitly state which properties (consistency, availability, partition toler-
ance) they offer. Note that due to the ACID guarantee of GDI, implementations must offer
consistency. This also implies that data might be stored redundant such that fault tolerance is
taken into account.

Table 1 illustrates an example design of a graph database . GDI acts as an API that can be
used by any of the higher layers.

(Layer 6) Client

A client queries the graph database. Typically, the client uses a graph query language to run
traversals and graph matching requests.

(Layer 5) Query Planner

The query planner works in close cooperation with the execution engine to determine an
ordered set of steps to execute the query given by the client.

(Layer 4) Execution Engine

Execution engine distributes workload among multiple machines and aggregate intermediate
results that ran on different processes.

(Layer 3) Query Functions

Query functions consume data from the storage engine and return objects like edges, vertices,
paths, or subgraphs. Aggregation functions are provided to return aggregated values. Further
functionality includes filtering of objects (e.g., by labels or properties).

(Layer 2) Storage Engine (GDI)

Storage engine uses the low-level storage layer to access the graph data. It basically translates
from disk dependent storage (for example CSV, JSON, binary format, block format) to generic
objects. Therefore, this layer provides a rich set of interfaces to create, read, update and delete
(CRUD) vertices, edges and associated labels and properties. This layer should provide ACID
guarantees to the upper layers. If not, then a layer above must handle queries in a way that
they do not interfere.

(Layer 1) Low-Level Storage Layer (Storage Backend)

This layer provides an abstraction for a low-level storage layer such as hard disks (for example
CSV files, JSON, binary formats, block format), RAM, distributed RAM or others. Its goal
is to store the data in a reliable way and provide fast data access.

Table 1: An example layering of a graph database. GDI is an interface for the storage engine.
Extensions such as query planner and execution engine can rely on the properties that GDI
offers.

1.4 Execution and Consistency

GDI is constructed with distributed graph databases in mind, but it can also be used for single-
node or single-core databases. Generally, it is assumed that a set of independent processes run
concurrently in a (tightly coupled) compute cluster. GDI offers no general functionality to the
user to manage the processes as it might be required in a primary-secondary model or a full-
fledged graph database. Instead, it is the responsibility of the user to distribute and assign work
to the processes in the appropriate way.

5

GDI uses different consistency models. GDI guarantees serializability for graph data, such as
vertices, edges and associated labels and properties. Generally, this data can only be altered by
transactions that ensure ACID properties (atomicity, consistency, isolation, durability). Further,
GDI guarantees eventual consistency for global elements, such as labels, property types and
indexes. Since these objects also affect the graph data, this might lead to cases where graph
data becomes inconsistent until the system has converged. Transactions must be able to detect
such state and abort accordingly. GDI provides barrier functions to the user to synchronize the
system. Some GDI functions provide explicit synchronization, which is generally described in
more detail in the function’s specification. Note that implementations might provide consistency
models for global elements that are more restrictive (stronger) than eventual consistency.

1.5 Following Established and Time-Tested Specifications

In GDI, we follow the practice and style of the Message Passing Interface (MPI) [3], an established
API that provides a specification of a communication library for computing clusters. Our main
motivation is the fact that the goals of MPI are very similar to those of GDI, i.e., MPI was
designed to enable portability, programmability, scalability, and high performance.

1.6 Low-Level of Specification

In GDI, we follow MPI and use an analogous “low-level” style of the interface specification, that
is similar to C. This fosters portability across different architectures. However, there is nothing
that prevents potential GDI implementations from adapting an object-oriented style, as long as
they adhere to the GDI semantics. In fact, MPI implementations such as MPICH also provide
“object style” APIs to their communication functions.

1.7 Document Structure

First, terms and conditions are provided (Section 2). Then, we list functions for the general
GDI management such as initialization or completion (Section 3) and for database creation and
destruction (Section 4). Later, we list functions related to the graph metadata, namely labels
(Section 5) and properties (Section 6), and to the graph data, namely vertices (Section 7) and
edges (Section 8). After that, functions for indexes (Section 9), basic datatypes (Section 10),
and transactions (Section 11) are provided. Finally, we list functions related to constraints
(Section 12), error handling (Section 13), and bulk data loading (Section 15).

6

2 Terms and Conventions

This section provides an overview of terms and conventions to describe the graph database
interface.

2.1 Abbreviations and Terms

• Client: A person that runs graph queries using the GDI interface or functionality provided
by the user (e.g., a person implementing applications incorporating graph databases).

• GDI: The graph database interface.

• ID: Identifier.

• Implementor: A person that implements the functions specified by GDI.

• Index: In this context we define an index as a database index. A database index is a
structure which allows to quickly locate an object without having to search through the
whole database.

• Synchronization1: The term is used for process synchronization. It ensures that a set of
processes have reached a common point in their instruction flow.

• UID: Unique identifier.

• User: A person that interacts directly with the GDI interface (e.g., a graph database
developer).

2.2 Separation of Responsibilities

In GDI, we clearly separate the responsibilities of Client, User, and Implementor. While this is
usually obvious, in some cases, we explicitly remark on whether a given aspect of a respective GDI
function, is something that lies within the responsibility of a Client, a User, or an Implementor.
This facilitates working with GDI and clarifies its semantics.

2.3 Document Notation

Across the specification, paragraphs set in the following formats contain complementary material
intended for specific audiences. Some readers may read these sections rigorously, while others
may choose to ignore them.

Rationale. These sections provide the reasoning behind the design decisions made and
are specifically targeted at readers interested in interface design. (End of rationale.)

Advice to users. These sections provide additional information for users, illustrating
certain aspects of using GDI, which are specifically targeted at readers interested in
developing GDI programs. (End of advice to users.)

Advice to implementors. These sections provide further comments for implementors and
are specifically targeted at readers interested in GDI implementations. (End of advice to
implementors.)

1In the literature, the term “coordination” is sometimes also used.

7

2.4 Function Specification

The parameters within function declarations are categorized as IN, OUT, or INOUT, in order to
indicate their respective use within the function to the user. Note, however, that this parameter
categorization is not fine-grained enough for a direct translation into language bindings, such as
const in C. The categories have the following meaning:

• IN: The parameter’s input value may be used by the function, but is not updated during
the execution of the function,

• OUT: The parameter may be updated during the execution of the function, but its input
values is not used,

• INOUT: The parameter’s input value may be used by the function and the parameter may
be updated during the execution of the function.

In several cases GDI uses reference parameters in its function interface. Such references are
either addresses to user-provided buffer space or handles to opaque objects (see 2.6.1 for term
definitions). These parameters are sometimes treated slightly different: If the target of the
reference is modified, then the reference parameter is also categorized as OUT or INOUT, albeit
the reference itself is not modified.

Rationale. The GDI specification attempts to avoid the use of the INOUT category as
much as possible, because more restrictive categorization of parameters results in better
interpretability and fewer erroneous uses. (End of rationale.)

All GDI functions are specified in ISO C 99.

2.5 Semantic Terms

The GDI specification uses the following semantic terms, when discussing GDI functions.

local Any function whose completion, be it successful or unsuccessful, is solely depended on the
locally executing process, is considered local.

collective Any function whose completion, be it successful or unsuccessful, requires all processes
of the database to call said function, is considered collective. Collective functions do not guar-
antee any synchronization, but may be synchonizing. The execution order of collective functions
must be equivalent on all processors.

2.6 Data Types

2.6.1 Opaque Objects

Opaque objects are objects stored in system memory. They are not directly accessible, and their
size and shape is hidden. The user can only access opaque objects via handles that reside in
user-provided space. These handles can be used to access objects, be passed as arguments, as
well as participate in assignments and comparisons, which is essential for validity checks. In GDI,
objects involved in transactions or internal representations of objects such as labels, property
types, transactions, etc. are stored opaquely in system memory and passed to GDI functions via
handle arguments.

Some predefined opaque objects with associated handles are provided by GDI, which must
not be deallocated by the user. Other opaque objects must be allocated and deallocated via
specific functions that match the type of the object. Each allocator function specifies the handle
as an OUT parameter, which will be assigned a valid reference to the allocated opaque object.
On the other hand, each deallocator function specifies the handle as an INOUT parameter, as
the referenced opaque object will be accessed and a typed ”invalid handle” constant will be
returned.

From the user’s perspective, the opaque object becomes inaccessible as soon as the deal-
location function returns, but actual deallocation only occurs once all pending operations, i.e.,
transactions, that involve the object at the time of the deallocation function call, have completed.

8

Note that opaque objects and their handles are process specific, so they are only significant at
their respective allocating process and cannot be shared with other processes via communication.

Rationale. The distinction between opaque objects (in system space) and their handles
(in user space) has two main reasons. Firstly, it conceals the internal representation of
GDI data structures. Secondly, it improves usability, as it relinquishes the responsibility
of ensuring that there are no pending operations involving out-of-scope, opaque objects
to the GDI implementation. This design allows users to deallocate at appropriate times
by simply marking objects for deallocation, relying on the GDI implementation to retain
the object until all pending operations completed.

Requiring handles to support the frequently used operations, assignment and compari-
son, restricts the range of possible implementations, for the benefit of reduced complexity.
Otherwise, arbitrarily typed handles would require additional functions for these oper-
ations, thereby increasing complexity. So, these limitations were placed upon potential
GDI implementations to use native-language assignment and comparison operations and
contribute to the goal of keeping the GDI interface clean and simple. (End of rationale.)

Advice to users. The user is mostly responsible for managing handles, the references, to
opaque objects. While GDI offers functionalities to retrieve handles of all opaque objects
of a given type from a database, the avoidance of situations such as dangling references
is the users purview. (End of advice to users.)

Advice to implementors. GDI intends the allocation and deallocation of objects to
appear to the user as if the information for those objects were copied, so that semantically
opaque objects are separate from each other. However, this does not mean that GDI
implementations may not employ optimisations such as references and reference counting,
if they are hidden from the user. (End of advice to implementors.)

2.6.2 Array Arguments

Some GDI functions accept an array as input parameter. But, whenever an array argument
is used, it must be accompanied by an additional length argument count, which defines the
number of valid entries stored consecutively, at the beginning of the array. It follows that count
must be smaller than or equal to the size of the entire array. If a regular array stores handles
to opaque objects of the same type, it is referred to as an array of handles. Note that in some,
always appropriately indicated cases an array of handles containing NULL handles is considered
valid.

Other GDI functions return an array. The process of returning an array requires three
parameters. Firstly, the user needs to allocate a buffer and pass a pointer to its location via
an OUT parameter. This buffer will be used to store the elements of the array. The user
also supplies an IN parameter (count) to indicate the number of elements the buffer can hold.
Lastly, the function declares the actual number of elements written to the buffer, by setting an
OUT parameter (resultcount). The user can request the function to only return the number
of elements (using the resultcount parameter) and not the array, by setting either the count

parameter to 0 or the buffer pointer to null. Passing null as the resultcount parameter results
in the function to ignore the buffer parameter and return nothing.

2.6.3 State

State information is used as arguments for specific GDI functions. Their values are identified
by names, and they do not support any operation on them. Many GDI functions utilize some
state information, i.e., the GDI CreateIndex function has a state argument itype with values
GDI INDEXTYPE HASHTABLE and GDI INDEXTYPE BTREE.

2.6.4 Named Constants

GDI provides a set of predefined named constand handles. Named constants do not change their
values during execution and can be defined at link-time or compile-time. In either case they can

9

be employed for initializations or assignments, but only compile-time named constants can also
be used for array length declarations and as labels in C switch statements.

Similar to the joint treatment of handles and their respective opaque objects in 2.4, opaque
objects referenced by constant handles are also treated as constants after GDI initialization and
before GDI completion.

The following named constants are required to be defined at compile-time:

GDI MAX DECIMAL SIZE
GDI MAX ERROR STRING
GDI MAX OBJECT NAME

2.6.5 Choice

Some GDI functions accept arguments of choice (or union) data type. This allows users to pass
by reference actual arguments of different types for distinct invocations of the same function.

2.6.6 Convention For Strings As Function Parameters

Some GDI functions take strings as input parameters. Those input strings are expected to be
null terminated and encoded in UTF-8.

Other GDI functions return a UTF-8 encoded string. The process of returning a string
requires three parameters. Firstly, the user needs to allocate a buffer and pass a pointer to its
location via an OUT parameter. This buffer will be used to store the string. The user also
supplies an IN parameter (length) to indicate the number of Bytes (n) that the buffer can
hold. Lastly, the function declares the actual length (in Bytes) of the string written to the
buffer, by setting an OUT parameter (resultlength). Note that this length does not include
the null terminator and cannot exceed n − 1 Bytes, whereby n denotes the size of the buffer.
If the requested string’s length exceeds this limit, it will be truncated to a fitting number of
characters accordingly, so that at most n− 1 Bytes will be written to the buffer (excluding the
null terminator). GDI ensures that the returned string is correctly UTF-8 encoded. The user can
request the function to only return the length of the string (using the resultlength parameter)
and not the string itself, by setting either the length parameter to 0 or the buffer pointer to
null. Passing null as the resultlength parameter results in the function to ignore the buffer
parameter and return nothing.

2.7 Naming Objects

Naming GDI objects by associating them with printable, human-readable identifiers can prove
useful in several scenarios. For instance, when querying the database for labels or property
types, or when examining vertices and edges during graph exploration for debugging purposes.

Functions with a name parameter, which is required to be a UTF-8 encoded character string,
will associate the name with an object. The GDI library will copy the passed string into its local
store, such that the user is free to deallocate it at any time after the call. Note that trailing
spaces in the name parameter will be ignored, while leading spaces are relevant.

Setting the name is a collective operation with the requirement of using the same input
parameter on every process, so that the name for such an object is the same on all processes.

GDI MAX OBJECT NAME restricts the maximum length of names. Any name with a
length of more than GDI MAX OBJECT NAME-1 Bytes (last Byte reserved for the null termi-
nator) will be truncated. Note that the value of GDI MAX OBJECT NAME must be at least
64.

Advice to users. There is no guarantee that names, whose length is smaller than
GDI MAX OBJECT NAME, can always be successfully assigned, as their storage re-
quirements might exceed the remaining space of the GDI library. Thus, the constant
GDI MAX OBJECT NAME should only be treated as a strict upper bound. (End of
advice to users.)

10

Advice to implementors. Name retrieving functions require the user to allocate sufficient
space for names of up to GDI MAX OBJECT NAME length. Thus, implementations that
utilize the heap to allocate space for names should still define GDI MAX OBJECT NAME
to be relatively small. Implementations which preallocate a fixed amount of space for a
name should define GDI MAX OBJECT NAME to be the size of that preallocation. (End
of advice to implementors.)

For a given object, only the last, previously associated name will be returned by a call to a
name retrieving function. These functions require the user to pass a name argument, which will
be used to store a copy of the set name. The user should allocate enough space to store a string
of GDI MAX OBJECT NAME Bytes.

The last Byte of the returned string in the name parameter, located at name[resultlength],
will be used to store a null terminator. The resultlength parameter contains the length of the
retrieved string, which can be at most GDI MAX OBJECT NAME-1.

An erroneous name retrieving function call will return an empty string (”” in C).

Advice to users. It is always safe to print the string returned by a name retrieving
function call, even during an erroneous execution, as implied by the above definition.
(End of advice to users.)

2.8 Error Handling

GDI provides reliable data transmission. It is the implementors responsibility to ensure that
data is always obtained correctly and no communication failure handling functionality is needed.
The implementors need to further ensure that if an unreliable mechanism is used in the GDI
subsystem, the user is oblivious to this, or unrecoverable errors are reported as failures. To
improve interpretability, such failures will be reported as errors in the relevant call, whenever
possible. Similarly, no mechanisms are provided by GDI for handling processor failures.

When errors occur in a GDI program, these errors generally belong to one of two groups.
Firstly, the GDI implementation independent program error, which can occur when invalid
arguments (invalid handle, incorrect buffer size, etc.) are passed to GDI functions. Secondly,
depending on the resource requirements of the GDI program, it might exceed the available system
resources (system buffers, number of pending operations etc.) and cause a resource error.
This is system dependent, but high-quality implementations will make the necessary trade-offs
in favour of the more important resources, in order to alleviate the portability problem this
represents.

All GDI function executions either return a code indicating a successful completion or, when-
ever possible, one of many error codes indication an erroneous execution.

GDI tries to return meaningful error codes for erroneous executions, but its ability to do so
is limited by a multitude of factors. Some errors might be too difficult/expensive to detect in
normal execution mode. Others may be more severe and result in inconsistent state, preventing
GDI from returning to the caller safely. Errors of this nature are for the most part kernel,
hardware, or driver errors.

Further limitations are introduced due to the use of asynchronous operations. Asynchronous
operations (e.g., write accesses) may return with a code indicating successful completion before
actual completion and result in a belated error (e.g., during a commit call). In order to mitigate
this limitation, if possible, GDI will utilize the error argument of a subsequent call, related to
the same operation, to indicate the actual origin of the error.

After an erroneous GDI call has occurred, it is usually possible to recover, especially from
program errors, by aborting the current operation/transaction, retrying, or following a different
execution path. Because of the consistency requirement, data in the database should not have
been altered. Ideally, an erroneous GDI call returns the most relevant error code and localizes
the impact of the error as effectively as possible. For instance, an erroneous GDI Get. . . call
should not overwrite any memory, other than the buffer space specified in the function call for
receiving data. Section 13 elaborates on the state of the database after an erroneous function
call.

GDI Implementations may extend the support of erroneous GDI calls, as defined in this
specification, in a meaningful manner. For example, GDI specifies strict type conversion rules:

11

it is erroneous to convert an integer type to a datetime type. GDI implementations may go
beyond these conversion rules, and provide type conversion by interpreting the integer as Unix
time. It may be helpful to generate warnings for non-conforming behavior.

2.9 File Path and Access

Some GDI functions require file access, e.g. to load bulk data from CSV like files. The path to
such functions is given as null terminated character string and should include the path to the
file and the file name as well. Each GDI implementation must document its file path formatting
requirements, as they are implementation dependent.

Advice to implementors. Implementations should nevertheless conform to certain stan-
dards. For example, on Unix and Unix-like operating systems, a path that starts with
’/’ is treated as an absolute path. Similarly, on operating systems that use the kernel
Microsoft Windows NT, a path that starts with the drive letter and continues with ’:/’

(e.g. ’C:/’) is treated as an absolute path. (End of advice to implementors.)

It is the responsibility of the user to make sure that GDI has the according privileges to read
files.

12

3 Initialization and Completion

GDI wants to maximize source code portability. Portability in this context denotes that no
changes to the source code are required, when transitioning GDI source code from one system to
another. However there are two exceptions: the initialization function GDI Init and the function
call to create a database GDI CreateDatabase (chapter 4).

int GDI Init(int *argc, char ***argv)

GDI Init allocates all necessary internal data structures that are needed to support the
functionality provided by GDI. It is a collective call, and each process must call GDI Init before
any other GDI functions are called. Any additional calls of GDI Init afterwards are erroneous.
GDI Init expects as its arguments either null or argc and argv, the arguments of the main
function.

int GDI Finalize()

GDI Finalize deallocates all internal data structures and memory associated with the GDI
library, including any remaining graph database objects and their associated objects. It is a
collective call, and must be called by each process before the program terminates. Afterwards
no GDI function is allowed to be called, which includes GDI Init.

13

4 Databases

int GDI CreateDatabase(void* params, size t size, GDI Database* graph db)

IN params inital address of implementation specific parameters (choice)
IN size size of the implementation specific parameters in Bytes (non-

negative integer)
OUT graph db graph database object returned by the call (handle)

GDI CreateDatabase will create a database object and allocate all necessary internal data
structures. It is possible to create more than one graph database, which are then identified by
different GDI Database handles.

Rationale. Storing graphs in different graph databases instead of storing them as dis-
connected components, allows to run OLAP style algorithms on each graph separately
and to compute associated metrics with more ease. Another example would be the ease
of implementation of graph compression, where one graph database object stores the
uncompressed graph and another one the compressed graph. (End of rationale.)

The parameters (and their structure) pointed to by params are specific to the respective
GDI implementation, so the user is advised to consult their documentation for more details.
The parameter size provides the size in Bytes of the structure to which params points to. All
input parameters should be the same on all processes.

Rationale. The GDI CreateDatabase function is not portable, due to the implementa-
tion specific parameter params. Making the function portable requires the implementation
to provide reasonable default values. However, the default values might lead to poor per-
formance and undesired behavior such that the user has to consult the implementation’s
documentation anyway. (End of rationale.)

Advice to implementors. The parameter params can be used to pass arbitrary informa-
tion on database creation, such as graph name, maximum storage size, storage directory,
maximum used system memory, fault tolerance behavior and so on. (End of advice to
implementors.)

GDI CreateDatabase is a collective call.

Advice to implementors. We do not explicitly prescribe a barrier semantic to enable
potential optimizations, but GDI CreateDatabase may come with such a semantic, if a
particular implementation deems it necessary. (End of advice to implementors.)

int GDI FreeDatabase(GDI Database* graph db)

INOUT graph db graph database object (handle)

GDI FreeDatabase deallocates all internal data structures and memory associated with the
given graph database object. GDI FreeDatabase will set graph db to GDI DATABASE NULL.
Additionally all objects (labels, property types, indexes and transactions) that are associated
with the graph database graph db will be freed as well, as if the user had called the re-
spective destruction function for each of the handles prior to the call of GDI FreeDatabase.
GDI FreeDatabase is a collective call and graph db should be the same on all processes.

14

5 Labels

Labels provide the notion of categorization to vertices and edges. A label has a unique name.
A label handle acts as identifier and is taken as input for other functions. A vertex or edge
can have zero, one or more labels. Labels are opaque objects, which are stored locally on each
process.

Rationale. Usually, there is only a small set of labels in a graph database. Storing
the label objects locally on each process enables to query labels without relying on other
processes. (End of rationale.)

Labels represent the set L of the labeled property graph model. Labels and property types
can be seen as metadata, since they both describe the respective set of possibilities for a given
graph and not what is actually present in the graph data (vertex and edges). GDI only guarantees
eventual consistency for graph metadata, so usually one of the first steps of creating a graph
database is the creation of labels and property types followed by some form of synchronization
before the first single process transactions are initiated.

GDI offers one predefined label which can be accessed by the GDI LABEL NONE handle.
It can be used to index vertices and edges which do not have a label assigned (see Section 9.2).
The name assigned to this object is ”GDI LABEL NONE”.

int GDI CreateLabel(const char* name, GDI Database graph db, GDI Label* label)

IN name character string stored as the name (string)
INOUT graph db graph database object (handle)

OUT label label object returned by the call (handle)

GDI CreateLabel associates a label with the graph database graph db and allocates a la-
bel object. GDI CreateLabel has to be called before the label will be used for the first time.
GDI CreateLabel is a collective call and all input parameters have to be same on all processes.

The label is named to allow retrieval of handles later. The GDI library will locally store
the character string of name, so name can be allocated on the stack or otherwise immediately
deallocated after the call by the caller. Trailing spaces in name will be ignored, while leading
spaces are relevant. The limit of the name length is GDI MAX OBJECT NAME-1, so that
an additional null terminator can be stored. If the user tries to store names longer than this,
then the name will be truncated. If the label name already exists in the graph database, the
error GDI ERROR NAME EXISTS is returned. If name contains an empty string, the error
GDI ERROR EMPTY NAME is returned.

The call is erroneous if label is a predefined label.

int GDI FreeLabel(GDI Label* label)

INOUT label label object (handle)

GDI FreeLabel removes the given label from its associated graph database. label should
be the same on all processes. The function will deallocate the label object and set label to
GDI LABEL NULL. All vertices or edges with this given label will get the label removed, but
remain in the database. If the label is still associated with any explicit indexes, GDI FreeLabel
will, similarly to GDI RemoveLabelFromIndex, remove the association of the label with the
indexes and entries in the indexes will be updated accordingly (see Section 9.2). Additionally,
any GDI Constraint and GDI Subconstraint object that contains a condition that uses label

will get those conditions marked as stale and in turn also the whole object will be marked as
stale.

GDI FreeLabel is a collective call and will synchronize all processes of the associated graph
database. GDI FreeLabel is an implicit collective write transaction, so all transactions on the
associated graph database must be finished before a process enters the GDI FreeLabel call and no
other transactions on that graph database may be started until the GDI FreeLabel call returns.

15

A call to GDI FreeLabel has a barrier semantic: a process returns from the call only after all
other processes have not only entered their matching call, but also finished the respective changes
to the graph database.

The call is erroneous if label is a predefined label. If after the label is removed, the
graph database contains any vertices without any labels and the same application level ID,
GDI WARNING NON UNIQUE ID is returned.

Advice to users. GDI FreeLabel might warrant extensive changes to the graph database,
so its use might be expensive in terms of performance. (End of advice to users.)

Advice to implementors. The functionality of GDI FreeLabel is provided for complete-
ness of supported graph database operations, but has rarely any use cases in real world
scenarios. Because of the extensive necessary changes to the database, it will be complex
to implement. (End of advice to implementors.)

int GDI UpdateLabel(const char* name, GDI Label label)

IN name character string stored as the name (string)
INOUT label label object (handle)

GDI UpdateLabel updates the name of the given label. It is a collective call and all input
parameters have to be same on all processes.

The GDI library will locally store the character string of name, so name can be allocated
on the stack or otherwise immediately deallocated after the call by the caller. Trailing spaces
in name will be ignored, while leading spaces are relevant. The limit of the name length is
GDI MAX OBJECT NAME-1, so that an additional null terminator can be stored. If the user
tries to store names longer than this, then the name will be truncated. If the name already exists
on a different label of the graph database, the error GDI ERROR NAME EXISTS is returned.
If name contains an empty string, the error GDI ERROR EMPTY NAME is returned.

If name and the name already associated with label are the same, no action is performed.
The call is erroneous if label is a predefined label.

int GDI GetLabelFromName(GDI Label* label, const char* name,

GDI Database graph db)

OUT label label object (handle)
IN name a character string which represents a label name (string)
IN graph db graph database object (handle)

Given the label name as parameter name and the graph database handle as parameter
graph db, the function GDI GetLabelFromName looks up the label handle. If the name is
not found, label contains GDI LABEL NULL. The length of the input string name should be
at most GDI MAX OBJECT NAME-1. GDI GetLabelFromName is a local call.

int GDI GetNameOfLabel(char* name, size t length, size t* resultlength,

GDI Label label)

OUT name stored name for the label (string)
IN length maximum length of name (non-negative integer)

OUT resultlength length of the returned name (non-negative integer)
IN label label whose associated name is retrieved (handle)

GDI GetNameOfLabel retrieves the name associated with label. length denotes the length
of the allocated string name. The buffer to which name points to should be able to hold at
least GDI MAX OBJECT NAME Bytes. resultlength contains on return the length of the
retrieved string. name[resultlength] contains an additional null terminator. Therefore the

16

returned value of resultlength is at most GDI MAX OBJECT NAME-1. If the allocated string
is smaller than the actual label name, the string will be filled, such that a valid UTF-8 string is
returned, and the remaining characters will be omitted. The error GDI ERROR TRUNCATE
will be returned in such an overflow case. If any other error occurs, GDI GetNameOfLabel will
return an empty string. GDI GetNameOfLabel is a local call.

Rationale. Vertices and edges store only the handle of a label. GDI GetLabelName al-
lows the user to get the associated label name for easier identification. (End of rationale.)

int GDI GetAllLabelsOfDatabase(GDI Label array of labels[], size t count,

size t* resultcount, GDI Database graph db)

OUT array of labels array of labels (array of handles)
IN count length of array of labels (non-negative integer)

OUT resultcount number of retrieved labels (non-negative integer)
IN graph db graph database object (handle)

A user might not know what labels are available in a certain graph database object. The
function GDI GetAllLabelsOfDatabase will retrieve all labels currently associated to the given
graph database graph db. The user provides an array for label handles and the parameter count,
which contains the maximum number of label handles that can be written to said array. The pa-
rameter resultcount contains the actual number of label handles written to array of labels.
If the array is smaller than the available number of label handles, the array will be filled and
the remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned
in such an overflow case. GDI GetAllLabelsOfDatabase is a local call.

17

6 Properties

A property is a tuple (key, value), where key ∈ K and value ∈ W (cf. Section 1.2), and can
be assigned to vertices and edges. The key identifies a property and the value is the according
property value. GDI allows that a key can refer to multiple values.

Rationale. GDI bases on the labeled property graph model, in which a tuple (key, value)
is unique per object (vertex/edge). This implies that a key can refer to multiple different
values. (End of rationale.)

A property type describes the key of a property, the datatype of the elements of the property
value and possible limitations. Property types are opaque objects, which are stored locally on
each process.

Rationale. Usually, there is only a small set of property types in a graph database.
Storing the property type objects locally on each process enables to query information
about the property types without relying on other processes. (End of rationale.)

Property types represent the set K of the labeled property graph model. Labels and property
types can be seen as metadata, since they both describe the respective set of possibilities for
a given graph and not what is actually present in the graph data (vertex and edges). GDI
only guarantees eventual consistency for graph metadata, so usually one of the first steps of
creating a graph database is the creation of labels and property types followed by some form of
synchronization before the first single process transactions are initiated.

6.1 Property Type Creation, Destruction and Update

int GDI CreatePropertyType(const char* name, int etype, GDI Datatype dtype,

int stype, size t count, GDI Database graph db,

GDI PropertyType* ptype)

IN name character string stored as the name (string)
IN etype entity type (state)
IN dtype datatype object (handle)
IN stype type of the size limitation (state)
IN count number of elements (positive integer)

INOUT graph db graph database object (handle)
OUT ptype property type object returned by the call (handle)

GDI CreatePropertyType associates a new property type with the graph database graph db

and allocates a property type object. GDI CreatePropertyType has to be called before the
property type will be used for the first time. GDI CreatePropertyType is a collective call and
all input parameters should be the same on all processes.

The property type is named to allow retrieval of the handles later. The GDI library will
locally store the character string of name, so name can be allocated on the stack or otherwise
immediately deallocated after the call by the caller. Trailing spaces in name will be ignored, while
leading spaces are relevant. The limit of the name length is GDI MAX OBJECT NAME-1, so
that an additional null terminator can be stored. If the user tries to store names longer than
this, then the name will be truncated. If the property type name already exists in the graph
database, the error GDI ERROR NAME EXISTS is returned. If name contains an empty string,
the error GDI ERROR EMPTY NAME is returned.

The call is erroneous if ptype is a predefined property type.
GDI allows to impose certain limitations on the property type to enable optimizations. The

state variable etype informs the library on how often entries of the property type will occur.
etype is restricted to the two values GDI SINGLE ENTITY and GDI MULTIPLE ENTITY. A
property type with the GDI SINGLE ENTITY attribute will only have one property entry on a
single object (vertex/edge), while a property type with the GDI MULTIPLE ENTITY attribute
allows multiple entries of the same property type on a single object.

18

The datatype provided by the parameter dtype informs the library about the datatype of
the elements of the property value and enables the library to perform operations on property
values.

The parameters stype and count work in conjunction. The state variable stype informs the
library whether the property type has a certain size limitation. stype is restricted to the three
values GDI FIXED SIZE, GDI MAX SIZE and GDI NO SIZE LIMIT. If GDI FIXED SIZE is
provided, the property value will always occupy a fixed amount of space. Such a property value
will always consists of count elements (inclusive) of the datatype dtype. The library will enforce
that limitation and return an error, if the user attempts to add a property of type ptype to an
object with a different amount of elements. If GDI MAX SIZE is provided instead, the library
allows the user to store up to count elements (inclusive) of the datatype dtype as the value of
a property of type ptype. If the user attempts to store more than count elements, the library
will return an error. If GDI NO SIZE LIMIT is provided in stype, then no limitation on the
size of the value of a property of type ptype is enforced and count is ignored by the library.

In all cases, the elements are stored consecutively.

Rationale. These limitations are provided, so that the library can use the additional
information for optimizations. However it imposes no restrictions on the use of the LPG
model in GDI, since the user can always provide GDI MULTIPLE ENTITY for etype

and GDI NO SIZE LIMIT for stype to fully support the LPG model. (End of rationale.)

int GDI FreePropertyType(GDI PropertyType* ptype)

INOUT ptype property type object (handle)

GDI FreePropertyType removes the given property type ptype from its associated graph
database. ptype should be the same on all processes. The function will deallocate the property
type object and set the parameter ptype to GDI PROPERTY TYPE NULL. All vertices or
edges with properties of the given property type will get those properties removed, but remain
in the database. If ptype is still associated with any explicit indexes, GDI FreePropertyType
will, similarly to GDI RemovePropertyTypeFromIndex, remove the association of the property
type with the indexes and entries in the indexes will be updated accordingly (see Section 9.3).
Additionally, any GDI Constraint and GDI Subconstraint object that contains a condition that
uses ptype will get those conditions marked as stale and in turn also the whole object will be
marked as stale.

GDI FreePropertyType is a collective call and will synchronize all processes of the asso-
ciated graph database. GDI FreePropertyType is an implicit collective write transaction, so
all transactions on the associated graph database must be finished before a process enters the
GDI FreePropertyType call and no other transactions on that graph database may be started
until the GDI FreePropertyType call returns. A call to GDI FreePropertyType has a barrier
semantic: a process returns from the call only after all other processes have not only entered
their matching call, but also finished the respective changes to the graph database.

The call is erroneous if ptype is a predefined property type.

Advice to users. GDI FreePropertyType might warrant extensive changes to the graph
database, so its use might be expensive in terms of performance. (End of advice to users.)

Advice to implementors. The functionality of GDI FreePropertyType is provided for
completeness of supported graph database operations, but has rarely any use cases in
real world scenarios. Because of the extensive necessary changes to the database, it will
be complex to implement. (End of advice to implementors.)

19

int GDI UpdatePropertyType(const char* name, int etype, GDI Datatype dtype,

int stype, size t count, const void* default value,

GDI PropertyType ptype)

IN name character string stored as the name (string)
IN etype entity type (state)
IN dtype datatype object (handle)
IN stype type of the size limitation (state)
IN count number of elements (positive integer)
IN default value initial address of default value (choice)

INOUT ptype property type object (handle)

GDI UpdatePropertyType updates the attributes of the property type ptype. Additionally
all property entries on vertices and edges of the given property type will be updated accordingly.
All input parameters should be the same on all processes.

The GDI library will locally store the character string of name, so name can be allocated
on the stack or otherwise immediately deallocated after the call by the caller. Trailing spaces
in name will be ignored, while leading spaces are relevant. The limit of the name length is
GDI MAX OBJECT NAME-1, so that an additional null terminator can be stored. If the user
tries to store names longer than this, then the name will be truncated. If the name already exists
on a different property type of the graph database, the error GDI ERROR NAME EXISTS is
returned. If name contains an empty string, the error GDI ERROR EMPTY NAME is returned.

If the entity type is updated from GDI MULTIPLE ENTITY to GDI SINGLE ENTITY and
there is more than one property of the given type on an object (vertex/edge), all properties of that
type except for one arbitrary one will be removed from said object. In the opposite direction
(from GDI SINGLE ENTITY to GDI MULTIPLE ENTITY), no changes on the objects are
necessary.

The updated datatype is given by the parameter dtype. The elements of the property values
are updated by the conversion rules from Section 10.8. If the requested conversion is not valid
in GDI, the error GDI ERROR CONVERSION is returned.

The type of the size limitation is given by stype and the number of elements by count.
Certain combinations of the old and new size limitation parameters require changes in the
number of elements of the property values. For the ease of the explanation below, we will call
old count the number of elements that was previously associated with ptype.

If the property type was a fixed sized type before and will remain so, the change depends
entirely on the amount of elements. If count is bigger than old count, then additional elements
need to be added at the end of the property value, so that a total number of count elements is
reached. The value of each newly added element will be taken from default value. So the first
old count elements will retain their value, while the following (count-old count) elements will
have the value of default value. If count is smaller than old count, then (old count-count)
trailing elements will be dropped, so only count elements remain, which will keep their value.
The same changes have to be applied to all properties of type ptype. If count is equal to
old count, no changes to the property values are necessary.

If the property type was a fixed sized type before and will become a maximum sized type,
then there will be only changes to the property values if count is smaller than old count. In
such a case, the (old count-count) trailing elements of the property value will be dropped, so
only count elements remain, which will keep their value. The same changes have to be applied
to all properties of type ptype.

If the property type was a maximum sized type before and will remain so, and count is equal
to or bigger than old count, no changes to the property values are necessary. If count is smaller
than old count, the number of elements of each property value, that are of property type ptype,
is significant. If the number of elements is equal or smaller to count, no changes are necessary.
If however the number of elements is bigger, then the trailing elements will be dropped, so that
only count elements remain, which will keep their value.

If the property type was a maximum sized type before and will become a fixed sized type,
changes might be different for each property of type ptype. If count is bigger than old count,
then additional elements need to be added at the end of the value of each property of that type,

20

so that the total number of elements reaches count. The value of each newly added element
will be taken from default value, while the original elements will retain their value. The
amount of newly added elements might be different for each property of that type. If count is
equal to old count, the same changes as just described have to happen, however if a property
of that type has the maximum number of elements possible, no changes to its property value
are necessary. If count is smaller than old count, then all kinds of changes are possible. If
the number of elements of a property value, that is of property type ptype, is smaller than
count, then additional elements have to be added at the end of the value, so that the total
number of elements reaches count. The value of each newly added element will be taken from
default value, while the original elements will retain their value. If the number of elements is
equal to count, no changes are necessary. If the number of elements is bigger than count, then
trailing elements will be dropped, until only count elements remain, which will keep their value.

If property type ptype had previously no limitations (the previous stype had the value
GDI NO SIZE LIMIT), and will become either a fixed sized or a maximum sized type, then
each property of that type has to be checked, whether it adheres to the new size limitations.
If the property type will become maximum sized, and the number of elements of the value of
a property of such a type is equal to or smaller than count, no changes are necessary. If the
number of elements is bigger, then trailing elements will be dropped, until only count elements
remain, which will keep their value. For a property type that will become fixed sized, changes
are more complicated. If the number of elements of the value of a property of such a type is
smaller than count, new elements with the value of default value will be added at the end
of the property value, so that a total number of count elements is reached. If the number of
elements is equal to count, no changes are necessary. If the number of elements is bigger than
count, then trailing elements will be dropped, until only count elements remain, which will keep
their value.

If stype has the value GDI NO SIZE LIMIT, then no changes are necessary.
In all cases, the elements are stored consecutively.
The entry of vertices and edges in any index associated with ptype might be updated.

Additionally, any GDI Constraint and GDI Subconstraint object that contains a condition that
uses ptype will get those conditions marked as stale and in turn also the whole object will be
marked as stale.

GDI UpdatePropertyType is a collective call and will synchronize all processes of the as-
sociated graph database. GDI UpdatePropertyType is an implicit collective write transaction,
so all transactions on the associated graph database must be finished before a process enters
the GDI UpdatePropertyType call and no other transactions on that graph database may be
started until the GDI UpdatePropertyType call returns. A call to GDI UpdatePropertyType
has a barrier semantic: a process returns from the call only after all other processes have not
only entered their matching call, but also finished the respective changes to the graph database.

The call is erroneous if ptype is a predefined property type.

Advice to users. GDI UpdatePropertyType might warrant extensive changes to the
graph database, so its use might be expensive in terms of performance. (End of advice to
users.)

Advice to implementors. The functionality of GDI UpdatePropertyType is provided for
completeness of supported graph database operations, but has rarely any use cases in real
world scenarios. Because of the extensive necessary changes to the database, it will be
complex to implement. (End of advice to implementors.)

6.2 Predefined Property Types

GDI offers a number of predefined property types: for application level ID, degree, indegree
and outdegree. Predefined property types work with any graph database and do not have to be
associated first.

The predefined property type GDI PROPERTY TYPE ID, which can be accessed by the
static handle of the same name, can be used to access the application level ID of an object, mostly
of vertices. The property is usually set during the initial GDI CreateVertex call and it is also

21

used by the implicit index for GDI TranslateVertexID, which translates application level IDs into
internal vertex UIDs. While edges typically do not have (U)IDs, GDI PROPERTY TYPE ID
can be used to explicitly set application level IDs for edges. The name assigned to this opaque
object is ”GDI PROPERTY TYPE ID”. GDI PROPERTY TYPE ID is a single entity prop-
erty type (etype is GDI SINGLE ENTITY). Its datatype is GDI BYTE and GDI imposes no
limit on the size of the application level ID (stype is GDI NO SIZE LIMIT).

In graph theory, the degree specifies the number of edges that a vertex has. It is the sum of
the number of incoming edges, the number of outgoing edges and the number of undirected edges.
Loops (edges that connect a vertex to itself) will be counted twice. GDI has the predefined prop-
erty type GDI PROPERTY TYPE DEGREE, which can be accessed by the static handle of the
same name, to access the degree of a vertex. GDI PROPERTY TYPE DEGREE can’t be used
on edges. The name assigned to this opaque object is ”GDI PROPERTY TYPE DEGREE”. It
is a single entity property type (etype is GDI SINGLE ENTITY), the datatype is GDI UINT64 T
and it is a fixed sized property type (stype is GDI FIXED SIZE) with exactly one element of
GDI UINT64 T (count has the value 1). GDI PROPERTY TYPE DEGREE is a read-only
property type and entries are implicitly updated by the library, when edges are added or re-
moved.

The indegree of a vertex is the number of incoming edges. The property type to access
the indegree of a vertex is GDI PROPERTY TYPE INDEGREE, which can be accessed by the
static handle of the same name. GDI PROPERTY TYPE INDEGREE can’t be used on edges.
The name assigned to this opaque object is ”GDI PROPERTY TYPE INDEGREE”. It is a
single entity property type (etype is GDI SINGLE ENTITY), the datatype is GDI UINT64 T
and it is a fixed sized property type (stype is GDI FIXED SIZE) with exactly one element
of GDI UINT64 T (count has the value 1). GDI PROPERTY TYPE INDEGREE is a read-
only property type and entries are implicitly updated by the library, when edges are added or
removed.

Similarly, the outdegree of a vertex is the number of outgoing edges. The property type
to access the outdegree of a vertex is GDI PROPERTY TYPE OUTDEGREE, which can be
accessed by the static handle of the same name. GDI PROPERTY TYPE OUTDEGREE can’t
be used on edges. Its assigned name assigned is ”GDI PROPERTY TYPE OUTDEGREE”. It is
a single entity property type (etype is GDI SINGLE ENTITY), the datatype is GDI UINT64 T
and it is a fixed sized property type (stype is GDI FIXED SIZE) with exactly one element of
GDI UINT64 T (count has the value 1). GDI PROPERTY TYPE OUTDEGREE is a read-
only property type and entries are implicitly updated by the library, when edges are added or
removed.

6.3 Property Type Retrieval

int GDI GetPropertyTypeFromName(GDI PropertyType* ptype, const char* name,

GDI Database graph db)

OUT ptype property type object (handle)
IN name a character string which represents a property type name

(string)
IN graph db graph database object (handle)

Given the property type name as parameter name and the graph database handle as param-
eter graph db, the function GDI GetPropertyTypeFromName looks up the property type han-
dle for that name. If the name is not found, ptype contains GDI PROPERTY TYPE NULL.
The length of the input string name should be at most GDI MAX OBJECT NAME-1 Bytes.
GDI GetPropertyTypeFromName is a local call.

22

int GDI GetAllPropertyTypesOfDatabase(GDI PropertyType array of ptypes[],

size t count, size t* resultcount, GDI Database graph db)

OUT array of ptypes array of property types (array of handles)
IN count length of array of ptypes (non-negative integer)

OUT resultcount number of retrieved property types (non-negative integer)
IN graph db graph database object (handle)

A user might not know what property types are available in a certain graph database ob-
ject. GDI GetAllPropertyTypesOfDatabase will retrieve all property types associated to the
given graph database graph db. The user provides an array for property type handles and
the parameter count, which contains the maximum number of property type handles that
can be written to said array. On return resultcount contains the actual number of prop-
erty type handles written to array of ptypes. If the array is smaller than the available
number of property type handles, the array will be filled and the remaining handles will be
omitted. The error GDI ERROR TRUNCATE will be returned in such an overflow case.
GDI GetAllPropertyTypesOfDatabase is a local call.

6.4 Property Type Attributes

int GDI GetNameOfPropertyType(char* name, size t length, size t* resultlength,

GDI PropertyType ptype)

OUT name stored name for the property type (string)
IN length maximum length of name (non-negative integer)

OUT resultlength length of the returned name (non-negative integer)
IN ptype property type whose associated name is retrieved (handle)

GDI GetNameOfPropertyType retrieves the name associated with ptype. length denotes
the length of the allocated string name. The buffer to which name points to should be able
to hold at GDI MAX OBJECT NAME Bytes. resultlength contains on return the length of
the retrieved string. name[resultlength] contains an additional null terminator. Therefore
the returned value of resultlength is at most GDI MAX OBJECT NAME-1. If the allo-
cated string is smaller than the actual property type name, the string will be filled, such that
a valid UTF-8 string is returned, and the remaining characters will be omitted. In such an
overflow case the error GDI ERROR TRUNCATE will be returned. If any other error occurs,
GDI GetNameOfPropertyType will return an empty string. GDI GetNameOfPropertyType is
a local call.

Rationale. Vertices and edges store only the handle of a property type. The function
GDI GetNameOfPropertyType allows the user to get the associated property type name
for easier identification. (End of rationale.)

int GDI GetEntityTypeOfPropertyType(int* etype, GDI PropertyType ptype)

OUT etype entity type (state)
IN ptype property type object (handle)

GDI GetEntityTypeOfPropertyType returns the entity type of the property type ptype.
The returned state variable etype can have exactly two values: GDI SINGLE ENTITY and
GDI MULTIPLE ENTITY. GDI GetEntityTypeOfPropertyType is a local call.

23

int GDI GetDatatypeOfPropertyType(GDI Datatype* dtype, GDI PropertyType ptype)

OUT dtype datatype object (handle)
IN ptype property type object (handle)

GDI GetDatatypeOfPropertyType retrieves the datatype of the given property type ptype.
It is a local call.

int GDI GetSizeLimitOfPropertyType(int* stype, size t* count,

GDI PropertyType ptype)

OUT stype size limitation type (state)
OUT count number of elements (non-negative integer)

IN ptype property type object (handle)

GDI GetSizeLimitOfPropertyType returns the size limitations associated with the given
property type ptype. The state variable stype can have exactly three values: GDI FIXED SIZE,
GDI MAX SIZE and GDI NO SIZE LIMIT. Additionally the parameter count is returned. If
GDI FIXED SIZE is returned in stype, then count contains the number of elements that will
always make up the value of a property of type ptype. If GDI MAX SIZE is returned in stype,
count contains the maximum number of elements that can make up the value of a property
of type ptype. If stype contains GDI NO SIZE LIMIT, then no limitation is imposed on the
number of elements for the value of a property of type ptype and count is set to the value 0,
but that value can be ignored by the caller.

24

7 Vertices

Vertices are represented in GDI during a transaction as temporary GDI VertexHolder objects.
GDI VertexHolder objects are only valid during the transaction, in which they were created. Usu-
ally one of the first steps in a transaction is to either create a new vertex via GDI CreateVertex
or to access an existing vertex by associating it with a GDI VertexHolder object by calling
GDI AssociateVertex. The GDI VertexHolder object handles all communication that is involved
when querying incident edges, vertex properties and vertex labels.

Advice to implementors. GDI VertexHolder objects serve as access objects, identifying
uniquely a vertex in the database during a transaction. They don’t mandate a specific
implementation, e.g. it is possible to directly access and manipulate the data in the
database or to cache a local copy of the respective data to reduce communication. (End
of advice to implementors.)

All functions in this section can return a transaction-critical error.

7.1 Temporary Vertex Object Creation

int GDI CreateVertex(const void* external id, size t size,

GDI Transaction transaction, GDI VertexHolder* vertex)

IN external id initial address of application level ID (choice)
IN size size of application level ID (non-negative integer)

INOUT transaction transaction object (handle)
OUT vertex temporary vertex object returned by the call (handle)

GDI CreateVertex allocates a temporary representation of a vertex. vertex is not associated
with any edges or labels yet. GDI CreateVertex should only be called inside a transaction.

If an application level ID is provided, it will be stored as a property with the predefined type
GDI PROPERTY TYPE ID. Additionally an implicit index used for GDI TranslateVertexID
will be updated on commit of the transaction. Other properties are not yet associated with
vertex.

If the application does not use IDs for its vertices, it should provide NULL in the parameter
external id and the value 0 in the parameter size. The application will not be able to access
these vertices directly using GDI TranslateVertexID during a later transaction, instead it either
has to find the vertices through graph exploration or by using explicit indexes.

int GDI AssociateVertex(GDI Vertex uid internal uid,

GDI Transaction transaction, GDI VertexHolder* vertex)

IN internal uid internal vertex UID (UID)
INOUT transaction transaction object (handle)

OUT vertex temporary vertex object returned by the call (handle)

GDI AssociateVertex allocates a GDI VertexHolder object and associates said object with
a (remote) vertex location, provided by internal uid. Afterwards the GDI VertexHolder ob-
ject can be used to query its edges, labels and properties. GDI AssociateVertex should only be
called inside a transaction. If internal uid does not belong to the same graph database as
transaction does, the error GDI ERROR OBJECT MISMATCH is returned.

Each GDI VertexHolder object is associated with a transaction and will be invalidated, once
that transaction is committed or aborted.

25

7.2 Vertex Destruction

int GDI FreeVertex(GDI VertexHolder* vertex)

INOUT vertex vertex object (handle)

GDI FreeVertex removes the vertex from the graph database upon transaction commit. It
deallocates the temporary vertex object and sets vertex to GDI VERTEX NULL. The tempo-
rary vertex object can’t be queried afterwards, even if the transaction is still ongoing. Addition-
ally all edges that have this vertex as origin or target will be removed. If the transaction contains
GDI EdgeHolder objects representing any of those edges, those objects will be invalidated and
can’t be accessed while the transaction is still ongoing. GDI FreeVertex should only be called
during a transaction. The function removes the vertex and associated edges from all associated
indexes during the commit call of the transaction.

7.3 Vertex Edge Handling

int GDI GetEdgesOfVertex(GDI Edge uid array of uids[], size t count,

size t* resultcount, GDI Constraint constraint,

int edge orientation, GDI VertexHolder vertex)

OUT array of uids array of internal edge UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN edge orientation edge orientation (integer)
IN vertex vertex object (handle)

GDI GetEdgesOfVertex queries the temporary vertex object vertex and returns the inter-
nal edge UIDs of all incident edges that satisfy the edge orientation given by the parameter
edge orientation and the conditions set by the constraint object that constraint points to.
The internal edge UIDs then can be used to access the edges with GDI EdgeHolder objects. The
internal edge UIDs will be returned in the array array of uids, where count contains the max-
imum number of internal edge UIDs that can be written to said array. On return resultcount

contains the actual number of internal edge UIDs written to array of uids. If the array is
smaller than the available number of internal edge UIDs, the array will be filled and the remain-
ing internal edge UIDs will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. If constraint does not belong to the same graph database as vertex does,
the error GDI ERROR OBJECT MISMATCH is returned. GDI GetEdgesOfVertex should only
be called during a transaction and all retrieved internal edge UIDs are only valid during the
transaction from which GDI GetEdgesOfVertex is called.

GDI provides a way to filter the edges incident to vertex with the use of a constraint object
and their orientation. The edge orientation is a bitwise OR combination of the following
integer constants to provide various modes of edge filtering:

• GDI EDGE INCOMING: keep all incoming edges

• GDI EDGE OUTGOING: keep all outgoing edges

• GDI EDGE UNDIRECTED: keep all undirected edges

It is possible to retrieve all edges of vertex by supplying the value GDI CONSTRAINT NULL
in the parameter constraint and a bitwise OR of the constants GDI EDGE INCOMING,
GDI EDGE OUTGOING and GDI EDGE UNDIRECTED as argument for edge orientation.
GDI ERROR EDGE ORIENTATION is returned as error, in case edge orientation is not
valid. If a stale GDI Constraint object is passed, GDI ERROR STALE is returned as error.

26

int GDI GetNeighborVerticesOfVertex(GDI Vertex uid array of uids[],

size t count, size t* resultcount, GDI Constraint constraint,

int edge orientation, GDI VertexHolder vertex)

OUT array of uids array of internal vertex UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN edge orientation edge orientation (integer)
IN vertex vertex object (handle)

GDI GetNeighborVerticesOfVertex queries the temporary vertex object vertex and returns
the internal vertex UIDs of the set of all vertices adjacent to vertex that are incident to edges
which satisfy the edge orientation given by the parameter edge orientation and the conditions
set by the constraint object that constraint points to. The internal vertex UIDs then can be
used to access the vertices with GDI VertexHolder objects. The internal vertex UIDs will be
returned in the array array of uids, where count contains the maximum number of internal
vertex UIDs that can be written to said array. On return resultcount contains the actual
number of internal vertex UIDs written to array of uids. If the array is smaller than the
available number of internal vertex UIDs, the array will be filled and the remaining internal
vertex UIDs will be omitted. The error GDI ERROR TRUNCATE will be returned in such
an overflow case. If constraint does not belong to the same graph database as vertex does,
the error GDI ERROR OBJECT MISMATCH is returned. GDI GetNeighborVerticesOfVertex
should only be called during a transaction and all retrieved internal vertex UIDs are only valid
during the transaction from which GDI GetNeighborVerticesOfVertex is called.

The edges incident to vertex are filtered according to their orientation with additional lim-
itations imposed by the use of the constraint object. The edge orientation is a bitwise OR
combination of the following integer constants to provide various modes of edge filtering:

• GDI EDGE INCOMING: keep all incoming edges

• GDI EDGE OUTGOING: keep all outgoing edges

• GDI EDGE UNDIRECTED: keep all undirected edges

The resulting set of edges is queried for the other incident vertex and then further refined, so
that the result in array of uids is a set of internal vertex UIDs, meaning each vertex only
appears once.

Retrieval of all adjacent vertices is enabled by supplying the value GDI CONSTRAINT NULL
in the parameter constraint and a bitwise OR of the constants GDI EDGE INCOMING,
GDI EDGE OUTGOING and GDI EDGE UNDIRECTED as argument for edge orientation.
GDI ERROR EDGE ORIENTATION is returned as error, in case edge orientation is not
valid. If a stale GDI Constraint object is passed, GDI ERROR STALE is returned as error.

7.4 Vertex Label Handling

A vertex can have an arbitrary number of labels, including no labels at all.

int GDI AddLabelToVertex(GDI Label label, GDI VertexHolder vertex)

IN label label object (handle)
INOUT vertex vertex object (handle)

GDI AddLabelToVertex adds label to vertex. If vertex has already the given label or the
predefined label GDI LABEL NONE is supplied, no action is performed. If label does not be-
long to the same graph database as vertex does, the error GDI ERROR OBJECT MISMATCH
is returned. If label is already associated with an object with the same application level ID,

27

then the label will not be added to vertex and the error GDI ERROR NON UNIQUE ID is re-
turned. GDI AddLabelToVertex should only be called during a transaction. The function might
prompt an update of explicit indexes. The vertex will be added to the indexes associated with
label, in case the vertex is not already part of said indexes (because of other labels). In case
the vertex didn’t have any label before this function call, the vertex will also be removed from
the indexes associated with GDI LABEL NONE if said indexes do not have label associated.
All of those operations will be done during the commit call of the transaction.

int GDI RemoveLabelFromVertex(GDI Label label, GDI VertexHolder vertex)

IN label label object (handle)
INOUT vertex vertex object (handle)

GDI RemoveLabelFromVertex removes label from vertex. If the specified label is not
associated with the vertex or the predefined label GDI LABEL NONE is supplied, no action
is performed. GDI RemoveLabelFromVertex should only be called during a transaction. The
function might prompt an update of explicit indexes. The vertex will be removed from the indexes
associated with the label, if there are no additional common labels. If label was the only label
of the vertex, the vertex will be added to any indexes associated with GDI LABEL NONE. All
of those operations will be done during the commit call of the transaction.

If label was the only label of vertex, then the vertex will have no label afterwards. GDI
allows that multiple vertices without any labels have the same application level ID. If the call to
GDI RemoveLabelFromVertex will result in such a case, it will remove the label, but also return
GDI WARNING NON UNIQUE ID.

Advice to users. If the user program relies on the fact, that vertices have to have unique
IDs for querying the implicit index, it is possible to remedy such a situation by adding a
(dummy) label to the vertex during the same transaction. (End of advice to users.)

int GDI GetAllLabelsOfVertex(GDI Label array of labels[], size t count,

size t* resultcount, GDI VertexHolder vertex)

OUT array of labels array of label objects (array of handles)
IN count length of array of labels (non-negative integer)

OUT resultcount number of retrieved labels (non-negative integer)
IN vertex vertex object (handle)

GDI GetAllLabelsOfVertex will retrieve all labels that are currently associated with vertex.
The user provides an array for label handles and the parameter count, which contains the
maximum number of label handles that can be written to said array. On return, resultcount
contains the actual number of label handles written to array of labels. If the array is smaller
than the available number of label handles, the array will be filled and the remaining handles
will be omitted. The error GDI ERROR TRUNCATE will be returned in such an overflow case.
GDI GetAllLabelsOfVertex should only be called during a transaction.

7.5 Vertex Property Handling

int GDI AddPropertyToVertex(const void* value, size t count,

GDI PropertyType ptype, GDI VertexHolder vertex)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype property type object (handle)

INOUT vertex vertex object (handle)

GDI AddPropertyToVertex adds a new property of type ptype to the given vertex. count ele-

28

ments of the datatype associated with ptype will be read from the address given by the parameter
value and stored in the vertex. Any size limitation of the property type ptype will be enforced.
If ptype is a single entity property type, and a property of that type already exists on the vertex,
the error GDI ERROR PROPERTY TYPE EXISTS will be returned. If ptype does not belong
to the same graph database as vertex does, the error GDI ERROR OBJECT MISMATCH is
returned. If there is a property with the same property type and value already present on the
vertex, no action is performed (multiple entries of the same (key,value)-pair are not allowed in
the LPG model). GDI AddPropertyToVertex should only be called during a transaction. The
function might prompt an update of explicit indexes. The vertex will be added to the indexes
associated with ptype, in case the vertex is not already part of said indexes (because of other
properties). The update of the indexes will be done during the commit call of the transaction.

int GDI GetAllPropertyTypesOfVertex(GDI PropertyType array of ptypes[],

size t count, size t* resultcount, GDI VertexHolder vertex)

OUT array of ptypes array of property type objects (array of handles)
IN count length of array of ptypes (non-negative integer)

OUT resultcount number of retrieved property types (non-negative integer)
IN vertex vertex object (handle)

GDI GetAllPropertyTypesOfVertex will retrieve all property types, that have at least one
property of that type present on vertex. The user provides an array for property type handles
array of ptypes and the parameter count, which contains the maximum number of property
type handles that can be written to said array. On return resultcount contains the actual
number of property type handles written to array of ptypes. If the array is smaller than the
available number of property type handles, the array will be filled and the remaining handles
will be omitted. The error GDI ERROR TRUNCATE will be returned in such an overflow case.
GDI GetAllPropertyTypesOfVertex should only be called during a transaction.

GDI GetAllPropertyTypesOfVertex does not return the predefined degree property types,
since they are present on each vertex by default.

int GDI GetPropertiesOfVertex(void* buf, size t buf count,

size t* buf resultcount, size t array of offsets[], size t offset count,

size t* offset resultcount, GDI PropertyType ptype,

GDI VertexHolder vertex)

OUT buf initial address of buffer (choice)
IN buf count length of buf (non-negative integer)

OUT buf resultcount number of retrieved elements in buf (non-negative inte-
ger)

OUT array of offsets array of buffer offsets (array of non-negative integers)
IN offset count length of array of offsets (non-negative integer)

OUT offset resultcount number of retrieved offsets (non-negative integer)
IN ptype property type object (handle)
IN vertex vertex object (handle)

GDI GetPropertiesOfVertex retrieves all properties of type ptype from the given vertex. The
values of the properties will be stored in the buffer buf with buf count specifying the maximum
number of elements of the datatype associated with ptype that will fit into buf. On return
buf resultcount contains the actual number of elements of the datatype associated with ptype

that are written to buf. The offset of each property value will be returned in array of offsets.
The offsets will be specified in number of elements of the datatype associated with the property
type ptype. The parameter offset count contains the maximum number of offsets, that can
be written to array of offsets. On return, offset resultcount contains the actual number
of entries written to array of offsets. If vertex contains n properties of type ptype, then
offset resultcount will be set to n + 1. The first n entries in array of offsets contain the

29

offset where the respective property value in buf begins. The last entry of array of offsets

contains the total number of elements written. This construction enables to determine the
number of elements of the i-th property value in buf by calculating array of offsets[i+ 1] -
array of offsets[i].

Rationale. The last entry of array of offsets and buf resultcount both determine
the total number of elements written to buf. The parameter buf resultcount is required
in the function interface to return the number of elements when a null pointer is given
for buf, or array of offset or 0 is provided for offset count, or buf count (Section
2.6.2). (End of rationale.)

If no properties of type ptype are present on the given vertex, offset resultcount will be
set to value 0 and nothing will be written to buf and array of offsets. If array of offsets

is smaller than the number of property values to be returned, the array will be filled and the
remaining offsets will be omitted. Similarly, if buffer buf is too small to hold all property
values, the buffer will be filled and the remaining property values will be omitted. The error
GDI ERROR TRUNCATE will be returned in both overflow cases. If ptype does not belong
to the same graph database as vertex does, the error GDI ERROR OBJECT MISMATCH is
returned.

GDI GetPropertiesOfVertex should only be called during a transaction.

int GDI RemovePropertiesFromVertex(GDI PropertyType ptype,

GDI VertexHolder vertex)

IN ptype property type object (handle)
INOUT vertex vertex object (handle)

GDI RemovePropertiesFromVertex will remove all properties of type ptype from the given
vertex. If there is no property of type ptype on the vertex, no action will be performed.
GDI RemovePropertiesFromVertex should only be called during a transaction. If any properties
were removed, the function might prompt an update of explicit indexes. The vertex will be
removed from the indexes associated with ptype, if there are no common additional properties.
The update of the indexes will be done during the commit call of the transaction.

int GDI RemoveSpecificPropertyFromVertex(const void* value, size t count,

GDI PropertyType ptype, GDI VertexHolder vertex)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype property type object (handle)

INOUT vertex vertex object (handle)

GDI RemoveSpecificPropertyFromVertex will remove a specific property of type ptype. The
function will remove a property only if the number of elements of its property value, where
one element is of the datatype associated with ptype, is equal to count and the value of each
element of that property value matches exactly the respective element in the data pointed to
by the parameter value. If there is no property of type ptype or no property of that type,
whose property value matches value, no action will be performed. At most one property will
be removed, since multiple entries of the same (key, value)-pair are not allowed in the LPG
model. GDI RemoveSpecificPropertyFromVertex should only be called during a transaction.
The function might prompt an update of explicit indexes. If only one property of type ptype

was present on the vertex and that property was removed, the vertex will be removed from
the indexes associated with the property type, if there are no common additional property types
associated with said indexes. If there were multiple properties of that type present and a property
was removed, the associated indexes will be updated. All of those operations will be done during
the commit call of the transaction.

30

int GDI UpdatePropertyOfVertex(const void* value, size t count,

GDI PropertyType ptype, GDI VertexHolder vertex)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype single entity property type object (handle)

INOUT vertex vertex object (handle)

GDI UpdatePropertyOfVertex updates the property of a single entity property type ptype on
vertex. If ptype is a multi entity property type, the error GDI ERROR WRONG TYPE is re-
turned. The new property value is copied from the data pointed to by value. The number of ele-
ments to be copied, which are of the datatype associated with ptype, is provided by the count pa-
rameter. Any size limitation of the property type ptype regarding the new value will be enforced.
If no property of type ptype exists on the given vertex, the error GDI ERROR NO PROPERTY
is returned. If ptype does not belong to the same graph database as vertex does, the error
GDI ERROR OBJECT MISMATCH is returned. If the existing property of type ptype has the
same property value as value, no action is performed. GDI UpdatePropertyOfVertex should
only be called during a transaction. The entry of the vertex in any associated index will be
updated during the commit call of the transaction.

int GDI UpdateSpecificPropertyOfVertex(const void* old value, size t old count,

const void* new value, size t new count, GDI PropertyType ptype,

GDI VertexHolder vertex)

IN old value initial address to the value for comparison (choice)
IN old count number of elements in old value (non-negative integer)
IN new value initial address to the new value (choice)
IN new count number of elements in new value (non-negative integer)
IN ptype property type object (handle)

INOUT vertex vertex object (handle)

GDI UpdateSpecificPropertyOfVertex updates a property of type ptype on vertex, only
if its property value matches the content of old value. The function will update a property
only if the number of elements of its property value, where one element is of the datatype
associated with ptype, is equal to old count and the value of each element of that prop-
erty value matches exactly the respective element in the data pointed to by the parameter
old value. If such a property is found, the old property value is removed and the new prop-
erty value is copied from the data to which new value points to, with the number of elements
of the new property value being specified by new count. If no property is updated, the error
GDI ERROR NO PROPERTY is returned. Any size limitation of the property type ptype

regarding the new property value will be enforced. At most one property will be updated,
since multiple entries of the same (key,value)-pair are not allowed in the LPG model. For
the same reason, the error GDI ERROR PROPERTY EXISTS will be returned, in case there
is a property with the same property type and value, matching new value, already present
on the vertex. If ptype does not belong to the same graph database as vertex does, the
error GDI ERROR OBJECT MISMATCH is returned. GDI UpdateSpecificPropertyOfVertex
should only be called during a transaction. The entry of the vertex in any associated index will
be updated during the commit call of the transaction.

Rationale. GDI UpdateSpecificPropertyOfVertex returns an error, if the new property
already exists on the vertex, instead of performing no action, to avoid non-intuitive sit-
uations, where a successful update would decrease the total number of properties on a
vertex instead of keeping it constant. (End of rationale.)

31

int GDI SetPropertyOfVertex(const void* value, size t count,

GDI PropertyType ptype, GDI VertexHolder vertex)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype single entity property type object (handle)

INOUT vertex vertex object (handle)

GDI SetPropertyOfVertex sets the property of a single entity property type ptype on vertex.
If ptype is a multi entity property type, the error GDI ERROR WRONG TYPE is returned.
The new value of the property is copied from the data pointed to by value. The number
of elements to be copied, which are of the datatype associated with ptype, is provided by
the count parameter. If a property of type ptype already exists on the given vertex, then
the value of that property will be overwritten. Otherwise the property will be added to the
vertex. Any size limitation of the property type ptype regarding the new property value will
be enforced. If ptype does not belong to the same graph database as vertex does, the error
GDI ERROR OBJECT MISMATCH is returned. GDI SetPropertyOfVertex should only be
called during a transaction. The function might prompt an update of explicit indexes. In case
a property of the vertex was updated, the entry of the vertex in the associated indexes will be
updated as well. In case a property was added, the vertex will be added to the indexes associated
with the property type ptype, in case the vertex is not already part of said indexes (because of
other properties). All of those operations will be done during the commit call of the transaction.

Advice to implementors. An implementation might map GDI SetPropertyOfVertex to
a sequence of function calls: Remove the property from a vertex and then insert the
property again. However, there might be a faster way to achieve this. (End of advice to
implementors.)

32

8 Edges

Edges are represented in GDI during a transaction as temporary GDI EdgeHolder objects.
GDI EdgeHolder objects are only valid during the transaction, in which they were created.
Edges can either be obtained by querying vertices or explicit indexes. Those edges then can
be associated with a GDI EdgeHolder object by calling GDI AssociateEdge. Another possi-
bility is to create a new edge with GDI CreateEdge. The GDI EdgeHolder object handles all
communication that is involved when querying incident vertices, edge properties and edge labels.

Rationale. GDI EdgeHolder objects serve as access objects, identifying uniquely an edge
in the database during a transaction. They don’t mandate a specific implementation, e.g.
it is possible to directly access and manipulate the data in the database or to cache a
local copy of the respective data to reduce communication. (End of rationale.)

All functions in this section can return a transaction-critical error.

8.1 Temporary Edge Object Creation

int GDI CreateEdge(int dtype, GDI VertexHolder origin, GDI VertexHolder target,

GDI EdgeHolder* edge)

IN dtype direction type (state)
IN origin vertex object (handle)
IN target vertex object (handle)

OUT edge temporary edge object returned by the call (handle)

GDI CreateEdge allocates a temporary representation of an edge, which represents a newly
created connection from vertex origin to vertex target. The state parameter dtype is restricted
to two values and indicates whether the edge is directed (GDI EDGE DIRECTED) or undirected
(GDI EDGE UNDIRECTED). No labels or properties are associated with edge yet. The error
GDI ERROR OBJECT MISMATCH is returned, if origin and target do not belong to the
same transaction. GDI CreateEdge should only be called during a transaction.

int GDI AssociateEdge(GDI Edge uid internal uid, GDI Transaction transaction,

GDI EdgeHolder* edge)

IN internal uid internal edge UID (UID)
INOUT transaction transaction object (handle)

OUT edge temporary edge object returned by the call (handle)

GDI AssociateEdge allocates a GDI EdgeHolder object and associates said object with a
(remote) edge location, provided by internal uid. Afterwards the GDI EdgeHolder object can
be used to query its incident vertices, labels and properties. If internal uid does not belong to
the same graph database as transaction does, the error GDI ERROR OBJECT MISMATCH
is returned. GDI AssociateEdge should only be called during a transaction.

Each GDI EdgeHolder object is associated with a transaction and will be invalidated, once
that transaction is committed or aborted.

8.2 Edge Destruction

int GDI FreeEdge(GDI EdgeHolder* edge)

INOUT edge edge object (handle)

GDI FreeEdge removes the edge from the graph database upon transaction commit. It
deallocates the temporary edge object and sets edge to GDI EDGE NULL. The temporary

33

edge object can’t be queried afterwards, even if the transaction is still ongoing. GDI FreeEdge
should only be called during a transaction. The function removes the edge from all associated
indexes during the commit call of the transaction.

8.3 Edge Attributes

int GDI GetVerticesOfEdge(GDI Vertex uid* origin uid, GDI Vertex uid* target uid,

GDI EdgeHolder edge)

OUT origin uid internal vertex UID of the origin (UID)
OUT target uid internal vertex UID of the target (UID)

IN edge edge object (handle)

GDI GetVerticesOfEdge will return in origin uid the internal vertex UID of the vertex,
from which edge originates and in target uid the internal vertex UID of the vertex, which
edge targets. If edge is undirected, a fixed order of the two vertices will be returned, such
that multiple calls of GDI GetVerticesOfEdge with the same unchanged edge will always return
the same result. If a null pointer is passed for either UID parameter, the function does not
return the respective internal vertex UID. GDI GetVerticesOfEdge should only be called during
a transaction.

int GDI GetDirectionTypeOfEdge(int* dtype, GDI EdgeHolder edge)

OUT dtype direction type (state)
IN edge edge object (handle)

GDI GetDirectionTypeOfEdge returns whether edge is directed (GDI EDGE DIRECTED)
or undirected (GDI EDGE UNDIRECTED). The state parameter dtype is restricted to those
two values. GDI GetDirectionTypeOfEdge should only be called during a transaction.

int GDI SetOriginVertexOfEdge(GDI VertexHolder origin vertex,

GDI EdgeHolder edge)

IN origin vertex vertex object (handle)
INOUT edge edge object (handle)

GDI SetOriginVertexOfEdge updates the origin vertex of edge. If edge is undirected, a
fixed one of the two vertices will be replaced, namely the one that would have been returned as
origin internal vertex UID by a previous call to GDI GetVerticesOfEdge. If origin vertex and
edge do not belong to the same transaction, the error GDI ERROR OBJECT MISMATCH is
returned. GDI SetOriginVertexOfEdge should only be called during a transaction. The function
might prompt an update of explicit indexes.

int GDI SetTargetVertexOfEdge(GDI VertexHolder target vertex,

GDI EdgeHolder edge)

IN target vertex vertex object (handle)
INOUT edge edge object (handle)

GDI SetTargetVertexOfEdge updates the target vertex of edge. If edge is undirected, a
fixed one of the two vertices will be replaced, namely the one that would have been returned as
target internal vertex UID by a previous call to GDI GetVerticesOfEdge. If target vertex and
edge do not belong to the same transaction, the error GDI ERROR OBJECT MISMATCH is
returned. GDI SetTargetVertexOfEdge should only be called during a transaction. The function
might prompt an update of explicit indexes.

34

int GDI SetDirectionTypeOfEdge(int dtype, GDI EdgeHolder edge)

IN dtype direction type (state)
INOUT edge edge object (handle)

GDI SetDirectionTypeOfEdge updates, whether edge is directed (GDI EDGE DIRECTED)
or undirected (GDI EDGE UNDIRECTED). The state parameter dtype is restricted to those
two values. GDI SetDirectionTypeOfEdge should only be called during a transaction. The
function might prompt an update of explicit indexes.

8.4 Edge Label Handling

An edge can have an arbitrary number of labels, including no labels at all.

int GDI AddLabelToEdge(GDI Label label, GDI EdgeHolder edge)

IN label label object (handle)
INOUT edge edge object (handle)

GDI AddLabelToEdge adds label to edge. If the edge has already the given label or the pre-
defined label GDI LABEL NONE is supplied, no action is performed. If label does not belong
to the same graph database as edge does, the error GDI ERROR OBJECT MISMATCH is re-
turned. If there is already an object with the same label and application level ID present in the
database, then the label will not be added to edge and the error GDI ERROR NON UNIQUE ID
is returned.

Advice to users. GDI does not enforce that an edge needs an application level ID. A
user can add an application level ID by adding a property (see Section 8.5) using the
predefined property type GDI PROPERTY TYPE ID. (End of advice to users.)

GDI AddLabelToEdge should only be called during a transaction. The function might
prompt an update of explicit indexes. The edge will be added to the indexes associated with
label, in case the edge is not already part of said indexes (because of other labels). In case
the edge didn’t have any label before this function call, the edge will also be removed from the
indexes associated with GDI LABEL NONE if said indexes do not have label associated. All
of those operations will be done during the commit call of the transaction.

int GDI RemoveLabelFromEdge(GDI Label label, GDI EdgeHolder edge)

IN label label object (handle)
INOUT edge edge object (handle)

GDI RemoveLabelFromEdge removes label from edge. If the specified label is not present in
the edge object or the predefined label GDI LABEL NONE is supplied, no action is performed.
GDI RemoveLabelFromEdge should only be called during a transaction. The function might
prompt an update of explicit indexes. The edge will be removed from the indexes associated
with the label, if there are no additional common labels. If label was the only label of the
edge, the edge will be added to any indexes associated with GDI LABEL NONE. All of those
operations will be done during the commit call of the transaction.

35

int GDI GetAllLabelsOfEdge(GDI Label array of labels[], size t count,

size t* resultcount, GDI EdgeHolder edge)

OUT array of labels array of label objects (array of handles)
IN count length of array of labels (non-negative integer)

OUT resultcount number of retrieved labels (non-negative integer)
IN edge edge object (handle)

GDI GetAllLabelsOfEdge will retrieve all labels that are currently associated with the tem-
porary edge object edge. The user provides an array for label handles and the parameter count,
which contains the maximum number of label handles that can be written to said array. On
return, resultcount contains the actual number of label handles written to array of labels.
If the array is smaller than the available number of label handles, the array will be filled and
the remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned
in such an overflow case. GDI GetAllLabelsOfEdge should only be called during a transaction.

8.5 Edge Property Handling

int GDI AddPropertyToEdge(const void* value, size t count,

GDI PropertyType ptype, GDI EdgeHolder edge)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype property type object (handle)

INOUT edge edge object (handle)

GDI AddPropertyToEdge adds a new property of type ptype to the given edge. count ele-
ments of the datatype associated with ptype will be read from the address given by the parameter
value and stored in the edge. Any size limitation of the property type ptype will be enforced.
If ptype is a single entity property type, and a property of that type already exists on the edge,
the error GDI ERROR PROPERTY TYPE EXISTS will be returned. If ptype does not be-
long to the same graph database as edge does, the error GDI ERROR OBJECT MISMATCH
is returned. If there is a property with the same property type and value already present on
the edge, no action is performed (multiple entries of the same (key,value)-pair are not allowed
in the LPG model). GDI AddPropertyToEdge should only be called during a transaction. The
function might prompt an update of explicit indexes. The edge will be added to the indexes
associated with ptype, in case the edge is not already part of said indexes (because of other
properties). The update of the indexes will be done during the commit call of the transaction.

int GDI GetAllPropertyTypesOfEdge(GDI PropertyType array of ptypes[],

size t count, size t* resultcount, GDI EdgeHolder edge)

OUT array of ptypes array of property types (array of handles)
IN count length of array of ptypes (non-negative integer)

OUT resultcount number of retrieved property types (non-negative integer)
IN edge edge object (handle)

GDI GetAllPropertyTypesOfEdge will retrieve all property types, that have at least one
property of that type present on edge. The user provides an array for property type handles
array of ptypes and the parameter count, which contains the maximum number of property
type handles that can be written to said array. On return resultcount contains the actual
number of property type handles written to array of ptypes. If the array is smaller than the
available number of property type handles, the array will be filled and the remaining handles
will be omitted. The error GDI ERROR TRUNCATE will be returned in such an overflow case.
GDI GetAllPropertyTypesOfEdge should only be called during a transaction.

36

int GDI GetPropertiesOfEdge(void* buf, size t buf count,

size t* buf resultcount, size t array of offsets[], size t offset count,

size t* offset resultcount, GDI PropertyType ptype,

GDI VertexEdge edge)

OUT buf initial address of buffer (choice)
IN buf count length of buf (non-negative integer)

OUT buf resultcount number of retrieved elements in buf (non-negative inte-
ger)

OUT array of offsets array of buffer offsets (array of non-negative integers)
IN offset count length of array of offsets (non-negative integer)

OUT offset resultcount number of retrieved offsets (non-negative integer)
IN ptype property type object (handle)
IN edge edge object (handle)

GDI GetPropertiesOfEdge retrieves all properties of type ptype from the given edge. The
values of the properties will be stored in the buffer buf with buf count specifying the maximum
number of elements of the datatype associated with ptype that will fit into buf. On return
buf resultcount contains the actual number of elements of the datatype associated with ptype

that are written to buf. The offset of each property value will be returned in array of offsets.
The offsets will be specified in number of elements of the datatype associated with the property
type ptype. The parameter offset count contains the maximum number of offsets, that can
be written to array of offsets. On return, offset resultcount contains the actual number
of entries written to array of offsets. If edge contains n properties of type ptype, then
offset resultcount will be set to n + 1. The first n entries in array of offsets contain the
offset where the respective property value in buf begins. The last entry of array of offsets

contains the total number of elements written. This construction enables to determine the
number of elements of the i-th property value in buf by calculating array of offsets[i+ 1] -
array of offsets[i].

Rationale. The last entry of array of offsets and buf resultcount both determine
the total number of elements written to buf. The parameter buf resultcount is required
in the function interface to return the number of elements when a null pointer is given
for buf, or array of offset or 0 is provided for offset count, or buf count (Section
2.6.2). (End of rationale.)

If no properties of type ptype are present on the given edge, offset resultcount will be
set to value 0 and nothing will be written to buf and array of offsets. If array of offsets

is smaller than the number of property values to be returned, the array will be filled and the
remaining offsets will be omitted. Similarly, if buffer buf is too small to hold all property
values, the buffer will be filled and the remaining property values will be omitted. The error
GDI ERROR TRUNCATE will be returned in both overflow cases. If ptype does not belong
to the same graph database as edge does, the error GDI ERROR OBJECT MISMATCH is
returned.

GDI GetPropertiesOfEdge should only be called during a transaction.

int GDI RemovePropertiesFromEdge(GDI PropertyType ptype, GDI EdgeHolder edge)

IN ptype property type object (handle)
INOUT edge edge object (handle)

GDI RemovePropertiesFromEdge will remove all properties of type ptype from the given
edge. If there is no property of type ptype on the edge, no action will be performed. The
function GDI RemovePropertiesFromEdge should only be called during a transaction. If any
properties were removed, the function might prompt an update of explicit indexes. The edge
will be removed from the indexes associated wh ptype, if there are no common additional
properties. The update of the indexes will be done during the commit call of the transaction.

37

int GDI RemoveSpecificPropertyFromEdge(const void* value, size t count,

GDI PropertyType ptype, GDI EdgeHolder edge)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype property type object (handle)

INOUT edge edge object (handle)

GDI RemoveSpecificPropertyFromEdge will remove a specific property of type ptype. The
function will remove a property only if the number of elements of its property value, where
one element is of the datatype associated with ptype, is equal to count and the value of each
element of that property value matches exactly the respective element in the data pointed to
by the parameter value. If there is no property of type ptype or no property of that type,
whose property value matches value, no action will be performed. At most one property will
be removed, since multiple entries of the same (key, value)-pair are not allowed in the LPG
model. GDI RemoveSpecificPropertyFromEdge should only be called during a transaction. The
function might prompt an update of explicit indexes. If only one property of type ptype was
present on the edge and that property was removed, the vertex will be removed from the indexes
associated with the property type, if there are no common additional property types associated
with said indexes. If there were multiple properties of that type present and a property was
removed, the associated indexes will be updated. All of those operations will be done during the
commit call of the transaction.

int GDI UpdatePropertyOfEdge(const void* value, size t count,

GDI PropertyType ptype, GDI EdgeHolder edge)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype single entity property type object (handle)

INOUT edge edge object (handle)

GDI UpdatePropertyOfEdge updates the property of a single entity property type ptype on
edge. If ptype is a multi entity property type, the error GDI ERROR WRONG TYPE is re-
turned. The new property value is copied from the data pointed to by value. The number of ele-
ments to be copied, which are of the datatype associated with ptype, is provided by the count pa-
rameter. Any size limitation of the property type ptype regarding the new value will be enforced.
If no property of type ptype exists on the given edge, the error GDI ERROR NO PROPERTY
is returned. If ptype does not belong to the same graph database as edge does, the error
GDI ERROR OBJECT MISMATCH is returned. If the existing property of type ptype has the
same property value as value, no action is performed. GDI UpdatePropertyOfEdge should only
be called during a transaction. The entry of the edge in any associated index will be updated
during the commit call of the transaction.

int GDI UpdateSpecificPropertyOfEdge(const void* old value, size t old count,

const void* new value, size t new count, GDI PropertyType ptype,

GDI EdgeHolder edge)

IN old value initial address to the value for comparison (choice)
IN old count number of elements in old value (non-negative integer)
IN new value initial address to the new value (choice)
IN new count number of elements in new value (non-negative integer)
IN ptype property type object (handle)

INOUT edge edge object (handle)

GDI UpdateSpecificPropertyOfEdge updates a property of type ptype on edge, only if
its property value matches the content of old value. The function will update a property

38

only if the number of elements of its property value, where one element is of the datatype
associated with ptype, is equal to old count and the value of each element of that prop-
erty value matches exactly the respective element in the data pointed to by the parameter
old value. If such a property is found, the old property value is removed and the new prop-
erty value is copied from the data to which new value points to, with the number of elements
of the new property value being specified by new count. If no property is updated, the error
GDI ERROR NO PROPERTY is returned. Any size limitation of the property type ptype

regarding the new property value will be enforced. At most one property will be updated,
since multiple entries of the same (key,value)-pair are not allowed in the LPG model. For
the same reason, the error GDI ERROR PROPERTY EXISTS will be returned, in case there
is a property with the same property type and value, matching new value, already present
on the edge. If ptype does not belong to the same graph database as edge does, the error
GDI ERROR OBJECT MISMATCH is returned. GDI UpdateSpecificPropertyOfEdge should
only be called during a transaction. The entry of the edge in any associated index will be
updated during the commit call of the transaction.

Rationale. GDI UpdateSpecificPropertyOfEdge returns an error, if the new property
already exists on the edge, instead of performing no action, to avoid non-intuitive situ-
ations, where a successful update would decrease the total number of properties on an
edge instead of keeping it constant. (End of rationale.)

int GDI SetPropertyOfEdge(const void* value, size t count,

GDI PropertyType ptype, GDI EdgeHolder edge)

IN value initial address to the value (choice)
IN count number of elements (non-negative integer)
IN ptype single entity property type object (handle)

INOUT edge edge object (handle)

GDI SetPropertyOfEdge sets the property of a single entity property type ptype on edge. If
ptype is a multi entity property type, the error GDI ERROR WRONG TYPE is returned. The
new value of the property is copied from the data pointed to by value. The number of elements to
be copied, which are of the datatype associated with ptype, is provided by the count parameter.
If a property of type ptype already exists on the given edge, then the value of that property
will be overwritten. Otherwise the property will be added to the edge. Any size limitation of
the property type ptype regarding the new property value will be enforced. If ptype does not
belong to the same graph database as edge does, the error GDI ERROR OBJECT MISMATCH
is returned. GDI SetPropertyOfEdge should only be called during a transaction. The function
might prompt an update of explicit indexes. In case a property of the edge was updated, the
entry of the edge in the associated indexes will be updated as well. In case a property was added,
the edge will be added to the indexes associated with the property type ptype, in case the edge
is not already part of said indexes (because of other properties). All of those operations will be
done during the commit call of the transaction.

Advice to implementors. An implementation might map GDI SetPropertyOfEdge to
a sequence of function calls: Remove the property from an edge and then insert the
property again. However, there might be a faster way to achieve this. (End of advice to
implementors.)

39

9 Indexes

For certain types of workloads, graph databases must provide a fast look-up of objects (vertices
and edges) given a label or a property. To solve this use case, GDI provides an interface for
indexes for fast look-up, similar to indexes in relational databases. These interfaces are meant
to provide explicit indexes: An application might know the graph and its queries better than
the graph database. Therefore providing an interface to set the indexes explicitly instead of
implicitly (by assumptions of the implementation of GDI) might improve performance.

Advice to users. Indexes are ”not free”: they use memory and updating them may result
in additional complexity or communication. (End of advice to users.)

Advice to implementors. Explicit indexes impose no restrictions on what indexes the
implementation of GDI might use internally. (End of advice to implementors.)

GDI provides access to vertices and their attributes (labels, properties) with a two step
mechanism. In the first step an internal UID, a GDI specific UID, of datatype GDI Vertex uid
is obtained. This internal UID identifies a vertex in the GDI database uniquely. In the second
step, that internal vertex UID is used to create a temporary GDI VertexHolder object, that
represents the vertex on the process. The GDI VertexHolder object then can be used to query
the edges, labels and properties of the vertex. Internal vertex UIDs are only valid during the
transaction from which they are obtained to allow the relocation of vertices. The process of
accessing is split in two parts to make it possible to distribute internal vertex UIDs, which
are relatively small, to other processes during a collective read transaction for load-balancing
purposes, while GDI VertexHolder objects are opaque, making them local unshareable objects.
Additionally the internal vertex UIDs are also used to identify the target vertex of an edge.

Similarly, GDI also uses a two step mechanism to access edges and their attributes. The first
step is an internal UID (of datatype GDI Edge uid). This internal UID identifies an edge in the
GDI database uniquely. In the second step, that internal edge UID is used to create a temporary
GDI EdgeHolder object, that represents the edge on the process. The GDI EdgeHolder object
then can be used to query the origin and target vertices, labels and properties of the edge.
Internal edge UIDs are only valid during the transaction from which they are obtained to allow
the relocation of edges. Again this two step mechanism allows the distribution of internal edge
UIDs to other processes.

With graph databases there are usually two use cases: 1) smaller queries that usually only
visit a small part of the graph and 2) complex queries that usually involve the complete graph
or at least a big part of the graph.

In the first case one usually starts from one vertex and then explores the graph by following
edges. To have access to that first vertex, GDI provides a function to translate application level
IDs to internal vertex UIDs with an implicit index provided by the library (see Section 9.5.1).
Afterwards the graph can be explored without querying indexes by following other internal vertex
UIDs which are provided by edges.

Complex queries usually involve most of the graph and can be implemented by using collective
read transactions in conjunction with explicit indexes. Those queries typically start with a set
of objects that fit certain conditions. The application can select the make up of explicit indexes
to fit its needs and then query an application selected index in a scalable way to filter objects
to meet those conditions, and get returned that starting set of objects, upon which it can start
its graph algorithm/exploration. If the application uses a query optimizer, it is that optimizer’s
responsibility to choose the best index for the task.

GDI has the following index model: An explicit index I has an associated set of labels L and
a set of associated property types P . An object o (a vertex or an edge) has a set of associated
labels oL and a set of associated property types oP . The object o is indexed by I iff L ∩ oL 6= ∅
(or L = ∅) and P ∩ oP 6= ∅ (or P = ∅) and L ∪ P 6= ∅.

Rationale. The index model is an intuitive extension of indexes in RDBMS: One can
think that an object o is stored in tables given by the labels oL assigned to o. The
values properties of oP are stored in columns. An index I with only labels L denotes the
collection of the objects over the tables L. If the index has only associated properties P ,

40

then the index is over all columns P (ignoring NULL values). If the index has associated
labels L and property types P , then the index I can be seen as an index over the columns
P of the tables L (ignoring NULL values). (End of rationale.)

9.1 Explicit Index Creation and Destruction

int GDI CreateIndex(size t obj count, int itype, GDI Database graph db,

GDI Index* index)

IN obj count hint on how many objects will be indexed (non-negative integer)
IN itype type of index to create (state)
IN graph db graph database object (handle)

OUT index index object returned by the call (handle)

GDI CreateIndex allocates an index object of the given type itype. Objects of the graph
database graph db will be indexed by index. obj count should be considered a hint to the
library, on the global number of objects, that will be indexed by this index object. If the value 0 is
passed as obj count, the library will consider this as no hint given. The state parameter itype is
restricted to the two values GDI INDEXTYPE HASHTABLE and GDI INDEXTYPE BTREE.
GDI INDEXTYPE HASHTABLE is intended to be implemented as a hash-table for 1:1 relations
with an equal and not equal look-up. GDI INDEXTYPE BTREE is intended to be implemented
as a B-tree for range and comparison functions. On return of the GDI CreateIndex call, the index
object contains no entries. It is a collective call and all input parameters should be the same on
all processes. A call to GDI CreateIndex has a barrier semantic: a process returns from the call
only after all other processes have entered their matching call.

The addition and removal of entries to the index(es) is handled implicitly during the commit
call of a transaction.

int GDI FreeIndex(GDI Index* index)

INOUT index index object (handle)

GDI FreeIndex deallocates an index object, and sets index to GDI INDEX NULL. index
should be the same on all processes. It is a collective call with a barrier semantic: a process
returns from the call only after all other processes have entered their matching call.

If index is still associated with any labels and/or property types, then calling GDI FreeIndex
will have the same effect, as if the user would have removed all labels/property types from index

by himself.

9.2 Index Label Handling

int GDI AddLabelToIndex(GDI Label label, GDI Index index)

INOUT label label object (handle)
INOUT index index object (handle)

GDI AddLabelToIndex will associate a given label with an explicit index. If label is al-
ready associated with index, no action is performed. If label does not belong to the same
graph database as index does, the error GDI ERROR OBJECT MISMATCH is returned. All
parameters should be the same on all processes. GDI AddLabelToIndex is a collective call.

If index is only associated with other labels, then all objects with the label label will be
added as entries to the index, unless they are already present in this index, because of other
labels. However if there are also property types associated with index, then only objects with
the label label, which also contain at least one property of the property types associated with
index, will be added as entries to the index, unless they are already present. If index is only
associated with property types, adding a label can reduce the amount of objects that are indexed,

41

because an object has to be part of both sets, the label set and the property type set, to be
indexed. It is possible to have indexes that are only associated with one of the sets, making
them pure label indexes or pure property type indexes.

It is possible to index objects with no label using the predefined label GDI LABEL NONE.
Explicit indexes will be updated implicitly during the commit of a transaction, if objects got

labels, associated with index, added or removed during the transaction.
The index can be used for a fast look-up of objects with labels and properties associated with

the index.

Advice to users. Indexes introduce additional complexity during transactions, so if a
label is assigned to too many indexes, there might be too much overhead without any
performance gain. However this depends on the behavior of the implementation, so the
user is advised to check the documentation of the implementation. (End of advice to
users.)

int GDI RemoveLabelFromIndex(GDI Label label, GDI Index index)

INOUT label label object (handle)
INOUT index index object (handle)

GDI RemoveLabelFromIndex removes the association of the given label with an explicit index
it was previously registered to. If label was not associated with index, no action is performed.
GDI RemoveLabelFromIndex is a collective call and all parameters should be the same on all
processes.

All objects with the label label, which have an entry in the index index, will be removed
from the index, unless they have at least one additional label, that is still associated with index.
If label is the only label associated with index, but there are still property types associated
with this index, then no entries will be removed from the index. Instead all objects, which
contain at least one property of the property types associated with index, but are currently
not present in this index, because they didn’t have the label label, will be added as entries to
index. If label is the only label associated with index and additionally no property types are
associated with this index, then index contains no entries after the return of the call.

If the predefined label GDI LABEL NONE is supplied, objects with no label will be removed
from the index according to the rules mentioned above.

9.3 Index Property Type Handling

int GDI AddPropertyTypeToIndex(GDI PropertyType ptype, GDI Index index)

INOUT ptype property type object (handle)
INOUT index index object (handle)

GDI AddPropertyTypeToIndex will associate a given property type with an explicit index.
If ptype is already associated with index, no action is performed. If ptype does not belong
to the same graph database as index does, the error GDI ERROR OBJECT MISMATCH is
returned. GDI AddPropertyTypeToIndex is a collective call and all parameters should be the
same on all processes.

If index is only associated with other property types, then all objects with properties of
property type ptype will be added as entries to the index, unless they are already present in this
index, because of other property types. However if there are also labels associated with index,
then only objects with properties of the property type ptype, which also have at least one label
of the labels associated with index, will be added as entries to the index, unless they are already
present. If index is only associated with labels, adding a property type can reduce the amount
of objects that are indexed, because an object has to be part of both sets, the label set and the
property type set, to be indexed. It is possible to have indexes that are only associated with one
of the sets, making them pure label indexes or pure property type indexes.

42

Explicit indexes will be updated implicitly during the commit of a transaction, if objects
got properties, whose property type is associated with index, added or removed during the
transaction.

The index can be used for a fast look-up of objects with labels and properties associated with
the index.

Advice to users. Indexes introduce additional complexity during transactions, so if a
property type is assigned to too many indexes, there might be too much overhead without
any performance gain. However this depends on the behavior of the implementation, so
the user is advised to check the documentation of the implementation. (End of advice to
users.)

int GDI RemovePropertyTypeFromIndex(GDI PropertyType ptype, GDI Index index)

INOUT ptype property type object (handle)
INOUT index index object (handle)

GDI RemovePropertyTypeFromIndex removes the association of the given property type
with an explicit index, it was previously registered to. If ptype was not associated with index, no
action is performed. GDI RemovePropertyTypeFromIndex is a collective call and all parameters
should be the same on all processes.

All objects with the property type ptype, which have an entry in the index index, will be
removed from the index, unless they have at least one additional property, whose property type
is still associated with index. If ptype is the only property type associated with this index, but
there are still labels associated with this index, then no entries will be removed from the index.
Instead all objects, which contain at least one label of the labels associated with index, but are
currently not present in this index, because they didn’t have properties of property type ptype,
will be added as entries to index. If ptype is the only property type associated with index and
additionally no labels are associated with this index, then index contains no entries after the
return of the call.

9.4 Index Bulk Update

int GDI AddLabelsAndPropertyTypesToIndex(GDI Label array of labels[],

size t label count, GDI PropertyType array of ptypes[],

size t ptype count, GDI Index index)

INOUT array of labels array of labels (array of handles)
IN label count length of array of labels (non-negative integer)

INOUT array of ptypes array of property types (array of handles)
IN ptype count length of array of ptypes (non-negative integer)

INOUT index index object (handle)

GDI AddLabelsAndPropertyTypesToIndex is a function to associate multiple labels and
property types with an explicit index. The labels that will be newly associated with index are
located in array of labels, with the parameter label count providing the number of labels
that can be found in said array. Similarly the property types, that will be additionally associ-
ated with the index, are found in array of ptypes with ptype count specifying the number of
property type handles in said array. If one of the handles in either array is already associated
with index, then that handle is ignored. If a label of array of labels or a property type of
array of ptypes does not belong to the same graph database as index does, neither labels
nor property types are added to the index and the error GDI ERROR OBJECT MISMATCH
is returned. GDI AddLabelsAndPropertyTypesToIndex is a collective call and all parameters
should be the same on all processes.

If index is only associated with labels, and only new labels will be added, meaning the array
array of ptypes is empty, then all objects with at least one label present in array of labels

43

will be added as entries to the index, unless they are already present in this index, because of
other labels. However if array of ptypes is not empty, the amount of objects, that are indexed,
can be reduced, because an object has to be part of both sets, the label set and the property
type set, to be indexed.

Similarly if index is only associated with property types, and only new property types will
be added, meaning array of labels is empty, then all objects with at least one property of any
property type present in array of ptypes will be added as entries to the index, unless they are
already present in this index, because of other property types. If however array of labels is
not empty, it is possible, that the amount of indexed objects will be reduced, because an object
has to be part of both sets to be indexed.

If index is associated with labels and property types, the amount of indexed objects can only
grow, when labels and/or property types are additionally associated with the index.

It is possible to have indexes that are only associated with one of the sets, making them pure
label indexes or pure property type indexes.

Objects with no label can be indexed by using the predefined label GDI LABEL NONE.
Explicit indexes will be updated implicitly during the commit of a transaction, if objects got

labels or properties, associated with index, added or removed during the transaction.
The index can be used for a fast look-up of objects with labels and properties associated with

the index.

Advice to users. The function GDI AddLabelsAndPropertyTypesToIndex allows to ef-
ficiently add multiple labels and/or multiple property types to an explicit index since the
index is only recomputed after all labels and property types are added. (End of advice to
users.)

int GDI RemoveLabelsAndPropertyTypesFromIndex(GDI Label array of labels[],

size t label count, GDI PropertyType array of ptypes[],

size t ptype count, GDI Index index)

INOUT array of labels array of labels (array of handles)
IN label count length of array of labels (non-negative integer)

INOUT array of ptypes array of property types (array of handles)
IN ptype count lengtof array of ptypes (non-negative integer)

INOUT index index object (handle)

GDI RemoveLabelsAndPropertyTypesFromIndex is a function to remove the association of
multiple labels and multiple property types with an explicit index they were previously registered
to. The labels that will be removed from index are located in array of labels, with the
parameter label count providing the number of labels that can be found in said array. Similarly
the property types, that will be removed from the index, are found in array of ptypes with
ptype count specifying the number of property type handles in said array. If a label from
array of labels or a property type from array of properties was not associated with index,
then that handle is ignored.

GDI RemoveLabelsAndPropertyTypesFromIndex is a collective call and all parameters should
be the same on all processes.

If index is a pure label index, then only labels can be removed. All objects, which have at
least one label present in array of labels, will be removed from the index, unless they still
have at least one additional label, that is still associated with index.

Similarly if index is a pure property type index, then only property types can be removed.
All objects, which have at least one property of any property type found in array of ptypes,
will be removed from the index, unless they still have at least one additional property of a
property type, that is still associated with index.

If index is associated with both labels and property types before the call, and the call will
remove all labels, but there will be still property types associated afterwards, it is possible that
the number of indexed object will increase, since objects will not be filtered by labels anymore. In
such a case, all objects, which contain at least one property of the property types still associated

44

with index, but are currently not present in this index, because they didn’t have any of the
labels previously associated with index, will be added as entries to index.

Similarly the amount of indexed objects might also increase, if instead the call will remove all
property types, but there will be still labels associated afterwards. In this case, all objects, which
contain at least one label of the labels still associated with index, but are currently not present
in this index, because they didn’t have properties of any property type previously associated
with index, will be added as entries to index.

If index is still associated with labels and property types after the call, the number of indexed
objects can only decline, when labels and/or property types are removed from the index, because
an object has to be part of both sets, the label set and the property type set, to be indexed.

If all labels and property types are removed from index during the call, then the index
contains no entries after the return of the call.

If the predefined label GDI LABEL NONE is supplied in array of labels, objects with no
label will be removed from the index according to the rules mentioned above.

Advice to users. The function GDI RemoveLabelsAndPropertyTypesFromIndex allows
to efficiently remove multiple labels and/or multiple property types from an explicit index
since the index is only recomputed after all labels and property types are removed. (End
of advice to users.)

9.5 Querying Indexes

9.5.1 Implicit Indexes

int GDI TranslateVertexID(bool* found flag, GDI Vertex uid* internal uid,

GDI Label label, const void* external id, size t size,

GDI Transaction transaction)

OUT found flag flag to indicate whether the application-level ID was found
(bool)

OUT internal uid internal vertex UID (UID)
IN label label object (handle)
IN external id initial address of application level ID (choice)
IN size size of application level ID (non-negative integer)

INOUT transaction transaction object (handle)

GDI TranslateVertexID translates an application level ID of a vertex within the given label
to an internal vertex UID, which can be used to access the vertex with a GDI VertexHolder
object. The size of the application level ID in Bytes is provided by the parameter size. An
implicit index provided by the library is used to retrieve the internal vertex UID. If the appli-
cation level ID is not found, then false is returned in found flag and nothing is written to
internal uid. Otherwise true is returned in found flag and the internal vertex UID is writ-
ten to internal uid. If label does not belong to the same graph as transaction, the error
GDI ERROR OBJECT MISMATCH is returned. GDI TranslateVertexID should only be called
during a transaction and the retrieved internal vertex UID is only valid during the transaction
from which GDI TranslateVertexID is called. GDI TranslateVertexID is usually the starting
point for any kind of graph exploration, if not a new vertex is created or an explicit index is
queried.

The predefined label GDI LABEL NONE can be used to retrieve the internal vertex UID of
a vertex which has no labels. If there are multiple vertices, which do not have any labels and
have the application level ID external id, then internal uid will contain the internal vertex
UID of an arbitrary vertex with that ID and GDI WARNING NON UNIQUE ID is returned.

If the application does not use IDs for its vertices, it can’t use GDI TranslateVertexID and
has to rely on querying explicit indexes instead.

Rationale. It would be possible to provide the functionality of translating application
level IDs to internal vertex UIDs with explicit indexes: One would create an explicit index
for each label and add the predefined property type handle GDI PROPERTY TYPE ID

45

to each of those indexes. However it is such a basic functionality for any query, that
GDI TranslateVertexID was introduced as a short hand and to allow the implementation
additional optimizations, since the implicit index is fixed to those two associations, for
such a heavily used use case.

No short hand for edges is provided, since edges typically do not have (U)IDs and
indexes over edges introduce more overhead than indexes over vertices, since the number
of edges is usually at least an order of magnitude higher than the number of vertices in a
graph. However if the user needs such a functionality, he can use explicit indexes with the
above mentioned scheme and a label that is exclusively used for edges. (End of rationale.)

9.5.2 Explicit Indexes

int GDI GetVerticesOfIndex(GDI Vertex uid array of uids[], size t count,

size t* resultcount, GDI Constraint constraint, GDI Index index,

GDI Transaction transaction)

OUT array of uids array of internal vertex UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN index explicit index object (handle)

INOUT transaction transaction object (handle)

GDI GetVerticesOfIndex queries the index index and returns the internal vertex UIDs of all
vertices that satisfy the conditions set by the constraint object that constraint points to. The
internal vertex UIDs then can be used to access the vertices with GDI VertexHolder objects.
The internal vertex UIDs will be returned in the array array of uids, where count contains
the maximum number of internal vertex UIDs that can be written to said array. On return
resultcount contains the actual number of internal vertex UIDs written to array of uids. If
the array is smaller than the available number of internal vertex UIDs, the array will be filled
and the remaining internal vertex UIDs will be omitted. The error GDI ERROR TRUNCATE
will be returned in such an overflow case. If constraint, index and transaction do not
belong to the same graph database, the error GDI ERROR OBJECT MISMATCH is returned.
GDI GetVerticesOfIndex should only be called during a transaction and all retrieved internal
vertex UIDs are only valid during the transaction from which GDI GetVerticesOfIndex is called.

GDI provides a way to filter the vertices found in index with the use of a constraint ob-
ject. The conditions set in the constraint object constraint should only concern labels and
entries of property types that are associated with index. It is possible to retrieve all vertices
that are indexed in index by supplying the value GDI CONSTRAINT NULL as the parameter
constraint. If a stale GDI Constraint object is passed, GDI ERROR STALE is returned as
error.

int GDI GetLocalVerticesOfIndex(GDI Vertex uid array of uids[], size t count,

size t* resultcount, GDI Constraint constraint, GDI Index index,

GDI Transaction transaction)

OUT array of uids array of internal vertex UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN index explicit index object (handle)

INOUT transaction transaction object (handle)

GDI GetLocalVerticesOfIndex offers the same functionality as GDI GetVerticesOfIndex, but
instead returns only the internal vertex UIDs of vertices that are local to the calling process.
The function is meant to be used in combination with collective read transactions as a scalable
way to query explicit indexes. GDI GetLocalVerticesOfIndex is a local call.

46

int GDI GetEdgesOfIndex(GDI Edge uid array of uids[], size t count,

size t* resultcount, GDI Constraint constraint, GDI Index index,

GDI Transaction transaction)

OUT array of uids array of internal edge UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN index explicit index object (handle)

INOUT transaction transaction object (handle)

GDI GetEdgesOfIndex queries the index index and returns the internal edge UIDs of all
edges that satisfy the conditions set by the constraint object that constraint points to. The
internal edge UIDs then can be used to access the edges with GDI EdgeHolder objects. The
internal edge UIDs will be returned in the array array of uids, where count contains the max-
imum number of internal edge UIDs that can be written to said array. On return resultcount

contains the actual number of internal edge UIDs written to array of uids. If the array is
smaller than the available number of internal edge UIDs, the array will be filled and the remain-
ing internal edge UIDs will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. If constraint, index and transaction do not belong to the same graph
database, the error GDI ERROR OBJECT MISMATCH is returned. GDI GetEdgesOfIndex
should only be called during a transaction and all retrieved internal edge UIDs are only valid
during the transaction from which GDI GetEdgesOfIndex is called.

GDI provides a way to filter the edges found in index with the use of a constraint object.
The conditions set in the constraint object constraint should only concern labels and entries of
property types that are associated with index. It is possible to retrieve all edges that are indexed
in index by supplying the value GDI CONSTRAINT NULL as the parameter constraint. If
a stale GDI Constraint object is passed, GDI ERROR STALE is returned as error.

int GDI GetLocalEdgesOfIndex(GDI Edge uid array of uids[], size t count,

size t* resultcount, GDI Constraint constraint, GDI Index index,

GDI Transaction transacti)

OUT array of uids array of internal edge UIDs (array of UIDs)
IN count length of array of uids (non-negative integer)

OUT resultcount number of retrieved UIDs (non-negative integer)
IN constraint constraint object (handle)
IN index explicit index object (handle)

INOUT transaction transaction object (handle)

GDI GetLocalEdgesOfIndex offers the same functionality as GDI GetEdgesOfIndex, but in-
stead returns only the internal edge UIDs of edges that are local to the calling process. The
function is meant to be used in combination with collective read transactions as a scalable way
to query explicit indexes. GDI GetLocalEdgesOfIndex is a local call.

9.6 Index Attributes

int GDI GetAllIndexesOfDatabase(GDI Index array of indexes[], size t count,

size t* resultcount, GDI Database graph db)

OUT array of indexes array of indexes (array of handles)
IN count length of array of indexes (non-negative integer)

OUT resultcount number of retrieved indexes (non-negative integer)
IN graph db graph database object (handle)

A user might not know what indexes are available in a certain graph database object.

47

GDI GetAllIndexesOfDatabase will retrieve all indexes currently present in the given graph
database. The user provides an array for index handles and the parameter count, which con-
tains the maximum number of index handles that can be written to said array. On return
resultcount contains the actual number of index handles written to array of indexes. If the
array is smaller than the available number of index handles, the array will be filled and the
remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. GDI GetAllIndexesOfDatabase is a local call.

int GDI GetAllLabelsOfIndex(GDI Label array of labels[], size t count,

size t* resultcount, GDI Index index)

OUT array of labels array of labels (array of handles)
IN count length of array of labels (non-negative integer)

OUT resultcount number of retrieved labels (non-negative integer)
IN index index object (handle)

GDI GetAllLabelsOfIndex will retrieve all labels currently associated with the given index.
The user provides an array for label handles array of labels and the parameter count, which
contains the maximum number of label handles that can be written to said array. On return
resultcount contains the actual number of label handles written to array of labels. If the
array is smaller than the available number of label handles, the array will be filled and the
remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. GDI GetAllLabelsOfIndex is a local call.

int GDI GetAllPropertyTypesOfIndex(GDI PropertyType array of ptypes[],

size t count, size t* resultcount, GDI Index index)

OUT array of ptypes array of property types (array of handles)
IN count length of array of ptypes (non-negative integer)

OUT resultcount number of retrieved property types (non-negative integer)
IN index index object (handle)

GDI GetAllPropertyTypesOfIndex will retrieve all property types currently associated with
the given index. The user provides an array for property type handles array of ptypes and
the parameter count, which contains the maximum number of property type handles that can
be written to said array. On return resultcount contains the actual number of property type
handles written to array of ptypes. If the array is smaller than the available number of prop-
erty handles, the array will be filled and the remaining handles will be omitted. The error
GDI ERROR TRUNCATE will be returned in such an overflow case. It is a local call.

int GDI GetTypeOfIndex(int* itype, GDI Index index)

OUT itype type of index (state)
IN index index object (handle)

GDI GetTypeOfIndex returns the type of index. The returned state parameter itype can
have exactly two values: GDI INDEXTYPE HASHTABLE and GDI INDEXTYPE BTREE.
GDI GetTypeOfIndex is a local call.

48

10 Basic Datatypes

Datatypes give context to property types by letting the graph database know the size of the
elements of a property value and by enabling the graph database to run operations on the
elements of property values. Together with the count parameter and the size limitations of
properties, it enables the composition of fixed and variable datatypes.

GDI supports the following datatypes:

GDI datatype C datatype
GDI CHAR char (treated as printable character)
GDI BOOL bool
GDI INT8 T int8 t
GDI INT16 T int16 t
GDI INT32 T int32 t
GDI INT64 T int64 t
GDI UINT8 T uint8 t
GDI UINT16 T uint16 t
GDI UINT32 T uint32 t
GDI UINT64 T uint64 t
GDI FLOAT float
GDI DOUBLE double
GDI DECIMAL GDI Decimal
GDI TIME GDI Time
GDI DATE GDI Date
GDI DATETIME GDI Datetime
GDI BYTE

Direct addresses instead of handles are used for all non-native datatypes to ensure that they
can be used in the same way as native datatypes.

Advice to users. Compared to RDBMS, GDI does not support common datatypes
of SQL like Timestamp and Year. However Timestamp can be represented in GDI by
GDI Datetime and Year by uint8 t. (End of advice to users.)

10.1 Character Datatype

To represent characters, GDI supports char. The type is implemented by the according C
datatype, such that no functions are required for the character datatype. The required storage
and value range is summarized in the following table:

GDI datatype Storage (in Bytes) Possible Values
GDI CHAR 1 A character (ASCII Code)

Advice to users. The user is advised to use GDI CHAR as the basic datatype to store
UTF-8 strings, but has to keep in mind that the representation of a single UTF-8 character
might use up to 4 Bytes (at the time of writing this document). (End of advice to users.)

10.2 Integer Numeric Datatypes

The integer numeric datatypes are categorized into signed integer types (int8 t, int16 t, int32 t
and int64 t) which store negative and positive integers, and unsigned integer types (bool,
uint8 t, uint16 t, uint32 t, uint64 t) which store only non-negative integers. The integer nu-
meric datatypes are implemented by the according C datatypes, such that no functions are
required for integer numeric datatypes. The required storage and value range is summarized in
the following table:

49

GDI datatype Storage (in Bytes) Minimum Value Maximum Value
GDI INT8 T 1 −128 127
GDI INT16 T 2 −32768 32767
GDI INT32 T 4 −2147483648 2147483647
GDI INT64 T 8 −263 263 − 1
GDI BOOL 1 Bit (at most 1 Byte) 0 (false) 1 (true)
GDI UINT8 T 1 0 255
GDI UINT16 T 2 0 65535
GDI UINT32 T 4 0 4294967295
GDI UINT64 T 8 0 264 − 1

Rationale. GDI relies on the ISO C 99 standard and treats therefore a boolean value
as an unsigned integer type which can have either the value 0 (false) or 1 (true). GDI
allows to represent a boolean value with up to 8 Bits to conform to most programming
languages in which the smallest addressable value is a Byte. (End of rationale.)

10.3 Floating Point Numeric Datatypes

GDI supports two floating point datatypes: float and double. The types use IEEE 754-1989 for
representation. The floating point datatypes are implemented by the according C datatypes,
such that no functions are required for floating point numeric datatypes. The required storage
and value range is summarized in the following table:

GDI datatype Storage (in Bytes) Minimum Value Maximum Value

GDI FLOAT 4 −3.4028238 3.4028238

GDI DOUBLE 8 −1.79769308 1.79769308

Advice to users. The floating point numeric datatypes do not provide exact represen-
tation. It is recommended to use GDI Decimal if exact representations are required (for
example for monetary values). (End of advice to users.)

10.4 Fixed Point Numeric Datatype

The datatype GDI Decimal stores exact numeric data values. The datatype supports a maximum
number of 65 digits in total and a maximum number of 30 digits after the decimal point. The
notation {x}y, where x denotes a set of symbols and y is a positive integer number, denotes that
symbols of x can occur consecutively up to y times.

The required storage and value range is summarized in the following table:

GDI datatype Storage (in Bytes) Minimum Value Maximum Value

GDI DECIMAL At most 67 Bytes −1065 − 1 1065 − 1

Advice to implementors. A decimal number is stored in at most 67 Bytes. This restric-
tion allows to store the decimal number as string (without terminating null character).
(End of advice to implementors.)

int GDI SetDecimal(const char* decimal str, GDI Decimal* decimal)

IN decimal str character string representing the decimal value (string)
OUT decimal initial address to the decimal object returned by the call

(choice)

GDI SetDecimal sets the decimal for a GDI Decimal object, specified by its initial address
read from the parameter decimal, with the numeric value passed as a character string. The string
has the format {−}v{w}m−d−1.{w}d or {−}0.{w}d, where negative numbers have a leading

50

minus sign, w represents the digits from 0 to 9, v represents the digits from 1 to 9, m denotes
the total number of digits (non-negative integer between 1 and 65), and d denotes the number
of digits after the decimal point (non-negative integer between 0 and 30). GDI SetDecimal is a
local call.

Rationale. The decimal value is read from a character string to prevent conversion
errors. (End of rationale.)

int GDI GetDecimal(char* decimal str, size t length,

size t* resultlength, const GDI Decimal* decimal)

OUT decimal str character string representing the decimal value (string)
IN length maximum length of decimal str (non-negative integer)

OUT resultlength length of the returned character string (non-negative integer)
IN decimal initial address to a decimal object (choice)

GDI GetDecimal retrieves a decimal from an existing GDI Decimal object and returns said
value to an output string. The output string will conform to the format {−}v{w}(m−d−1).{w}d,
if m− d > 0. If m− d ≤ 0, the output string will have the format {−}0.{w}d. v represents the
digits from 1 to 9, w the digits from 0 to 9, m is in the range between 1 and 65 and d is in the
range between 0 and 30. Negative numbers have a leading minus sign. decimal str should be
allocated so that it can hold a resulting string of length GDI MAX DECIMAL SIZE characters.
The parameter length indicates the length in Bytes of the allocated string decimal str. The
parameter resultlength indicates the length (in Bytes) of the string actually written. A null
terminator is additionally stored at decimal str[resultlength]. The value of resultlength
cannot be larger than GDI MAX DECIMAL SIZE-1. If the size of the allocated string is smaller
than the size of the decimal, then the string will be filled, such that a valid UTF-8 string is
returned, and the remaining characters will be omitted. The error GDI ERROR TRUNCATE
will be returned in such an overflow case. GDI GetDecimal is a local call.

10.5 Time Datatypes

GDI offers built-in datatypes to handle time (GDI Time), date (GDI Date) as well as date
and time (GDI Datetime). These datatypes do not support negative years and additionally
GDI Datetime can’t express daylight saving time (DST).

Rationale. GDI provides no functions to parse a string to time, date or datetime object.
Due to many different standards, it is the user’s responsibility to parse the values of such
strings. Time, date and datetime representations are provided since date and time allow
a more compressed representation than datetime. In certain applications, this allows to
reduce the memory usage. (End of rationale.)

The required storage and value range is summarized in the following table:

GDI datatype Storage (in Bytes) Minimum Value Maximum Value
GDI Time At most 5 Bytes 00:00:00.000 23:59:59.999
GDI Date At most 4 Bytes 0000-01-01 65535-12-31
GDI Datetime At most 11 Bytes -1200 0000-01-01 00:00:00.000 +1400 65535-12-31 23:59:59.999

51

int GDI SetTime(uint8 t hour, uint8 t minute, uint8 t second,

uint16 t fraction, GDI Time* time)

IN hour numeric value for the hour (non-negative integer between 0 and
23)

IN minute numeric value for the minute (non-negative integer between 0 and
59)

IN second numeric value for the second (non-negative integer between 0 and
59)

IN fraction numeric value for the fraction of a second (non-negative integer
between 0 and 999)

OUT time initial address to the time object returned by the call (choice)

GDI SetTime sets the time for a GDI Time object, specified by its initial address read from
the parameter time, with the numeric values for hour, minute, second and fraction of a second.
The fraction parameter allows for milliseconds precision (between 0 and 999). GDI SetTime
is a local call.

int GDI GetTime(uint8 t* hour, uint8 t* minute, uint8 t* second,

uint16 t* fraction, const GDI Time* time)

OUT hour numeric value for the hour (non-negative integer between 0 and
23)

OUT minute numeric value for the minute (non-negative integer between 0 and
59)

OUT second numeric value for the second (non-negative integer between 0 and
59)

OUT fraction numeric value for the fraction of a second (non-negative integer
between 0 and 999)

IN time initial address of a time object (choice)

GDI GetTime retrieves a time from an existing GDI Time object and returns the numeric
values for hour, minute, second and fraction of a second. The fraction parameter has millisec-
onds precision (between 0 and 999). GDI GetTime is a local call.

int GDI SetDate(uint16 t year, uint8 t month, uint8 t day,

GDI Date* date)

IN year numeric value for the year (non-negative integer)
IN month numeric value for the month (positive integer between 1 and 12)
IN day numeric value for the day (positive integer between 1 and 31)

OUT date initial address to the date object returned by the call (choice)

GDI SetDate sets the date for a GDI Date object, specified by its initial address read from
date, with the numeric values for day, month and year. GDI SetDate is a local call.

int GDI GetDate(uint16 t* year, uint8 t* month, uint8 t* day,

const GDI Date* date)

OUT year numeric value for the year (non-negative integer)
OUT month numeric value for the month (positive integer between 1 and 12)
OUT day numeric value for the day (positive integer between 1 and 31)

IN date initial address of a date object (choice)

GDI GetDate retrieves a date from an existing GDI Date object and returns the numeric
values for day, month and year. GDI GetDate is a local call.

52

int GDI SetDatetime(uint16 t year, uint8 t month, uint8 t day,

uint8 t hour, uint8 t minute, uint8 t second,

uint16 t fraction, int16 t timezone,

GDI Datetime* datetime)

IN year numeric value for the year (non-negative integer)
IN month numeric value for the month (positive integer between 1 and 12)
IN day numeric value for the day (positive integer between 1 and 31)
IN hour numeric value for the hour (non-negative integer between 0 and

23)
IN minute numeric value for the minute (non-negative integer between 0

and 59)
IN second numeric value for the second (non-negative integer between 0

and 59)
IN fraction numeric value for the fraction of a second (non-negative integer

between 0 and 999)
IN timezone UTC time offset (integer)

OUT datetime initial address to the datetime object returned by the call
(choice)

GDI SetDatetime sets the date and time of a GDI Datetime object. The fraction parameter
allows for milliseconds precision (between 0 and 999). The timezone parameter specifies the
offset in the format {+|-}hhmm for the UTC time zones. It can range from -1200 to +1400.
GDI SetDatetime is a local call.

int GDI GetDatetime(uint16 t* year, uint8 t* month, uint8 t* day,

uint8 t* hour, uint8 t* minute, uint8 t* second,

uint16 t* fraction, int16 t* timezone,

const GDI Datetime* datetime)

OUT year numeric value for the year (non-negative integer)
OUT month numeric value for the month (positive integer between 1 and 12)
OUT day numeric value for the day (positive integer between 1 and 31)
OUT hour numeric value for the hour (non-negative integer between 0 and

23)
OUT minute numeric value for the minute (non-negative integer between 0

and 59)
OUT second numeric value for the second (non-negative integer between 0

and 59)
OUT fraction numeric value for the fraction of a second (non-negative integer

between 0 and 999)
OUT timezone UTC time offset (integer)

IN datetime initial address of a datetime object (choice)

GDI GetDatetime retrieves date and time from an existing GDI Datetime object. The
same constraints as for GDI SetDatetime apply for the fraction and timezone parameters.
GDI GetDatetime is a local call.

10.6 Arbitrary Data

The datatype GDI BYTE allows one to store the binary value of a Byte in memory unchanged.
Together with the count parameter of properties, it is possible to store an arbitrary amount of
binary data.

GDI datatype Storage (in Bytes) Explanation
GDI BYTE 1 Binary data

53

10.7 Datatype Size

int GDI GetSizeOfDatatype(size t* size, GDI Datatype dtype)

OUT size datatype size (non-negative integer)
IN dtype datatype object (handle)

GDI GetSizeOfDatatype sets the value of size to the number of Bytes that the datatype
dtype occupies. GDI GetSizeOfDatatype is a local call.

10.8 Conversion

GDI allows to convert datatypes. But not all conversions are allowed and the conversion might
result in loss of information. We define the following groups of GDI datatypes:

C integer GDI INT8 T, GDI INT16 T, GDI INT32 T, GDI INT64 T,
GDI BOOL, GDI UINT8 T, GDI UINT16 T, GDI UINT32 T,
GDI UINT64 T

Floating point GDI FLOAT, GDI DOUBLE
Time GDI TIME, GDI DATE, GDI DATETIME

The following conversions are allowed:

Source datatype Destination datatype
C integer C integer, Floating point, GDI DECIMAL
Floating point C integer, Floating point, GDI DECIMAL
GDI DECIMAL C integer, Floating point
GDI TIME GDI DATETIME
GDI DATE GDI DATETIME
GDI DATETIME GDI TIME, GDI DATE

If a datatype from the C integer group is converted to a datatype from the C integer or Float-
ing point group, the C arithmetic rules apply. If a datatype from the C integer type is converted
to the datatype GDI DECIMAL, then the integer number is stored without loss of precision.
If a datatype from the Floating point group is converted to a datatype from the C integer or
Floating point group, the C arithmetic rules apply. If a datatype from the Floating point group
is converted to the datatype GDI DECIMAL, the number is first converted to a string with up
to 65 digits in total and 30 digits after the decimal point and then stored as GDI DECIMAL.
This conversion might result in loss of precision. If the datatype GDI DECIMAL is converted to
a datatype from the C integer group, the value after the decimal point is cut off (round down).
If the datatype GDI DECIMAL is converted to a datatype from the Floating point group, the
value is converted in best effort and might result in loss of precision. If the datatype GDI TIME
is converted to GDI DATETIME, the date part is set to 0000-01-01 and the time zone is set
to 0000. If the datetype GDI DATE is converted to GDI DATETIME, the time part is set to
00:00:00.000 and the time zone is set to 0000. If the datatype GDI DATETIME is converted to
GDI TIME, the date part is cut off and if converted to GDI DATE, the time part is cut off. In
both cases, the timezone information of the GDI DATETIME datatype is ignored.

Advice to users. If a datatype from the Floating point group is converted to the datatype
GDI DECIMAL and vice versa, it is advised to check if the conversion resulted in loss of
precision. (End of advice to users.)

10.9 GDI Operations

GDI has the concept of operations, which are primarily used for comparison, to enable filtering of
sets of vertices and edges by their properties or labels. Depending on the nature of the datatype,
with whom a property type is associated, GDI allows the use of certain operations (GDI Op).

54

The following operations are defined:

Name Meaning
GDI EQUAL operand is equal to the value
GDI NOTEQUAL operand is not equal to the value
GDI GREATER operand is greater than the value
GDI EQGREATER operand is greater than the value or equal to the value
GDI SMALLER operand is smaller than the value
GDI EQSMALLER operand is smaller than the value or equal to the value

Not every datatype supports all operations. Using the GDI datatype groups specified in
Section 10.8, the allowed combinations of GDI Op and GDI Datatype parameters are specified
below. Further, GDI allows to compare labels using GDI EQUAL and GDI NOTEQUAL.

GDI EQUAL, GDI NOTEQUAL C integer, Time, GDI CHAR,
GDI DECIMAL, GDI BYTE, Labels

GDI GREATER, GDI SMALLER C integer, Floating point, Time, GDI DECIMAL
GDI EQGREATER, GDI EQSMALLER C integer, Time, GDI DECIMAL

It is possible to compare datatypes that are in the same group for the C integer and Floating
point groups. The C arithmetic rules apply for comparison within these two groups.

It is also possible to compare datatypes within the Time group, however certain limita-
tions apply: When comparing GDI TIME with GDI DATETIME, only the time portion of
GDI DATETIME is significant. When comparing GDI DATE with GDI DATETIME, only the
date portion of GDI DATETIME is significant. It is not possible to compare GDI DATE with
GDI TIME.

It also possible to compare datatypes that are from different groups: When comparing
datatypes from the groups C integer and Floating point, then the C arithmetic rules apply.

GDI Decimal can be compared to C integer and Floating point, where the C integer and
Floating point are converted to GDI Decimal. C integer are converted to GDI DECIMAL with-
out loss of precision. Floating point are converted to GDI DECIMAL using highest precision (65
digits in total and 30 digits after the decimal point). Precision of the floating point value might
be lost during conversion. If two GDI Decimal values with different precision are compared, the
values are compared using 65 digits in total and 30 digits after the decimal point.

In contrast, GDI BYTE values should only be compared to other GDI BYTE values.
For comparison of values that consist of more than one element, the number of elements has

to be same for both operands. If the number of elements does not match, the comparison will
return false. However, if it is the same, then each element will be compared with its respective
counterpart of the other operand. Only if each of the element comparison returns true, the whole
comparison will return true. Otherwise false will be returned for the whole comparison. When
comparing operands of different datatypes, the rules as specified above apply.

55

11 Transactions

Transactions are a core concept of GDI. Similar to transactions in RDBMS, a transaction consists
of a sequence of operations on the graph. A transaction must guarantee Atomicity, Consistency,
Isolation and Durability (ACID). Atomicity ensures that the operations are treated as single unit
and either all succeed or completely fail. Consistency ensures that before and after a transaction,
the database is always in a consistent state. Isolation ensures that concurrent transactions behave
as if they were run in some sequential order. Durability ensures that a committed transaction
will remain even in the case of a system failure.

Rationale. Atomicity, Consistency and Isolation are generally required by business
database queries. Further, transactions must guarantee Durability such that changes
remain. (End of rationale.)

Advice to implementors. Locking algorithms like Two Phase Locking provide ACI.
However, GDI poses no restriction to the algorithm used to ensure ACI. (End of advice
to implementors.)

GDI differentiates between transaction-critical and transaction-non-critical errors. If a func-
tion returns a transaction-critical error, the transaction is guaranteed to fail. GDI does not offer
functions to retry a transaction or to recover from a transaction-critical error: The user must
start a new transaction.

Advice to users. Transaction-critical error codes guarantee the transaction to fail.
Therefore the user is advised to compare the return code of functions called in a transac-
tion with GDI ERROR TRANSACTION CRITICAL to abort as early as possible. (End
of advice to users.)

There are three kind of transactions: (1) Single process transactions are transactions that a
single process has started. This kind of transaction is meant for simple transactions which touch
only a small set of the graph. Note that multiple processes might be involved. For example, the
process that started the transaction might offload a write access to a different process. However
such cases will be handled transparently by the library, so from the point of view of the process
that started the transaction no other process is involved. (2) Collective read transactions are
read-only transactions which involve all processes. The collective use of all processes allows to
perform more complex queries which might involve all vertices or edges of the graph.

11.1 Single Process Transactions

int GDI StartTransaction(GDI Database graph db, GDI Transaction* transaction)

INOUT graph db graph database object to query (handle)
OUT transaction transaction object returned by the call (handle)

GDI StartTransaction will start a transaction and allocate all necessary internal data struc-
tures. The transaction is tied to a single graph database, provided by the parameter graph db.
Multiple processes can be in different transactions concurrently. Also, a single process can be in
multiple transactions concurrently.

Rationale. Running multiple transactions allows to share intermediate results of con-
current transactions. (End of rationale.)

int GDI CloseTransaction(GDI Transaction* transaction, int ctype)

INOUT transaction transaction object (handle)
IN ctype commit type (state)

56

GDI CloseTransaction ends the transaction, which is referenced by the transaction param-
eter. transaction should be a handle returned by GDI StartTransaction. The state parameter
ctype is restricted to two values, so that the user can indicate, whether the transaction should
commit (by passing the constant GDI TRANSACTION COMMIT) or abort (by passing the
constant GDI TRANSACTION ABORT). The library will overwrite a requested commit, in
case a transaction-critical error occurred during the transaction. If a commit is requested and
succeeds, all changes applied during this transaction are committed to the graph database, so
those changes will become globally visible. If commit is requested and fails, the function returns
GDI ERROR TRANSACTION COMMIT FAIL and all changes will be rolled back, such that
no changes made during the transaction will become globally visible. Similarly a requested abort
will also roll back all changes, so that no changes made during the transaction will become glob-
ally visible. In all cases, temporary data structures like the GDI VertexHolder objects (objects
that handle accesses to vertices), which were created during the transaction, will be deallocated
and are no longer accessible afterwards. The function deallocates the transaction object and
sets transaction to GDI TRANSACTION NULL.

Advice to implementors. In case a locking algorithm is internally used, all acquired
locks will be released. If the transaction is read-only, there will be no changes to the
database and only the read locks will be released (if locks are used). (End of advice to
implementors.)

Advice to users. The user is advised to check the return code of GDI CloseTransaction
to see if the transaction committed successfully or failed. If previously a function returned
a transaction-critical error, trying to commit the transaction is guaranteed to fail, so it is
recommended to abort the transaction instead, so that resources can be deallocated and
(if required) a new transaction can be started. (End of advice to users.)

Rationale. GDI does not provide an explicit abort function to conform to the interface
of GDI CloseCollectiveTransaction. (End of rationale.)

11.2 Collective Read Transactions

int GDI StartCollectiveTransaction(GDI Database graph db,

GDI Transaction* transaction)

INOUT graph db graph database object to query (handle)
OUT transaction transaction object returned by the call (handle)

GDI StartCollectiveTransaction starts a transaction that is shared by all processes associated
with the database graph db. The transaction is tied to that single graph database. graph db

should be the same on all processes. It is a collective call and will synchronize all processes of that
database. All transactions on that graph database must be finished before a process enters the
GDI StartCollectiveTransaction call and no other transactions on that graph database must be
started while the collective read transaction is active. A call to GDI StartCollectiveTransaction
has a barrier semantic: a process returns from the call only after all other processes have entered
their matching call. Collective read transactions must only involve read accesses and are meant
to be used, when the whole graph is going to be queried. Usually such a transaction is used in
conjunction with calls to GDI GetLocalVerticesOfIndex and GDI GetLocalEdgesOfIndex.

Rationale. Collective read transactions are read-only to support complex business and
graph analytic queries. Use cases for massive write transactions are rare and might
induce write conflicts which can only be solved with complex algorithms, that impose
high performance penalties. (End of rationale.)

int GDI CloseCollectiveTransaction(GDI Transaction* transaction, int ctype)

57

INOUT transaction transaction object (handle)
IN ctype commit type (state)

GDI CloseCollectiveTransaction ends the collective read transaction, which is referenced by
the transaction parameter. transaction should be the same on all processes and should be a
handle, which was returned by GDI StartCollectiveTransaction. The user can indicate by ctype,
if the transaction should commit (by passing the constant GDI TRANSACTION COMMIT) or
abort (by passing the constant GDI TRANSACTION ABORT). The state parameter ctype

is restricted to those two values. The library will overwrite a requested commit, in case
a transaction-critical error occurred during the transaction. The commit type is then ex-
changed with other processes, such that either all commit successfully or all abort. Note that
the transaction aborts if a function on any process returned a transaction-critical error. If
a commit was request by the calling process, but the transaction actually aborts, the error
GDI ERROR TRANSACTION COMMIT FAIL is returned. There will be no changes to the
database, as collective read transactions are read-only. GDI CloseCollectiveTransaction is a col-
lective call and will synchronize the processes of the database with a barrier semantic: a process
returns from the call only after all other processes have entered their matching call. Other
transactions on this graph database must only be started after GDI CloseCollectiveTransaction
returns. Temporary data structures like for example the GDI VertexHolder objects, which were
created during the transaction, will be deallocated and are no longer accessible afterwards.
GDI CloseCollectiveTransaction deallocates the transaction object and sets transaction to
GDI TRANSACTION NULL.

Advice to implementors. In case locks are used, all acquired read locks will be released.
(End of advice to implementors.)

Rationale. GDI does not offer an explicit collective abort function. An abort has inher-
ently a single process notion. However when participating in a collective read transaction,
the other processes still have to be informed about that decision, which would force the
abort function to be collective. So the library would have to check periodically during
the collective read transaction, whether a process has called abort. Additionally a dead-
lock situation could occur, in case another process has already entered his commit call.
GDI combines both calls (the abort and the commit call) into one function to guarantee
progress and avoid performance issues. (End of rationale.)

11.3 Transaction Attributes

int GDI GetAllTransactionsOfDatabase(GDI Transaction array of transactions[],

size t count, size t* resultcount, GDI Database graph db)

OUT array of transactions array of transactions (array of handles)
IN count length of array of transactions (non-negative inte-

ger)
OUT resultcount number of retrieved transactions (non-negative inte-

ger)
IN graph db graph database object (handle)

A user might not know what transactions are available in a certain graph database ob-
ject. GDI GetAllTransactionsOfDatabase will retrieve all transactions currently present in the
given graph database. The user provides an array for transaction handles and the parameter
count, which contains the maximum number of transaction handles that can be written to
said array. On return the parameter resultcount contains the actual number of transaction
handles written to array of transactions. If the array is smaller than the available num-
ber of transaction handles, the array will be filled and the remaining handles will be omitted.
The error GDI ERROR TRUNCATE will be returned in such an overflow case. The function
GDI GetAllTransactionsOfDatabase is a local call.

58

int GDI GetTypeOfTransaction(int* ttype, GDI Transaction transaction)

OUT ttype type of transaction (state)
IN transaction transaction object (handle)

The function GDI GetTypeOfTransaction returns the type of transaction. The returned
state parameter ttype can have exactly two values: GDI SINGLE PROCESS TRANSACTION
and GDI COLLECTIVE READ TRANSACTION. GDI GetTypeOfTransaction is a local call.

59

12 Constraints

GDI constraint objects enable topological queries to be aware of certain property and label
conditions, enabling to filter datasets in an early stage. Also, constraint objects can be used to
query indexes to access edges and vertices.

A GDI constraint object describes a logical formula that operates on labels and properties
of a given object and, once evaluated, returns a boolean value. The basic unit of a constraint is
a condition, which expresses a requirement that an object must fulfill. GDI distinguishes label
and property conditions. Label conditions operate only on labels and express the need that
an object must either have or not have a specified label. Property conditions operate only on
properties and allow to compare values of properties (of specified objects) to given values using
GDI operations. GDI groups a conjunction of conditions in subconstraints. The conjunction
of conditions allows a short-circuit evaluation of the subconstraint to false when a condition
evaluates to false. Multiple subconstraints can be grouped as a disjunction into a constraint
object. The disjunction of subconstraints allows a short-circuit evaluation of the constraint to
true when a subconstraint evaluates to true.

Overall, the construction of a constraint describes a logical formula in disjunctive normal form
(DNF), which can also be visualized as a tree. An example that also highlights the similarity of
DNF to the construction of constraints is shown in Figure 1.

(property ”name” = ”John” ∧ label = ”Employee”) ∨ (label = ”Supervisor”)

constraint

subconstraint 1

property
name = ”John”

label =
”Employee”

subconstraint 2

label =
”Supervisor”

Disjunction

Conjunction

property
name = ”John”

label =
”Employee”

Conjunction

label =
”Supervisor”

Figure 1: An example to visualize the similarity of GDI’s constraint object (left) to a boolean
logic in disjunctive normal form (right). The constraint evaluates to true on any object that
has a property of type ”name” with the value ”John”, and the label ”Employee” or just has the
label ”Supervisor”.

Rationale. The close relationship of GDI constraints to DNF makes it easier to write
and understand complex formulas. (End of rationale.)

Rationale. An explicit approach in constructing constraint objects was chosen to avoid
implementing complex string parsing at a low-level layer of the graph database stack.
Such parsing should integrated into the general parsing of the graph query language.
(End of rationale.)

GDI constraints rely on a static model, which means that it is not possible to update or remove
arguments that are already added to conditions, subconstraints or constraints. Furthermore, if a
subconstraint is added to a constraint, the original subconstraint can be deallocated afterwards,
since the subconstraint is copied upon addition. Similarly when the list of subconstraints of a
constraint object is retrieved, the returned objects are copies of the original objects.

Rationale. The static model allows to define a clear behavior in special cases such as the
removal of labels and property types from the graph database which are still associated
with conditions in existing subconstraint and constraint objects. (End of rationale.)

If a condition operates on labels, or property types that have been removed from the database
or property types that have been updated using GDI UpdatePropertyType, then the condition is
marked as stale. Associated subconstraints and (transitively) associated constraints also become
stale and cannot be used anymore as argument for certain functions (e.g., to query for vertices).

60

Rationale. GDI offers no function to fix a constraint or subconstraint object that became
stale to prevent unexpected behavior, when such an object is used, while it was implicitly
changed in the meantime. (End of rationale.)

Advice to users. It is the user’s responsibility to explicitly create a new constraint or
subconstraint object, when the user wants to continue to use the functionality provided
by a constraint or subconstraint object marked as stale. The user is still allowed to query
stale constraint and subconstraint objects to get the list of conditions that are still valid.
(End of advice to users.)

12.1 Creation and Destruction

int GDI CreateConstraint(GDI Database graph db, GDI Constraint* constraint)

INOUT graph db graph database object (handle)
OUT constraint constraint object returned by the call (handle)

GDI CreateConstraint allocates a new constraint object. The newly created object has no
subconstraints. GDI CreateConstraint is a local call.

int GDI FreeConstraint(GDI Constraint* constraint)

INOUT constraint constraint object (handle)

GDI FreeConstraint deallocates the constraint object, and sets the argument constraint to
GDI CONSTRAINT NULL. GDI FreeConstraint is a local call.

int GDI GetAllConstraintsOfDatabase(GDI Constraint array of constraints[],

size t count, size t* resultcount, GDI Database graph db)

OUT array of constraints array of constraints (array of handles)
IN count length of array of constraints (non-negative integer)

OUT resultcount number of retrieved constraints (non-negative inte-
ger)

IN graph db graph database object (handle)

A user might not know what constraints are locally available in a certain graph database
object. The function GDI GetAllConstraintsOfDatabase will retrieve all constraints, that are
locally associated with the given graph database graph db at the time of the call. The user
provides an array for constraint handles and the parameter count, which contains the maximum
number of constraint handles that can be written to said array. The parameter resultcount

contains the actual number of constraint handles written to array of constraints. If the
array is smaller than the available number of constraint handles, the array will be filled and the
remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. GDI GetAllConstraintsOfDatabase is a local call.

GDI GetAllConstraintsOfDatabase does not change the staleness state of the returned con-
straints, so those constraints may or may not be stale.

int GDI IsConstraintStale(int* staleness, GDI Constraint constraint)

OUT staleness returned staleness state of constraint (state)
IN constraint constraint object (handle)

GDI IsConstraintStale checks the state of the given constraint object. If constraint is not
stale, GDI FALSE is returned in argument staleness. If a stale constraint object is passed,

61

GDI TRUE is returned in staleness. The state parameter staleness is restricted to those two
values. GDI IsConstraintStale is a local call.

int GDI CreateSubconstraint(GDI Database graph db,

GDI Subconstraint* subconstraint)

INOUT graph db graph database object (handle)
OUT subconstraint subconstraint object returned by the call (handle)

GDI CreateSubconstraint allocates a new subconstraint object. The newly created object
has no conditions. GDI CreateSubconstraint is a local call.

int GDI FreeSubconstraint(GDI Subconstraint* subconstraint)

INOUT subconstraint subconstraint object (handle)

GDI FreeSubconstraint deallocates the constraint object and sets argument subconstraint
to GDI SUBCONSTRAINT NULL. GDI FreeSubconstraint is a local call.

int GDI GetAllSubconstraintsOfDatabase(

GDI Subconstraint array of subconstraints[], size t count,

size t* resultcount, GDI Database graph db)

OUT array of subconstraints array of subconstraints (array of handles)
IN count length of array of subconstraints (non-negative

integer)
OUT resultcount number of retrieved subconstraints (non-negative

integer)
IN graph db graph database object (handle)

A user might not know what subconstraints are locally available in a certain graph database
object. The function GDI GetAllSubconstraintsOfDatabase will retrieve all subconstraints, that
are locally associated with the given graph database graph db at the time of the call. The user
provides an array for subconstraint handles and the parameter count, which contains the maxi-
mum number of subconstraint handles that can be written to said array. resultcount contains
the actual number of subconstraint handles written to array of subconstraints. If the array
is smaller than the available number of subconstraint handles, the array will be filled and the
remaining handles will be omitted. The error GDI ERROR TRUNCATE will be returned in
such an overflow case. GDI GetAllSubconstraintsOfDatabase is a local call.

GDI GetAllSubconstraintsOfDatabase does not change the staleness state of the returned
subconstraints, so those subconstraints may or may not be stale.

int GDI IsSubconstraintStale(int* staleness, GDI Subconstraint subconstraint)

OUT staleness returned staleness state of subconstraint (state)
IN subconstraint subconstraint object (handle)

GDI IsSubconstraintStale checks the state of the given subconstraint object. If argument
subconstraint is not stale, GDI FALSE is returned in argument staleness. If a stale subcon-
straint object is passed, GDI TRUE is returned in staleness. The state parameter staleness
is restricted to those two values. GDI IsSubconstraintStale is a local call.

62

12.2 Label Conditions

int GDI AddLabelConditionToSubconstraint(GDI Label label, GDI Op op,

GDI Subconstraint subconstraint)

IN label label object (handle)
IN op operation (op)

INOUT subconstraint subconstraint object (handle)

GDI AddLabelConditionToSubconstraint adds a label condition to subconstraint. The
label condition consists of the label handle label and the operation op. Label conditions re-
strict op to the values GDI EQUAL and GDI NOTEQUAL. If a different GDI operation is
given, the error GDI ERROR OP DATATYPE MISMATCH is returned. The function creates
a condition that, on evaluation, is true if and only if the object, on which the evaluation is
performed, is associated with label when op is set to GDI EQUAL and not associated with
label when op is set to GDI NOTEQUAL. Otherwise, the condition evaluates to false and due
to conjunction of the conditions of a subconstraint, the whole subconstraint then evaluates to
false. If label does not belong to the same graph database as subconstraint does, the er-
ror GDI ERROR OBJECT MISMATCH is returned. If a stale subconstraint object is passed,
GDI ERROR STALE is returned as error. GDI AddLabelConditionToSubconstraint is a local
call.

Advice to users. GDI allows to add label conditions with the same label, even the same
label condition, multiple times to a subconstraint. However, this should be avoided since
it might increase the time required for evaluation. (End of advice to users.)

int GDI GetAllLabelConditionsFromSubconstraint(GDI Label array of labels[],

GDI Op array of ops[], size t count, size t* resultcount,

GDI Subconstraint subconstraint)

OUT array of labels array of labels (array of handles)
OUT array of ops array of operations (array of ops)

IN count array length (non-negative integer)
OUT resultcount number of retrieved conditions (non-negative integer)

IN subconstraint subconstraint object (handle)

GDI GetAllLabelConditionsFromSubconstraint will retrieve all label conditions, that are not
stale, of the subconstraint object subconstraint. The user provides an array for label handles,
an array for GDI operations and the parameter count, which contains the maximum num-
ber of label handles and GDI operations that can be written to the respective arrays. On
return, resultcount contains the actual number of label handles and GDI operations writ-
ten to array of labels and array of ops, respectively. The i-th entries in both arrays form
together the i-th label condition. If no label conditions are present on the given subcon-
straint, resultcount will be set to value 0 and nothing will be written to array of labels

and array of ops. If the same label condition is part of subconstraint more than once, then
that label condition appears multiple times in the returned arrays. If the arrays are smaller
than the available number of label conditions, the arrays will be filled and the remaining label
conditions will be omitted. The error GDI ERROR TRUNCATE will be returned in such an
overflow case. GDI GetAllLabelConditionsFromSubconstraint is a local call.

12.3 Property Conditions

int GDI AddPropertyConditionToSubconstraint(GDI PropertyType ptype,

GDI op op, void* value, size t count, GDI Subconstraint subconstraint)

63

IN ptype property type object (handle)
IN op operation (op)
IN value initial address to the value (choice)
IN count number of elements (non-negative integer)

INOUT subconstraint subconstraint object (handle)

GDI AddPropertyConditionToSubconstraint adds a new property condition to the subcon-
straint object subconstraint. The property condition consists of the property type ptype, the
operation op and the comparison value value. count elements of the datatype associated with
ptype will be read from the address given by the parameter value and stored in the subcon-
straint, so that value can be freed by the caller after the call. The data pointed to by value

has to match said associated datatype. The datatype associated with ptype has to be valid
for op, otherwise the error GDI ERROR OP DATATYPE MISMATCH is returned. Any size
limitations of the property type ptype will be enforced.

The function creates a condition that, on evaluation, is true if and only if the object, on
which the evaluation is performed, has at least one property value of type ptype on which the
operation specified by op evaluates to true when using said property value of the object as first
parameter and value as second parameter. Otherwise, the condition evaluates to false and
due to conjunction of the conditions of a subconstraint, the whole subconstraint then evaluates
to false. If ptype does not belong to the same graph database as subconstraint does, the
error GDI ERROR OBJECT MISMATCH is returned. If a stale subconstraint object is passed,
GDI ERROR STALE is returned as error. GDI AddPropertyConditionToSubconstraint is a
local call.

Advice to users. GDI allows to add the same property condition (the tuple consisting
of ptype, op, value) multiple times to a subconstraint. However, this should be avoided
since it might increase the time required for evaluation. (End of advice to users.)

int GDI GetAllPropertyTypesOfSubconstraint(GDI PropertyType array of ptypes[],

size t count, size t* resultcount, GDI Subconstraint subconstraint)

OUT array of ptypes array of property types (array of handles)
IN count length of array of ptypes (non-negative integer)

OUT resultcount number of retrieved property types (non-negative integer)
IN subconstraint subconstraint object (handle)

GDI GetAllPropertyTypesOfSubconstraint will retrieve the property types of all property
conditions, that are not stale, of the subconstraint object subconstraint. However, if a property
type is associated with multiple property conditions, that property type will only be returned
once. The user provides an array for property type handles array of ptypes and the parameter
count, which contains the maximum number of property type handles that can be written to said
array. On return resultcount contains the actual number of property type handles written to
array of ptypes. If the array is smaller than the available number of property handles, the array
will be filled and the remaining handles will be omitted. The error GDI ERROR TRUNCATE
will be returned in such an overflow case. GDI GetAllPropertyTypesOfSubconstraint is a local
call.

int GDI GetPropertyConditionsOfSubconstraint(void* buf, size t buf count,

size t* buf resultcount, size t array of offsets[], GDI Op array of ops[],

size t offset count, size t* offset resultcount, GDI PropertyType ptype,

GDI Subconstraint subconstraint)

64

OUT buf initial address of buffer (choice)
IN buf count length of buf (non-negative integer)

OUT buf resultcount number of retrieved elements in buf (non-negative inte-
ger)

OUT array of offsets array of buffer offsets (array of non-negative integers)
OUT array of ops array of operations (op)

IN offset count length of array of offsets (non-negative integer)
OUT offset resultcount number of retrieved offsets (non-negative integer)

IN ptype property type object (handle)
IN subconstraint subconstraint object (handle)

GDI GetPropertyConditionsOfSubconstraint retrieves all property conditions of type ptype

of the subconstraint object subconstraint. The operation for each property condition will be
returned in array of ops. The values of the property conditions will be stored in the buffer
buf with buf count specifying the maximum number of elements of the datatype associated
with ptype that will fit into buf. On return buf resultcount contains the actual number of el-
ements of the datatype associated with ptype that are written to buf. The offset of each property
condition value will be returned in array of offsets. The offsets will be scified in number of
elements of the datatype associated with the property type ptype. The parameter offset count

contains the maximum number of offsets, that can be written to array of offsets. On return,
offset resultcount contains the actual number of entries written to array of offsets. If
subconstraint contains n property conditions of type ptype, then offset resultcount will
be set to n + 1. The first n entries in array of offsets contain the offset where the respec-
tive property condition value in buf begins. The last entry of array of offsets contains the
total number of elements written. This construction enables to determine the number of el-
ements of the i-th property condition value in buf by calculating array of offsets[i + 1] -
array of offsets[i].

Rationale. The last entry of array of offsets and buf resultcount both determine
the total number of elements written to buf. The parameter buf resultcount is required
in the function interface to return the number of elements when a null pointer is given
for buf, or array of offsets, or array of ops or 0 is provided for offset count, or
buf count (Section 2.6.2). (End of rationale.)

In contrast to array of offsets, array of ops contains only n entries (which is equal to
offset resultcount−1) on return: one for each property condition. Additionally the length of
array of ops can only be offset count−1.

Rationale. array of offsets and array of ops share both the offset count and
offset resultcount parameter, to minimize the number of function parameter and keep
the interface consistent with the function to retrieve the label conditions. (End of ratio-
nale.)

To summarize, the i-th property condition consists of ptype, the i-th entry of array of ops

and the value in buf at the offset provided by the i-th entry in array of offsets. The number of
elements of that property condition value is determined by calculating array of offsets[i+1]
- array of offsets[i].

If no property conditions of type ptype are present on the given subconstraint, the param-
eters offset resultcount and buf resultcount will be set to the value 0 and nothing will
be written to buf, array of offsets and array of ops. If the same property condition is
part of subconstraint more than once, then that property condition appears multiple times in
the returned data. If the arrays are smaller than the available number of property conditions,
the arrays will be filled and the remaining property conditions will be omitted. Similarly, if
buffer buf is too small to hold all property condition values, the buffer will be filled and the
remaining property condition values will be omitted. The error GDI ERROR TRUNCATE
will be returned in both overflow cases. If ptype does not belong to the same graph
database as subconstraint does, the error GDI ERROR OBJECT MISMATCH is returned.
GDI GetPropertyConditionsOfSubconstraint is a local call.

65

12.4 Constraint Handling

int GDI AddSubconstraintToConstraint(GDI Subconstraint subconstraint,

GDI Constraint constraint)

IN subconstraint subconstraint object (handle)
INOUT constraint constraint object (handle)

GDI AddSubconstraintToConstraint adds a copy of subconstraint to constraint. The
given subconstraint is treated as disjunction to the already given subconstraints (if there are
any). If subconstraint does not belong to the same graph database as constraint does,
the error GDI ERROR OBJECT MISMATCH is returned. If a stale GDI Constraint object
or a stale GDI Subconstraint object is passed, GDI ERROR STALE is returned as error.
GDI AddSubconstraintToConstraint is a local call.

Advice to users. GDI allows to add the same subconstraint multiple times to a con-
straint. However, this should be avoided since it might increase the time required for
evaluation. (End of advice to users.)

int GDI GetAllSubconstraintsOfConstraint(

GDI Subconstraint array of subconstraints[], size t count,

size t* resultcount, GDI Constraint constraint)

OUT array of subconstraints array of subconstraints (array of handles)
IN count length of array of subconstraints (non-negative

integer)
OUT resultcount number of retrieved subconstraints (non-negative

integer)
IN constraint constraint object (handle)

GDI GetAllSubconstraintsOfConstraint will retrieve a copy of all subconstraints associated
with the constraint object constraint. The user provides an array for subconstraint handles and
the parameter count, which contains the maximum number of subconstraint handles that can
be written to said array. On return, resultcount contains the actual number of subconstraint
handles written to array of subconstraints. If the array is smaller than the available number
of subconstraint handles, the array will be filled and the remaining handles will be omitted.
The error GDI ERROR TRUNCATE will be returned in such an overflow case. If the same
subconstraint is associated multiple times to constraint, it appears accordingly multiple times
in array of subconstraints. GDI GetAllSubconstraintsOfConstraint is a local call.

Advice to users. Since GDI returns a copy of the subconstraints, it is the callers respon-
sibility to free the resources accordingly. (End of advice to users.)

66

13 Error Handling

GDI functions return error codes. Their details (e.g., enumeration, mapping) are fully decided
by the implementation, so that as much information as possible is expressed within the error
codes. However there is one exception: GDI SUCCESS. The function GDI GetErrorString can
be used to determine the (implementation specific) error string associated with an error code.

The error classes form a subset of standard error codes. Therefore, the values defined for
GDI error classes are valid GDI error codes and a GDI function may return an error class as
error code. The function GDI GetErrorClass maps any error code to the corresponding error
class to allow for an easier interpretation of error codes inside the application. The tables below
show the valid error classes.

GDI SUCCESS no error
GDI ERROR ASSERT invalid assert argument
GDI ERROR BUFFER invalid buffer pointer
GDI ERROR CONSTRAINT invalid constraint argument
GDI ERROR COUNT invalid count argument
GDI ERROR DATABASE invalid database argument
GDI ERROR DATATYPE invalid datatype argument
GDI ERROR DATE invalid datatype argument of type

GDI Date
GDI ERROR DATETIME invalid datatype argument of type

GDI Datetime
GDI ERROR DECIMAL invalid datatype argument of type

GDI Decimal
GDI ERROR DELIMITER invalid character provided as delimiter ar-

gument
GDI ERROR EDGE invalid edge argument
GDI ERROR EDGE ORIENTATION invalid edge orientation condition
GDI ERROR ERROR CODE invalid error code argument
GDI ERROR INDEX invalid index argument
GDI ERROR LABEL invalid label argument
GDI ERROR OP invalid operation argument
GDI ERROR OP DATATYPE MISMATCH operation for a given datatype is not de-

fined
GDI ERROR PROPERTY TYPE invalid property type argument
GDI ERROR SIZE invalid size argument
GDI ERROR STALE an argument is marked as stale
GDI ERROR STATE invalid constant for a state argument
GDI ERROR SUBCONSTRAINT invalid subconstraint argument
GDI ERROR TIME invalid datatype argument of type

GDI Time
GDI ERROR TRANSACTION invalid transaction argument
GDI ERROR UID invalid UID argument
GDI ERROR VERTEX invalid vertex argument
GDI ERROR ARGUMENT invalid argument of some other kind
GDI ERROR OBJECT MISMATCH objects belong to different graph

databases
GDI ERROR UNKNOWN unknown error
GDI ERROR TRUNCATE returned data is truncated
GDI ERROR TRANSACTION COMMIT FAIL transaction was to be committed, but

aborted instead
GDI ERROR READ ONLY TRANSACTION a write action was requested during a

read-only transaction
GDI ERROR TRANSACTION CRITICAL a transactional critical error has occurred

Table 2: Error classes (Part 1)

67

GDI ERROR CONVERSION conversion of the two specified datatypes
is not possible

GDI ERROR RANGE one of the arguments is outside of its
valid range

GDI ERROR NO PROPERTY no such property on the object exists
GDI ERROR PROPERTY EXISTS a property of the requested type with the

same value already exists on the object
GDI ERROR PROPERTY TYPE EXISTS a property of a single entity type is al-

ready present on the object
GDI ERROR READ ONLY PROPERTY TYPE the property type is read-only, and can

only be implicitly changed by the library
GDI ERROR NON UNIQUE ID an object with the same application level

ID already exists for that label
GDI WARNING NON UNIQUE ID multiple objects without labels have the

same application level ID
GDI ERROR CONSISTENCY the requested operation would generate

an inconsistency
GDI ERROR OTHER known error not in this list
GDI WARNING OTHER a situation occured, which may require

attention
GDI ERROR INTERN internal GDI (implementation) error
GDI ERROR NO MEMORY memory is exhausted
GDI ERROR RESOURCE a necessary resource could not be ac-

quired
GDI ERROR EMPTY NAME name string is empty
GDI ERROR NAME EXISTS name string already exits for that object

type
GDI ERROR NOT SAME collective argument(s) not identical on all

processes, or collective functions called in
a different order by different processes

GDI ERROR SIZE LIMIT count argument not within size limita-
tion bounds

GDI ERROR WRONG TYPE type of object is not suited for the re-
quested operation

GDI ERROR NO SUCH FILE file does not exist
GDI ERROR FILE EXISTS file exists
GDI ERROR BAD FILE invalid file name (e.g., path name too

long)
GDI ERROR ACCESS permission denied
GDI ERROR NO SPACE not enough space
GDI ERROR QUOTA quota exceeded
GDI ERROR OUTPUT an error occured while processing the

output
GDI ERROR READ ONLY FILE read-only file or file system
GDI ERROR FILE IN USE file operation could not be completed, as

the file is currently open by some process
GDI ERROR FILE FORMAT format of the CSV file differs from the

described layout
GDI WARNING NOT ALL DATA LOADED not all data was loaded into the database
GDI ERROR IO other I/O error
GDI ERROR LASTCODE last error code

Table 3: Error classes (Part 2)

Rationale. GDI differentiates between GDI ERROR UNKNOWN and
GDI ERROR OTHER. GDI GetErrorString is a function that may retrieve helpful
information about GDI ERROR OTHER. (End of rationale.)

68

The error codes satisfy,

0 = GDI SUCCESS < GDI WARNING ... < GDI WARNING OTHER

< GDI ERROR ... < GDI ERROR TRANSACTION CRITICAL

< GDI ERROR ... ≤ GDI ERROR LASTCODE.

All error codes smaller than GDI ERROR TRANSACTION CRITICAL are considered non-
critical to transactions, while all errors bigger than GDI ERROR TRANSACTION CRITICAL
(and of course the error class itself) are considered critical to transactions, meaning that such
a transaction is forced to be aborted/rolled back, in case such an error occurs. Similarly all
error codes smaller than GDI WARNING OTHER (including the error class itself) are con-
sidered warnings, which inform the caller that a situation arose, while executing successfully
the requested operation, which may require attention. In contrast, all error codes bigger than
GDI WARNING OTHER are real errors, meaning the requested operation was not executed
successfully.

Rationale. The definition of GDI SUCCESS as 0 is done to be in line with the common
C practice. The introduction of a known GDI ERROR LASTCODE allows for handy
sanity checks regarding error codes.

Using GDI ERROR TRANSACTION CRITICAL as a threshold allows for a simple
check whether a transaction needs to be aborted, in case an error occurs. (End of ratio-
nale.)

These error classes can be grouped into different categories regarding the state of the data
after a function returned such an error.

1) preoperational errors: The erroneous function will not write to any of the output
arguments, so the state of any output buffer is the same as before the function was called. If it
was a creation call, no new opaque object is created. The state of any existing opaque object
is the same as before the function was called. If a write change was requested on a read-only
object, no changes to the object are applied. The state of the transaction, if the function was
called inside of one, is also unchanged. The graph database remains unchanged.

Most errors in this error category can occur while the input parameters are being parsed.
These are usually program errors. Additionally the error category covers errors that result from
preconditions (for example the existence of a specific property) or postconditions (for example
non-unique application level IDs within a label) not being meet. It also includes situations,
where an external resource (like a file) can’t be accessed or a resource is exhausted.

The following error classes belong in this category:

GDI ERROR ACCESS GDI ERROR EDGE
GDI ERROR ARGUMENT GDI ERROR EDGE ORIENTATION
GDI ERROR ASSERT GDI ERROR EMPTY NAME
GDI ERROR BAD FILE GDI ERROR ERROR CODE
GDI ERROR BUFFER GDI ERROR FILE EXISTS
GDI ERROR CONSISTENCY GDI ERROR FILE FORMAT
GDI ERROR CONSTRAINT GDI ERROR FILE IN USE
GDI ERROR CONVERSION GDI ERROR INDEX
GDI ERROR COUNT GDI ERROR LABEL
GDI ERROR DATABASE GDI ERROR NAME EXISTS
GDI ERROR DATATYPE GDI ERROR NO MEMORY
GDI ERROR DATE GDI ERROR NO PROPERTY
GDI ERROR DATETIME GDI ERROR NO SPACE
GDI ERROR DECIMAL GDI ERROR NO SUCH FILE
GDI ERROR DELIMITER GDI ERROR NON UNIQUE ID

Table 4: Preoperational error classes (Part 1)

69

GDI ERROR NOT SAME GDI ERROR RESOURCE
GDI ERROR OBJECT MISMATCH GDI ERROR SIZE
GDI ERROR OP GDI ERROR SIZE LIMIT
GDI ERROR OP DATATYPE MISMATCH GDI ERROR STALE
GDI ERROR PROPERTY EXISTS GDI ERROR STATE
GDI ERROR PROPERTY TYPE GDI ERROR SUBCONSTRAINT
GDI ERROR PROPERTY TYPE EXISTS GDI ERROR TIME
GDI ERROR RANGE GDI ERROR TRANSACTION
GDI ERROR READ ONLY FILE GDI ERROR UID
GDI ERROR READ ONLY PROPERTY TYPE GDI ERROR VERTEX
GDI ERROR READ ONLY TRANSACTION GDI ERROR WRONG TYPE

Table 5: Preoperational error classes (Part 2)

2) output argument errors: The user supplied output space was not big enough. The
function will fill output buffers or write to output files to the extent possible, but not all data
will be written. The state of any existing opaque object is the same as before the function was
called. The state of the transaction, if the function was called inside of one, is also unchanged.
The graph database remains unchanged.

The following error classes belong in this category:

GDI ERROR QUOTA GDI ERROR TRUNCATE
GDI ERROR OUTPUT

Table 6: Output argument error classes

3) transaction-critical errors: The function returned a transaction-critical error. The
state of any output arguments used with this function is undefined, so the user should not
rely on them. The state of any temporary opaque objects associated with this transaction is
undefined as well. While it will be still possible to access those objects, any results might not
be meaningful. The associated transaction is marked as erroneous. The graph database remains
unchanged.

The following error class belongs in this category:

GDI ERROR TRANSACTION CRITICAL

Table 7: Transaction-critical error class

4) transaction commit failed: A transaction that was tried to commit, was actually
aborted instead. All temporary GDI VertexHolder and GDI EdgeHolder objects associated with
this transaction will be invalidated and are no longer accessible. The transaction object itself is
also invalidated. The graph database remains unchanged.

The following error class belongs in this category:

GDI ERROR TRANSACTION COMMIT FAIL

Table 8: Transaction commit failed error class

5) undefined errors: The state of neither local objects nor the graph database itself is
defined. The documentation of the implementation might provide more details in such a case.

The following error classes belong in this category:

GDI ERROR INTERN GDI ERROR OTHER
GDI ERROR IO GDI ERROR UNKNOWN

Table 9: Undefined error classes

6) warnings: The call returned successfully and its functionality was fulfilled according
to its description. The database and its objects are consistent with the constraints set out in
subsection 1.2. However a certain situation has arisen that the user might want to address.

70

The following error classes belong in this category:

GDI WARNING NON UNIQUE ID GDI WARNING OTHER
GDI WARNING NOT ALL DATA LOADED

Table 10: Warning error classes

GDI ERROR LASTCODE does not belong to any of those categories. It is only provided to
allow for sanity checks regarding the error codes/classes.

Advice to users. If the function call is erroneous in more than one way, the implemen-
tation can choose which of those errors will be returned. (End of advice to users.)

Rationale. By letting the implementation decide, which error code to return, when there
is ambiguity, complexity of the description (prioritization of error classes, consideration of
edge/corner cases) was avoided in the specification. The decision gives the implementation
more freedom to prioritize its error codes (for example by their severity or the performance
costs associated with checking their specific condition). (End of rationale.)

int GDI GetErrorClass(int* errorclass, int errorcode)

OUT errorclass error class associated with errorcode (integer)
IN errorcode error code returned by a GDI function (integer)

The function GDI GetErrorClass maps an error code to its corresponding error class. An
error class maps onto itself. If the given error code is unknown, the function returns the error
class GDI ERROR ERROR CODE. GDI GetErrorClass is a local call.

int GDI GetErrorString(char* errorstring, size t length, size t* resultlength,

int errorcode)

OUT errorstring text that corresponds to errorcode (string)
IN length maximum length of errorstring (non-negative integer)

OUT resultlength length of the returned error string (non-negative integer)
IN errorcode error code returned by a GDI function (integer)

GDI GetErrorString returns the error string corresponding to an error code/class. length de-
notes the length of the allocated string errorstring. The argument errorstring should be al-
located so that it can hold a buffer space of GDI MAX ERROR STRING Bytes. resultlength
contains on return the length of the returned string in Bytes. A null terminator is addition-
ally stored at errorstring[resultlength]. The value of resultlength cannot be larger than
GDI MAX ERROR STRING-1. If the allocated string is smaller than the actual error string,
the string will be filled, such that a valid UTF-8 string is returned, and the remaining char-
acters will be omitted. The error class GDI ERROR TRUNCATE will be returned in such an
overflow case. If any other error occurs, GDI GetErrorString will return an empty string. If the
given error code is unknown, the function returns the error class GDI ERROR ERROR CODE.
GDI GetErrorString is a local call.

71

14 Execution Model: Remarks

GDI provides no interface to the user to orchestrate the processes that make up the graph
database. Instead, it is the user’s responsibility to provide further functionality to distribute
and assign work to the processes in an efficient way. For completeness, this section provides two
examples how GDI can be used in a more complex graph database environment. Note that the
execution model is not limited to these two options. Further, (hardware) limitations, (software)
design decisions and other requirements must be taken into account for highest performance.

14.1 Primary-Secondary

In the primary-secondary model, one distinguishes primary and secondary machines. On the
secondary machines, GDI is installed and it handles all accesses (create, read, update, delete)
on the graph data. Usually, a server application runs on these machines; it listens for incoming
requests that are then executed using GDI function calls. The primary machine acts as a gateway
for clients that query the database. The primary machine accepts query requests from a client,
applies optimizations, determines a query plan and splits it into sub queries (if needed). The sub
queries are passed to the secondary machines that execute the commands using GDI and then
return the results to the primary one. The results are aggregated and passed to the client. It is
the primary machine’s responsibility to guarantee that collective GDI functions are executed on
all secondary servers. This execution model also allows to fetch data from the graph database
and apply graph analytic algorithms on the secondary machines (or on different compute nodes)
for further data processing. Note that the secondary machines nevertheless require paths of
communication among each other since they act as a group.

14.2 Distributed Model

In the distributed model, all compute nodes are equal and have the same capabilities (they could
both execute the GDI queries and listen for the incoming client requests). All nodes typically
have GDI installed to participate in the graph database. There are multiple options to run such
a graph database.

In an MPI-like setting, the queries to run are generally known beforehand and can be im-
plemented directly on the compute nodes. Orchestration is done using a technology that allows
broadcast and aggregation (such as MPI). The big advantage is that the queries are known such
that coordination and data exchange can be optimized accordingly. Similar to the primary-
secondary model, the close orchestration allows to implement graph analytic algorithms using
the compute nodes as workers.

In a similar setting, one assumes that a remote client issues database queries to the distributed
system. The compute nodes require a server application that listens for requests. Offloading and
orchestration might become more complex since no compute node has a global view. It is then
the user’s responsibility to ensure that collective functions are executed by all compute nodes to
prevent deadlock situations.

72

15 Bulk Data Loading

GDI offers the functionality to bulk load vertex and edge data from files. Those files have to be
in a format similar to CSV (comma-separated values). The file should be UTF-8 encoded.

GDI assumes the following CSV like format: each object (vertex/edge) occupies one line of
the CSV file (one record in the CSV terminology). A newline is indicated either by ”\n” (ASCII
decimal value 10) or by ”\r\n” (ASCII decimal sequence 13 10). Each line is divided into fields
of data by a delimiter (a single ASCII character).

These fields of data can be application level ID(s) and properties. It is required that each
line contains all fields, even if some of those fields are empty. This requirement allows GDI
to see CSV files as a two-dimensional matrix, where a column contains the values of a certain
property type. A row of this two-dimensional matrix identifies the properties of a certain object.
A non-empty field of data contains a property value of the property type of that column. In
addition to the common CSV specification, GDI allows for a second delimiter (a single ASCII
character), so that it is possible to identify different elements of a property value. An empty
field of data indicates that the object does not have that particular property.

Since the data in the files are given as strings, a conversion to the according data types is
applied.

The datatype GDI CHAR supports ASCII and UTF-8 characters (Section 10.1). If a property
type with basic datatype GDI CHAR is defined to have more than one element, no second
delimiter should be used to read multiple characters from the file.

Rationale. This allows to store the UTF-8 encoded character string without the use of
the second delimiter. (End of rationale.)

GDI also allows to load binary data using the datatype GDI BYTE. The binary data must be
given as Base64 encoded string according to RFC 46482 If a property type with basic datatype
GDI BYTE is defined to have more than one element, no second delimiter should be used to
read multiple Bytes from the file.

Rationale. The binary data must be Base64 encoded to ensure that the file is always
in valid UTF-8. Furthermore, it allows to store the whole Base64 encoded string without
the use of the second delimiter. (End of rationale.)

Numeric datatypes (integer, float, double and GDI DECIMAL) given as strings should not
contain leading zeros and spaces (eg. between the negative sign and the number). The plus sign
should be omitted. The boolean datatype is given by the string ”1” or ”true” for the value true,
and ”0” or ”false” for the value false.

The datatype GDI DATE is expected to have the format yyyy-MM-dd, where yyyy is a place
holder for the year (non-negative integer between 0 and 9999), MM a place holder for the month
(positive integer between 1 and 12), dd a place holder for the days (positive integer between 1
and 31).

The datatype GDI TIME is expected to have the format hh:mm:ss.SSS, where hh is a place
holder for the hours (non-negative integer between 0 and 23), mm is a place holder for the minutes
(non-negative integer between 0 and 59), ss is a place holder for the seconds (non-negative integer
between 0 and 59), SSS is a place holder for the fraction of seconds (non-negative integer between
0 and 999).

GDI DATETIME is expected to have the format {+|-}hhmm yyyy-MM-dd hh:mm:ss.SSS,
where hhmm is a place holder for the UTC time zones (ranges from -1200 to +1400).

If a property type with numeric, boolean, time, date, or datetime datatype has more than
one element, a second delimiter must be used.

Since data might contain specified delimiters, delimiters must be escaped using a backslash
”\” (ASCII decimal value 92) before the delimiter. Furthermore, the following escape sequences
are used: A backslash must be escaped by prepending another backslash ”\\” (ASCII decimal
sequence 92 92), a newline is represented by ”\n” (ASCII decimal sequence 92 110), a carriage
is represented by ”\r” (ASCII decimal sequence 92 114), and a tabulator is represented by ”\t”
(ASCII decimal sequence 92 116).

2https://tools.ietf.org/html/rfc4648

73

https://tools.ietf.org/html/rfc4648

Due to the escape sequences, GDI allows all ASCII values for delimiters, except for the ASCII
decimal values 10 (”\n”), 13 (”\r”), 92 (”\”), 110 (”n”), 114 (”r”) and 116 (”t”).

Escaping data can lead to complex situations. For example, assume a comma ”,” as field de-
limiter and a semicolon ”;” as delimiter for elements of a property, then the string ”123;456,your
house” is split into two fields (”123;456” and ”your house”), where the first property has two
values (”123” and ”456”) and the second property has the value ”your house”. The string
”123;456\,your house” is just one UTF-8 encoded field (”123;456,your house”), which has two
values (”123” and ”456,your house”). The string ”123\;456\\,your house” is split into two UTF-8
encoded fields (”123;456\” and ”your house”). The string ”123\;456\\\,your house” is just one
UTF-8 encoded field (”123;456\,your house”).

15.1 Vertex Loading

int GDI LoadVertexCSVFile(int assert, const char* file path, int header,

int stype, char field delimiter, char element delimiter,

GDI PropertyType array of ptypes[], size t ptype count,

GDI Label array of labels[], size t label count, GDI Database graph db)

IN assert program assertion (integer)
IN file path character string that contains the path to the vertex

file (string)
IN header header existance (state)
IN stype sort type (state)
IN field delimiter single character to indicate field limits (character)
IN element delimiter single character to indicate element limits (character)
IN array of ptypes array of property types (array of handles)
IN ptype count length of array of ptypes (non-negative integer)
IN array of labels array of labels (array of handles)
IN label count length of array of labels (non-negative integer)

INOUT graph db graph database object (handle)

GDI LoadVertexCSVFile loads vertices in bulk from the file specified by file path into the
graph database graph db. The state parameter header is restricted to two values: GDI TRUE,
in case the file contains a header as the first line, or GDI FALSE, in case the file starts with
the first vertex in the first line. field delimiter is a single ASCII character to indicate that a
field of data has ended and the next field will begin afterwards. element delimiter is a single
ASCII character to differentiate elements within a single property value.

The CSV file should have the following order of columns: In the first column GDI expects
the application level ID of the vertex and the following columns should contain the additional
properties.

Vertex ID Property 1 Property 2 ... Property P

1 John Smith 23
2 Kim Mould 42
...
n Kjetil Peersen 1991

Table 11: File format for a vertex file. Due to readability the application level IDs are shown in
a textual representation instead of a Base64 encoding.

The mapping of the fields of data to property types is done with the help of the array
array of ptypes. The number of entries in array of ptypes is specified by ptype count and
should be one less than the number of columns in the CSV file. The order of entries in the
array should match the order of columns in the CSV file, for example that the first entry in
array of ptypes will specify the property type for the property values in the second column
and so on.

74

The labels, that going to be assigned to each vertex, are given by array of labels. The
parameter label count specifies the number of entries in array of labels.

The state parameter stype indicates if the vertices are sorted by their application level ID.
The parameter is restricted to the values GDI NO SORTING if the vertices are not sorted,
GDI ASC SORTING if the vertices are sorted in ascending order, or GDI DESC SORTING if
the vertices are sorted in descending order.

Rationale. An implementation might want to search vertices in the given file. If the
file is sorted, the implementation can search in the file for these vertices much faster by
applying a binary search scheme. (End of rationale.)

If a property type from array of ptypes and/or a label from array of labels do not be-
long to the database graph db, the error GDI ERROR OBJECT MISMATCH is returned. If
the file can’t be found or opened, the error GDI ERROR NO SUCH FILE is returned. If the
number of columns in the CSV file is not ptype count + 1, no vertices are loaded and the error
GDI ERROR FILE FORMAT is returned. If a read property is not within the size limitations
of the respective property type, that property is not added to the vertex, while the other data is
added to the database and the function returns GDI WARNING NOT ALL DATA LOADED.

GDI LoadVertexCSVFile is a collective call and will synchronize all processes of that
database. All transactions on that graph database must be finished before a process enters
before a GDI LoadVertexCSVFile call. The function call has a barrier semantic: a process
returns from the call only after all other processes have entered their matching call.

The assert argument is used to provide assertions on the context of the call that may be
used for various optimizations. This is described in Section 15.3. A value of assert = 0 is
always valid.

int GDI LoadVertexPropertiesCSVFile(int assert, const char* file path,

int stype, char field delimiter, char element delimiter,

GDI PropertyType ptype, GDI Label label, GDI Database graph db)

IN assert program assertion (integer)
IN file path character string that contains the path to the vertex

property file (string)
IN header header existance (state)
IN stype sort type (state)
IN field delimiter single character to indicate field limits (character)
IN element delimiter single character to indicate element limits (character)
IN ptype property type (handle)
IN label vertex label (handle)

INOUT graph db graph database object (handle)

GDI LoadVertexPropertiesCSVFile loads (multiple entity) properties of vertices in bulk from
the file specified by file path into the graph database graph db. The state parameter header
is restricted to two values: GDI TRUE, in case the file contains a header as the first line, or
GDI FALSE, in case the file starts with the first vertex in the first line. field delimiter is a
single ASCII character to indicate that a field of data has ended and the next field will begin
afterwards. element delimiter is a single ASCII character to differentiate elements within a
single property value.

The CSV file should have the following order of columns: In the first column GDI expects
the application level ID of the vertex and the following column should contain a single property
value. The layout is illustrated in Table 12.

The property type of the values in the second column is specified by ptype. label together
with the application level ID from the first column allows the database to retrieve the vertex in
question, so that the property or properties can be added to that vertex.

The state parameter stype indicates if the vertices are sorted by their application level ID.
The parameter is restricted to the values GDI NO SORTING if the vertices are not sorted,
GDI ASC SORTING if the vertices are sorted in ascending order, GDI DESC SORTING if the

75

Vertex ID Property

23 English
23 French
42 English
1 Norwegian
...
n Chinese

Table 12: File format for a vertex property file. Due to readability the application level IDs are
shown in a textual representation instead of a Base64 encoding.

vertices are sorted in descending order or GDI GROUPED if the vertices are not sorted, but
properties pertaining to the same vertex can be found in consecutive lines.

Rationale. An implementation might want to search vertices in the given file. If the
file is sorted, the implementation can search in the file for these vertices much faster by
applying a binary search scheme. (End of rationale.)

If either the property type ptype or label do not belong to the database graph db, the error
GDI ERROR OBJECT MISMATCH is returned. If the file can’t be found or opened, the error
GDI ERROR NO SUCH FILE is returned. If the format of the CSV file differs from the de-
scribed two column layout, no properties are added and the error GDI ERROR FILE FORMAT
is returned. If a vertex with the given label and an application level ID read from the CSV file
is not found inside the database, the lines with the respective application level ID are going to be
ignored, while the rest of the data is added to the database. Similarly if a read property is not
within the size limitations of the property type ptype, that property is not added to the vertex,
while the other data is added to the database. If ptype is a single entity property type, but a
property of that type is already present on the vertex in question (either because the property
was already there before the bulk loading call or the vertex appears on multiple lines of the CSV
file), that property is ignored, while the other data is added to the database. In all three cases
the function returns GDI WARNING NOT ALL DATA LOADED.

GDI LoadVertexPropertiesCSVFile is a collective call.
The assert argument is used to provide assertions on the context of the call that may be

used for various optimizations. This is described in Section 15.3. A value of assert = 0 is
always valid.

15.2 Edge Loading

int GDI LoadEdgeCSVFile(int assert, const char* file path, int header,

int stype, int dtype, char field delimiter, char element delimiter,

GDI PropertyType array of ptypes[], size t ptype count,

GDI Label array of labels[], size t label count, GDI Label origin label,

GDI Label target label, GDI Database graph db)

76

IN assert program assertion (integer)
IN file path character string that contains the path to the edge

file (string)
IN header header existence (state)
IN stype sort type (state)
IN dtype direction type (state)
IN field delimiter single character to indicate field limits (character)
IN element delimiter single character to indicate element limits (character)
IN array of ptypes array of property types (array of handles)
IN ptype count length of array of ptypes (non-negative integer)
IN array of labels array of labels (array of handles)
IN label count length of array of labels (non-negative integer)
IN origin label label of the vertices in the first column (handle)
IN target label label of the vertices in the second column (handle)

INOUT graph db graph database object (handle)

GDI LoadEdgeCSVFile loads edges in bulk from the file specified by file path into the
graph database graph db. The state parameter header is restricted to two values: GDI TRUE,
in case the file contains a header as the first line, or GDI FALSE, in case the file starts with
the first edge in the first line. field delimiter is a single ASCII character to indicate that a
field of data has ended and the next field will begin afterwards. element delimiter is a single
ASCII character to differentiate elements within a single property value.

The CSV file should have the following order of columns: In the first column GDI expects
the application level ID of the origin vertex, in the second column the application level ID of
the target vertex, and the following columns should contain the properties of that edge.

Origin Target Property Property Property
Vertex ID Vertex ID 1 2 ... P

1 5 2019-10-17 red 103.22
1 7 1990-12-31 97.88
2 3 2021-02-09 black 95612.12
...
n m 2013-11-23 blue 2.33

Table 13: File format for an edge file. Due to readability the application level IDs are shown in
a textual representation instead of a Base64 encoding.

The mapping of the fields of data to property types is done with the help of the array
array of ptypes. The number of entries in array of ptypes is specified by ptype count and
should be two less than the number of columns in the CSV file. The order of entries in the
array should match the order of columns in the CSV file, for example that the first entry in
array of ptypes will specify the property type for the property values in the first property
column (the third column overall) and so on.

The labels are given by array of labs and assigned to every edge. The parameter
label count specifies the number of entries in array of labels.

origin label and target label are provided to uniquely identify the incident vertices of
an edge. All vertices in the first column are expected to have the label origin label, and
all vertices in the second column are expected to have the label target label. If no label is
necessary to uniquely identify the vertices, GDI LABEL NONE can be provided as the respective
argument.

The state parameter dtype is restricted to two values and indicates whether the edge is
directed (GDI EDGE DIRECTED) or undirected (GDI EDGE UNDIRECTED).

The state parameter stype indicates if the edges are sorted. The parameter is restricted to the
values GDI NO SORTING if the edges are not sorted, GDI ORIGIN TARGET if the edges are
sorted in ascending order first by the origin and then the target vertex, GDI TARGET ORIGIN
if the edges are sorted in ascending order first by the target and then the origin vertex.

77

Rationale. An implementation might want to search edges in the given file. If the file is
sorted, the implementation can search in the file for these edges much faster by applying
a binary search scheme. (End of rationale.)

If a property type from array of ptypes and/or a label from array of labels do not belong
to the database graph db, the error GDI ERROR OBJECT MISMATCH is returned. If the file
can’t be found or opened, the error GDI ERROR NO SUCH FILE is returned. If the number
of columns in the CSV file is not ptype count + 2, no edges are loaded into the database and
the error GDI ERROR FILE FORMAT is returned. If a vertex, be it either a origin or a target
vertex, with the respective label and the application level ID read from the CSV file is not found
inside the database, the lines with that vertex are going to be ignored, while the rest of the
data is added to the database and GDI WARNING NOT ALL DATA LOADED is returned.
Similarly if a read property is not within the size limitations of the respective property type,
that property is not added to the vertex, while the other data is added to the database and the
function returns GDI WARNING NOT ALL DATA LOADED as well.

GDI LoadEdgeCSVFile is a collective call and will synchronize all processes of that database.
All transactions on that graph database must be finished before a process enters before a
GDI LoadEdgeCSVFile call. The function call has a barrier semantic: a process returns from
the call only after all other processes have entered their matching call.

The assert argument is used to provide assertions on the context of the call that may be
used for various optimizations. This is described in Section 15.3. A value of assert = 0 is
always valid.

15.3 Assertions

GDI provides an assert argument to several calls in the bulk loading chapter, namely
GDI LoadVertexCSVFile, GDI LoadVertexPropertiesCSVFile, and GDI LoadEdgeCSVFile.
These assertions on the circumstances of a call can allow for performance optimizations in the
implementation. If accurate information are given in the assert argument, the semantics of the
program are not changed. However, it is invalid to provide inaccurate information. It is always
possible to use assert = 0 to signal a general situation without any guarantees.

Advice to users. Implementations are not forced to take into account the assert infor-
mation, so users should refer to the implementation’s documentation to see which assert

values are actually viable for their specific system. However, a user program, that always
specifies accurate assertions, is portable, and optimizations are enabled, if available.

(End of advice to users.)

Advice to implementors. It is possible for an implementation to disregard any assert

information. However, implementors are encouraged to document viable assert values,
so that users of their implementation can take advantage of them.

(End of advice to implementors.)

An assert is a bitwise OR combination of a non-negative number of the following integer
constants: . The viable assert arguments for each call are listed below.

GDI LoadVertexCSVFile:
GDI LoadVertexPropertiesCSVFile:
GDI LoadEdgeCSVFile:

78

GDI Constant and Predefined Handle Index

This index lists predefined GDI constants and handles.

GDI ASC SORTING, 75
GDI BOOL, 49, 50, 54
GDI BYTE, 22, 49, 53, 55
GDI CHAR, 49, 55
GDI COLLECTIVE READ TRANSACTION,

59
GDI CONSTRAINT NULL, 26, 27, 46, 47,

61
GDI DATABASE NULL, 14
GDI DATE, 49, 54, 55
GDI DATETIME, 49, 54, 55
GDI DECIMAL, 49, 55
GDI DESC SORTING, 75
GDI DOUBLE, 49, 54
GDI EDGE DIRECTED, 33–35, 77
GDI EDGE INCOMING, 26, 27
GDI EDGE NULL, 33
GDI EDGE OUTGOING, 26, 27
GDI EDGE UNDIRECTED, 26, 27, 33–35,

77
GDI EQGREATER, 55
GDI EQSMALLER, 55
GDI EQUAL, 55, 63
GDI ERROR ACCESS, 68, 69
GDI ERROR ARGUMENT, 67, 69
GDI ERROR ASSERT, 67, 69
GDI ERROR BAD FILE, 68, 69
GDI ERROR BUFFER, 67, 69
GDI ERROR CONSISTENCY, 68, 69
GDI ERROR CONSTRAINT, 67, 69
GDI ERROR CONVERSION, 20, 68, 69
GDI ERROR COUNT, 67, 69
GDI ERROR DATABASE, 67, 69
GDI ERROR DATATYPE, 67, 69
GDI ERROR DATE, 67, 69
GDI ERROR DATETIME, 67, 69
GDI ERROR DECIMAL, 67, 69
GDI ERROR DELIMITER, 67, 69
GDI ERROR EDGE, 67, 69
GDI ERROR EDGE ORIENTATION, 26,

27, 67, 69
GDI ERROR EMPTY NAME, 15, 16, 18,

20, 68, 69
GDI ERROR ERROR CODE, 67, 69, 71
GDI ERROR FILE EXISTS, 68, 69
GDI ERROR FILE FORMAT, 68, 69, 75,

76, 78
GDI ERROR FILE IN USE, 68, 69
GDI ERROR INDEX, 67, 69
GDI ERROR INTERN, 68, 70
GDI ERROR IO, 68, 70
GDI ERROR LABEL, 67, 69

GDI ERROR LASTCODE, 68, 69, 71
GDI ERROR NAME EXISTS, 15, 16, 18,

20, 68, 69
GDI ERROR NO MEMORY, 68, 69
GDI ERROR NO PROPERTY, 31, 38, 39,

68, 69
GDI ERROR NO SPACE, 68, 69
GDI ERROR NO SUCH FILE, 68, 69, 75,

76, 78
GDI ERROR NON UNIQUE ID, 28, 35,

68, 69
GDI ERROR NOT SAME, 68, 70
GDI ERROR OBJECT MISMATCH,

25–27, 29–39, 41–43, 45–47,
63–67, 70, 75, 76, 78

GDI ERROR OP, 67, 70
GDI ERROR OP DATATYPE MISMATCH,

63, 64, 67, 70
GDI ERROR OTHER, 68, 70
GDI ERROR OUTPUT, 68, 70
GDI ERROR PROPERTY EXISTS, 31,

39, 70
GDI ERROR PROPERTY TYPE, 67, 70
GDI ERROR PROPERTY TYPE EXISTS,

29, 36, 68, 70
GDI ERROR QUOTA, 68, 70
GDI ERROR RANGE, 68, 70
GDI ERROR READ ONLY FILE, 68, 70
GDI ERROR READ ONLY PROPERTY TYPE,

68, 70
GDI ERROR READ ONLY TRANSACTION,

67, 70
GDI ERROR RESOURCE, 68, 70
GDI ERROR SIZE, 67, 70
GDI ERROR SIZE LIMIT, 68, 70
GDI ERROR STALE, 26, 27, 46, 47, 63,

64, 66, 67, 70
GDI ERROR STATE, 67, 70
GDI ERROR SUBCONSTRAINT, 67, 70
GDI ERROR TIME, 67, 70
GDI ERROR TRANSACTION, 67, 70
GDI ERROR TRANSACTION COMMIT FAIL,

57, 58, 67, 70
GDI ERROR TRANSACTION CRITICAL,

56, 67, 69, 70
GDI ERROR TRUNCATE, 17, 23, 26–30,

36, 37, 46–48, 51, 58, 61–67, 70, 71
GDI ERROR UID, 67, 70
GDI ERROR UNKNOWN, 67, 68, 70
GDI ERROR VERTEX, 67, 70
GDI ERROR WRONG TYPE, 31, 32, 38,

39, 68, 70

79

GDI FALSE, 61, 74, 75, 77
GDI FALSEE, 62
GDI FIXED SIZE, 19, 24
GDI FLOAT, 49, 54
GDI GREATER, 55
GDI GROUPED, 76
GDI INDEX NULL, 41
GDI INDEXTYPE BTREE, 9, 41, 48
GDI INDEXTYPE HASHTABLE, 9, 41,

48
GDI INT16 T, 49, 50, 54
GDI INT32 T, 49, 50, 54
GDI INT64 T, 49, 50, 54
GDI INT8 T, 49, 50, 54
GDI LABEL NONE, 15, 27, 28, 35, 42, 44,

45, 77
GDI LABEL NULL, 15, 16
GDI MAX DECIMAL SIZE, 10, 51
GDI MAX ERROR STRING, 10, 71
GDI MAX OBJECT NAME, 10, 11, 15,

16, 18, 20, 22, 23
GDI MAX SIZE, 19, 24
GDI MULTIPLE ENTITY, 18–20, 23
GDI NO SIZE LIMIT, 19, 21, 22, 24
GDI NO SORTING, 75
GDI NOTEQUAL, 55, 63
GDI ORIGIN TARGET, 77
GDI PROPERTY TYPE DEGREE, 22

GDI PROPERTY TYPE ID, 21, 25, 35, 46

GDI PROPERTY TYPE INDEGREE, 22

GDI PROPERTY TYPE NULL, 19, 22

GDI PROPERTY TYPE OUTDEGREE,
22

GDI SINGLE ENTITY, 18, 20, 22, 23

GDI SINGLE PROCESS TRANSACTION,
59

GDI SMALLER, 55

GDI SUBCONSTRAINT NULL, 62

GDI SUCCESS, 67, 69

GDI TARGET ORIGIN, 77

GDI TIME, 49, 54, 55

GDI TRANSACTION ABORT, 57, 58

GDI TRANSACTION COMMIT, 57, 58

GDI TRANSACTION NULL, 57, 58

GDI TRUE, 62, 74, 75, 77

GDI UINT16 T, 49, 50, 54

GDI UINT32 T, 49, 50, 54

GDI UINT64 T, 22, 49, 50, 54

GDI UINT8 T, 49, 50, 54

GDI VERTEX NULL, 26

GDI WARNING NON UNIQUE ID, 16,
28, 45, 68, 71

GDI WARNING NOT ALL DATA LOADED,
68, 71, 75, 76, 78

GDI WARNING OTHER, 68, 69, 71

80

GDI Function Index

The underlined page numbers refer to the function definitions.

GDI AddLabelConditionToSubconstraint,
63

GDI AddLabelsAndPropertyTypesToIndex,
43

GDI AddLabelToEdge, 35
GDI AddLabelToIndex, 41
GDI AddLabelToVertex, 27
GDI AddPropertyConditionToSubconstraint,

63
GDI AddPropertyToEdge, 36
GDI AddPropertyToVertex, 28
GDI AddPropertyTypeToIndex, 42
GDI AddSubconstraintToConstraint, 66
GDI AssociateEdge, 33
GDI AssociateVertex, 25
GDI CloseCollectiveTransaction, 57, 57
GDI CloseTransaction, 56
GDI CreateConstraint, 61
GDI CreateDatabase, 13, 14
GDI CreateEdge, 33
GDI CreateIndex, 9, 41
GDI CreateLabel, 15
GDI CreatePropertyType, 18
GDI CreateSubconstraint, 62
GDI CreateVertex, 21, 25
GDI Finalize, 13
GDI FreeConstraint, 61
GDI FreeEdge, 33
GDI FreeIndex, 41
GDI FreeLabel, 15
GDI FreePropertyType, 19
GDI FreeSubconstraint, 62
GDI FreeVertex, 26
GDI GetAllConstraintsOfDatabase, 61
GDI GetAllIndexesOfDatabase, 47
GDI GetAllLabelConditionsFromSubconstraint,

63
GDI GetAllLabelsOfDatabase, 17
GDI GetAllLabelsOfEdge, 36
GDI GetAllLabelsOfIndex, 48
GDI GetAllLabelsOfVertex, 28
GDI GetAllPropertyTypesOfDatabase, 23
GDI GetAllPropertyTypesOfEdge, 36
GDI GetAllPropertyTypesOfIndex, 48
GDI GetAllPropertyTypesOfSubconstraint,

64
GDI GetAllPropertyTypesOfVertex, 29
GDI GetAllSubconstraintsOfConstraint, 66
GDI GetAllSubconstraintsOfDatabase, 62
GDI GetAllTransactionsOfDatabase, 58
GDI GetDatatypeOfPropertyType, 24
GDI GetDate, 52

GDI GetDatetime, 53
GDI GetDecimal, 51
GDI GetDirectionTypeOfEdge, 34
GDI GetEdgesOfIndex, 47
GDI GetEdgesOfVertex, 26
GDI GetEntityTypeOfPropertyType, 23
GDI GetErrorClass, 67, 71
GDI GetErrorString, 67, 68, 71
GDI GetLabelFromName, 16
GDI GetLocalEdgesOfIndex, 47, 57
GDI GetLocalVerticesOfIndex, 46, 57
GDI GetNameOfLabel, 16
GDI GetNameOfPropertyType, 23
GDI GetNeighborVerticesOfVertex, 27
GDI GetPropertiesOfEdge, 37
GDI GetPropertiesOfVertex, 29
GDI GetPropertyConditionsOfSubconstraint,

64
GDI GetPropertyTypeFromName, 22
GDI GetSizeLimitOfPropertyType, 24
GDI GetSizeOfDatatype, 54
GDI GetTime, 52
GDI GetTypeOfIndex, 48
GDI GetTypeOfTransaction, 59
GDI GetVerticesOfEdge, 34
GDI GetVerticesOfIndex, 46
GDI Init, 13
GDI IsConstraintStale, 61
GDI IsSubconstraintStale, 62
GDI LoadEdgeCSVFile, 76, 78
GDI LoadVertexCSVFile, 74, 78
GDI LoadVertexPropertiesCSVFile, 75, 78
GDI RemoveLabelFromEdge, 35
GDI RemoveLabelFromIndex, 15, 42
GDI RemoveLabelFromVertex, 28
GDI RemoveLabelsAndPropertyTypesFromIndex,

44, 45
GDI RemovePropertiesFromEdge, 37
GDI RemovePropertiesFromVertex, 30
GDI RemovePropertyTypeFromIndex, 19,

43
GDI RemoveSpecificPropertyFromEdge, 38
GDI RemoveSpecificPropertyFromVertex,

30
GDI SetDate, 52
GDI SetDatetime, 53
GDI SetDecimal, 50
GDI SetDirectionTypeOfEdge, 35
GDI SetOriginVertexOfEdge, 34
GDI SetPropertyOfEdge, 39
GDI SetPropertyOfVertex, 32
GDI SetTargetVertexOfEdge, 34

81

GDI SetTime, 52
GDI StartCollectiveTransaction, 57, 58
GDI StartTransaction, 56, 57
GDI TranslateVertexID, 22, 25, 45
GDI UpdateLabel, 16

GDI UpdatePropertyOfEdge, 38
GDI UpdatePropertyOfVertex, 31
GDI UpdatePropertyType, 20, 60
GDI UpdateSpecificPropertyOfEdge, 38
GDI UpdateSpecificPropertyOfVertex, 31

82

References

[1] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann, Orri
Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev, and Ioan Toma. 2014. The
Linked Data Benchmark Council: A Graph and RDF Industry Benchmarking Effort. ACM
SIGMOD Record 43, 1 (March 2014), 27–31. https://doi.org/10.1145/2627692.2627697

[2] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Micha l Podstawski,
Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demystifying Graph Databases:
Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries.
https://doi.org/10.48550/ARXIV.1910.09017 arXiv:1910.09017 [cs.DB]

[3] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The MPI Message Passing In-
terface Standard. In Programming Environments for Massively Parallel Distributed Systems,
Karsten M. Decker and René M. Rehmann (Eds.). Birkhäuser Basel, Basel, 213–218.

[4] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat,
Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network Benchmark: Interactive
Workload. In Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association for Computing
Machinery, New York, NY, USA, 619–630. https://doi.org/10.1145/2723372.2742786

83

https://doi.org/10.1145/2627692.2627697
https://doi.org/10.48550/ARXIV.1910.09017
https://doi.org/10.1145/2723372.2742786

	Overview
	GDI and Its Goals
	Labeled Property Graph Model
	Additions and Restrictions to the LPG Model

	Context of GDI
	Execution and Consistency
	Following Established and Time-Tested Specifications
	Low-Level of Specification
	Document Structure

	Terms and Conventions
	Abbreviations and Terms
	Separation of Responsibilities
	Document Notation
	Function Specification
	Semantic Terms
	Data Types
	Opaque Objects
	Array Arguments
	State
	Named Constants
	Choice
	Convention For Strings As Function Parameters

	Naming Objects
	Error Handling
	File Path and Access

	Initialization and Completion
	Databases
	Labels
	Properties
	Property Type Creation, Destruction and Update
	Predefined Property Types
	Property Type Retrieval
	Property Type Attributes

	Vertices
	Temporary Vertex Object Creation
	Vertex Destruction
	Vertex Edge Handling
	Vertex Label Handling
	Vertex Property Handling

	Edges
	Temporary Edge Object Creation
	Edge Destruction
	Edge Attributes
	Edge Label Handling
	Edge Property Handling

	Indexes
	Explicit Index Creation and Destruction
	Index Label Handling
	Index Property Type Handling
	Index Bulk Update
	Querying Indexes
	Implicit Indexes
	Explicit Indexes

	Index Attributes

	Basic Datatypes
	Character Datatype
	Integer Numeric Datatypes
	Floating Point Numeric Datatypes
	Fixed Point Numeric Datatype
	Time Datatypes
	Arbitrary Data
	Datatype Size
	Conversion
	GDI Operations

	Transactions
	Single Process Transactions
	Collective Read Transactions
	Transaction Attributes

	Constraints
	Creation and Destruction
	Label Conditions
	Property Conditions
	Constraint Handling

	Error Handling
	Execution Model: Remarks
	Primary-Secondary
	Distributed Model

	Bulk Data Loading
	Vertex Loading
	Edge Loading
	Assertions

	GDI Constant and Predefined Handle Index
	GDI Function Index
	References

