Copyright Notice:
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Publications of SPCL
| P. Schaad, T. Ben-Nun, P. Iff, T. Hoefler: | ||
| Inductive Loop Analysis for Practical HPC Application Optimization (arXiv:2511.06052. Nov. 2025) AbstractScientific computing applications heavily rely on multi-level loop nests operating on multidimensional arrays. This presents multiple optimization opportunities from exploiting parallelism to reducing data movement through prefetching and improved register usage. HPC frameworks often delegate fine-grained data movement optimization to compilers, but their low-level representations hamper analysis of common patterns, such as strided data accesses and loop-carried dependencies. In this paper, we introduce symbolic, inductive loop optimization (SILO), a novel technique that models data accesses and dependencies as functions of loop nest strides. This abstraction enables the automatic parallelization of sequentially-dependent loops, as well as data movement optimizations including software prefetching and pointer incrementation to reduce register spills. We demonstrate SILO on fundamental kernels from scientific applications with a focus on atmospheric models and numerical solvers, achieving up to 12× speedup over the state of the artDocumentsdownload article:access preprint on arxiv: | ||
BibTeX | ||
| ||














