
SimFS: A Simulation Data Virtualizing
File System Interface

Salvatore Di Girolamo
Dept. of Computer Science

ETH Zurich

Switzerland

digirols@inf.ethz.ch

Pirmin Schmid
Dept. of Computer Science

ETH Zurich

Switzerland

schmidpi@student.ethz.ch

Thomas Schulthess
Dept. of Physics

ETH Zurich

Switzerland

schulthess@cscs.ch

Torsten Hoefler
Dept. of Computer Science

ETH Zurich

Switzerland

htor@inf.ethz.ch

Abstract—Nowadays simulations can produce petabytes of data
to be stored in parallel filesystems or large-scale databases. This
data is accessed over the course of decades often by thousands
of analysts and scientists. However, storing these volumes of data
for long periods of time is not cost effective and, in some cases,
practically impossible. We propose to transparently virtualize the
simulation data, relaxing the storage requirements by not storing
the full output and re-simulating the missing data on demand. We
develop SimFS, a file system interface that exposes a virtualized
view of the simulation output to the analysis applications and
manages the re-simulations. SimFS monitors the access patterns
of the analysis applications in order to (1) decide the data to keep
stored for faster accesses and (2) to employ prefetching strategies
to reduce the access time of missing data. Virtualizing simulation
data allows us to trade storage for computation: this paradigm
becomes similar to traditional on-disk analysis (all data is stored)
or in situ (no data is stored) according with the storage resources
that are assigned to SimFS. Overall, by exploiting the growing
computing power and relaxing the storage capacity requirements,
SimFS offers a viable path towards exa-scale simulations.

I. MOTIVATION

Reliable long-term data archiving is very costly. For example,

storing 10 TiB for 10 years costs between $2,400 and $6,000

on Microsoft’s Azure. The only practical scheme to mitigate

these costs, besides deletion, is (lossy or lossless) compression

of the data and it is fundamentally constrained by the tradeoff

between data size and quality. When taking a closer look at

how data is generated, we observe two fundamentally different

modes: (1) data collected by sensors or terminals that observe

non-deterministic environments or (2) data generated by deter-

ministic simulations that model complex and potentially chaotic

systems. We observe, that the latter could be recomputed on

demand instead of stored, given the right data retrieval system.

Many simulation applications produce vast amounts of data

that is today stored in large filesystems or databases. For

example, the European Centre for Medium-Range Weather

Forecasts (ECMWF) alone had an archive of 100 PiB in 2015,

experiencing an annual growth rate of 45% [1]; by 2020, their

archive will reach a Zettabyte. Climate model data is used

by countries and insurances to make critical decisions thus

repeatability of analyses is mandated by international regulatory

bodies. Astrophysics simulations are another example where

data volumes grow with the compute capabilities, creating more

than 20 PiB of data each [2]. Thousands of such simulations

are collected in virtual observatories, mainly limited by the

storage costs [3, 4]. Those two examples outline a clear trend:

As we proceed into the age of simulation [5], big (simulation)

data will soon be required for many real-world decisions.

The data produced by large simulations is commonly used by

thousands of analysts and scientists over the course of decades.

They are used in analysis workflows where the data is stored

in files or databases. Specifically, these workflows address two

requirements: (1) data can conveniently be analyzed with any

access pattern (e.g., time-reverse or random access) and (2)

the exact same data can (often years) later be re-analyzed to

reproduce the results. This makes the data-backed analysis a

de-facto standard for today’s simulation data analytics.

We propose SimFS, a file system interface that virtualizes

simulation output data for analysis tools. SimFS avoids storing

the whole simulation output data but stores checkpoints to

re-start parts of the simulation and produce missing files on

demand. A virtualized view, similar to virtual memory, is

provided to the analysis tools, enabling them to work as if all

output data exists as files. This way, SimFS can exploit the

tradeoff between inflexible in-situ analysis, where all analyses

are running together with the simulation and no data is stored,

and on-disk, where the full simulation output is stored and

no re-simulations are needed. Figure 1 shows the expected

costs for performing 100 analyses equally spaced over varying

data availability periods for a real-world climate simulation

scenario discussed in detail in Sec. V-A. It shows that SimFS

can reduce the costs for a five-year period from more than

$200,000 for an on-disk solution to less than $100,000. We

also show “in-situ”, which re-runs the whole simulation for

each analysis as comparison.

●
●

●
●

●
●

50

100

200

400

6m 1y 2y 3y 4y 5y

Availability Period

on-disk

in-situ

SimFS

C
o
s
t

(x
 1

0
0

0
$

)

Fig. 1: Aggregated analysis cost. The cost of the different

analysis solutions (on-disk, in-situ, SimFS) is function of the

time period over which the analyses are executed.

Implementing SimFS poses interesting challenges that we

describe in the following. In the past, computation speeds

and cost efficiency grew much faster than storage speeds and

efficiency. Whether this trend continues or not, SimFS must

always adjust to the exact cost and performance tradeoff. While

the file-system virtualization itself is simple, SimFS employs

complex caching and prefetching strategies to adjust the tradeoff

between computation (resimulation) and storage cost. To guide

optimizations, it exposes a set of interfaces that can be used in

addition to the fully transparent virtualization to optimize client

applications as, e.g., guided prefetching or non-blocking reads.

By nature of the virtualization, SimFS transparently enables

large-scale analyses on multi-petabyte datasets on terabyte

storage systems that have been impossible so far. Thus, SimFS

not only enables new scientific breakthroughs but it also allows

the system cost to shrink with the computation costs.

r=10

r=20

r=30

A B
C

d=10

d=15

d=20

initial simulation
write restart files

restart

detailed simulation

outputread

restart/control
SimFS

read(t1)

read(t2)

read(t3)

set up

simulation

parameters

Fig. 2: Overview of SimFS

Figure 2 shows the abstract workflow of SimFS: The

simulation is initially set up by a scientist (top left of Figure 2)

and runs to completion while producing restart files (black

files, top right). First in-situ analyses may be performed during

the initial simulation but we focus on later analyses. Later,

analysis tools from different clients (e.g., researchers in the

lower left) access the virtualization layer through standard data-

access interfaces such as HDF5 [6], netCDF [7], or ADIOS [8].

SimFS manages the simulations to re-create output data (gray

files, bottom) on demand and delivers it to the analysis tools.

We remark that simulations can be restarted on different devices

than the original simulation, e.g., smaller GPU systems, because

the simulated time intervals are less demanding.
SimFS requires that the simulation can be re-started from

checkpoints and delivers a bitwise-identical output to the

original run. While checkpoint/restart facilities are already

needed to deal with limited compute time and failures, bitwise

reproducibility may not generally be available. However, it

should generally be used for good scientific practice (repeata-

bility) and can be achieved with a set of standard techniques

without significant performance penalty [9, 10]. If bitwise

reproducibility cannot be guaranteed, we expect the analyses

being able to operate on data that is different from the one

produced by the initial simulation. The analysis can check if

the re-simulated data differs by using the SimFS APIs.
We argue that SimFS solves a significant part of the big data

storage challenge in simulation sciences. We will show how it

even improves analysis performance and automatically utilizes

available storage resources efficiently, all without requiring any

modifications of the analysis tools. SimFS is used on some of

the largest machines existing today.

II. VIRTUALIZING SIMULATIONS

Virtualizing simulation data is very similar to virtual memory

and paging, a key component in today’s operating systems:

the simulation output is our virtual memory and the pages

are sets of simulation output files. If an application accesses

a file that is not on disk (i.e., swapped out), then the entire

page containing that file has to be re-simulated. (i.e., loaded).

While memory is virtualized by means of memory loads and

stores, we virtualize simulation data by intercepting calls to I/O

libraries. In this model, SimFS acts like a memory management

unit but on a coarser grain.

r1 r2

d1 d2 d3 d4

t=0 t=4 t=8 t=12 t=16

Output

Steps

Restart

Steps

∆𝑑 ∆𝑟Initial

parameters …

Fig. 3: Simulate time, output, and restart steps.

A. Modeling Simulations

Our model focuses on forward-in-time simulations. They

generate one or more output steps during the run, each of

which contains one or more timesteps. A single time step

can encapsulate multiple smaller simulation steps that are not

visible in the output steps, hence not exposed in our model.

Furthermore, simulators commonly provide the ability to write

restart steps that can be used to restart a simulation. Output

and restart steps are stored in files.

As simulations proceed in timesteps t1, t2, . . ., tn, a

simulator configuration is defined by ∆d, that is the number

of timesteps between two output steps, and ∆r, that is the

number of timesteps between two restart steps. Each output

step contains all ∆d− 1 timesteps beginning from either the

last output step or the beginning of the simulation. We assume

that the simulation can be restarted from any restart step

and proceeds forward in time. Thus, to produce an output

step di, the simulation needs to be started from the closest

previous restart step R(di) = ⌊ i·∆d
∆r

⌋. To exploit spatial locality,

we let a re-simulation run until at least the next restart step

⌈ i·∆d
∆r

⌉. Choosing ∆d and ∆r allows us to adjust the time-

space tradeoff. If SimFS stores all output steps, we can serve

all requests from the output files directly. However, we assume

that we cannot store the complete output on disk. Then, ∆d
selects the granularity of the data generation and ∆r the time

to reach a specific timestep. In particular, the bigger the ∆r,

the lower the number of restart files that need to be stored and

the higher the average time to simulate a specific output step.

Figure 3 shows an example where a simulation starts from

t = 0 and runs forward-in-time beyond t = 16 (not shown in

the figure). Each output step contains four timesteps (∆d = 4)

and can be restarted every 8 timesteps (∆r = 8).

Simulation Contexts Simulation output characteristics (i.e.,

output steps content, ∆d, ∆r) are determined by a specific

simulation configuration and a simulator can have multiple

configurations. We define a simulation context as a simulator

and an its configuration. Since the analysis applications

operate on the simulation output produced by a given context,

simulation contexts are a central component of our model.

Multiple simulation contexts can share the same restart files,

offering different simulation outputs that can be produced at

different speeds. Analyses can be interested in one or more

simulation output types, hence in one or more simulation

contexts: e.g., analyzing a coarser grain simulation output on a

simulation context and then switch to finer grain on a different

context for a more detailed study of interesting events.

For a given simulation, scientists identify multiple simulation

contexts that are made available to the analyses through SimFS.

Since each simulation context can produce different subset of

output steps, they can lead to different re-simulations costs. The

analyses can specify their simulation context via an environment

variables or the SimFS APIs.

III. SIMFS

SimFS consists of two components: (1) the Data Virtualizer

(DV), a daemon process that coordinates simulations and

analyses and (2) the DV Library (DVLib), that enables the

analyses and simulations to communicate and synchronize

with the DV. DVLib provides bindings for many I/O libraries

(e.g., netCDF, HDF-5) so the analyses and simulations can be

transparently interfaced to the DV. Moreover, it exposes a set

of APIs to let virtualization-aware analysis applications have a

more direct control on the virtualized environment.

A. Virtualized Simulation Output Analysis

Analysis accesses to the simulation output are intercepted

by DVLib, which communicates with the DV to check if the

requested files are available. After intercepting an open call

issued by an analysis application, the DVLib sends a request

to the DV and waits for a response. If the file exists, then

an acknowledgment is sent back to the application, which is

now free to open the file. Figure 4 shows the case in which

the requested file is not available. 1 Once DV receives the

request and checks that the file is not available, 2 it starts

a new re-simulation, configured according with the context

specified by the analysis application. 3 The new simulation

starts producing output steps, writing them on the (parallel)

file system. 4 DVLib is aware of the files created by the

running simulation since it intercepts the close calls issued by

it. Once a file is closed, DVLib assumes that this file is ready

on disk and notifies the DV of this event. 5 When notified,

DV checks if there are analysis applications waiting for the

Analysis Tool Simulation

request file F in
context C

new simulation with

context C from R(F)

signal files creation

D
V

L
ib

DV

1
2

F
X

Y

4

3 write data

5
notify that F is
ready D

V
L
ib

6 read data

Fig. 4: Handling misses in SimFS. Dashed arrows are control

messages (TCP/IP); solid (thin) arrows represent actions (script

execution); solid (bold) arrows represent data movement (file

system).

file and, if yes, it forwards the notification to them. 6 After

receiving the notification from DV, the DVLib running on the

analysis call unblocks and perform the original I/O library call

that will now find the file on disk.

A key motivation of virtualizing simulations output is to

enable the analysis of datasets that are one or more orders

of magnitude larger than the available storage capacity. This

implies that SimFS has to monitor the data volume occupied

by a simulation context and eventually evict output steps when

the given storage resources are saturated. In particular, we

associate each simulation context with a storage area (i.e.,

a file system directory). When a new re-simulation from a

given context is launched, DVLib intercepts the create calls

from the simulator and redirects them to the associated storage

area. The simulation context also specifies the maximum size

of its storage area. When the actual size of a storage area

reaches its maximum size, the DV applies eviction policies

(see Sec. III-D) for selecting one or more output steps to evict.

SimFS associates a reference counter to each output step to

keep track of the analysis that are currently accessing it. An

output step can be evicted only if its reference counter is zero.

B. Simulator Interface

The DV is in charge to restart simulations to produce data

that is being accessed by the analysis applications but not

on disk. However, how to configure and start a simulation

is strictly related to the simulator and to the system where

the simulation has to be run (e.g., how to set start and stop

output steps; how to submit the simulation job to the batch

system). To let a simulator be managed by SimFS we introduce

a simulation driver that can be implemented as a LUA script

and provides the following simulator-specific functionalities:

• Naming Convention: The output steps file names follow

a convention that is specified by the simulator and its

configuration. SimFS needs to be able to compare filenames

for, e.g., finding the closest in time restart step from which

the simulation can be restarted to produce a missing file.

The simulation driver provides a function key that given a

filename, returns a integer key such that if the output step di is

produced after dj by the simulator, then key(di) > key(dj).
• Simulation Job: When creating a new simulation, SimFS

invokes a simulation driver function that takes as arguments

the simulation start and stop output steps keys and the

parallelism level. This function creates a script that the

DV can execute to start the new simulation. SimFS needs to

tune the simulation parallelism to enable the optimizations

described in Sec. IV-B. However, the simulator can impose

constraints on its resources allocation (e.g., square or power

of two number of processes). By using the parallelism level

parameter, that is an integer from 0 to max parallelism level

(i.e., a parameter set by the simulation driver), SimFS can

increase the simulation parallelism without having to directly

enforce these constraints, which are instead enforced by the

simulator-specific implementation of the simulation interface.

We intercept the create and close calls issued by the simulator

to let the DV trigger replacement policies and analysis notifi-

Call (P)NetCDF [7] (P)HDF5 [6] ADIOS [8]

open nc(mpi)_open H5Fopen adios_open (r)

create nc(mpi)_create H5Fcreate adios_open (w)

read nc(mpi)_vara_get_type H5Dread adios_schedule_read

close nc(mpi)_close H5Fclose adios_close

TABLE I: Mapping data access operations to I/O libraries

cations, respectively. The mapping of these calls to standard

I/O libraries is reported in Table I.

C. Analysis Application Interface

The analysis applications are interfaced to the DV through

DVLib. DVLib provides bindings to standard I/O libraries,

allowing legacy analysis applications to transparently access

virtualized simulation output, and a set of APIs that can be

used by virtualization-aware analysis applications.

1) Transparent Mode: DVLib provides mappings to standard

I/O libraries to enable analysis of virtualized simulation output

without requiring code changes to the analysis applications or

simulators. This is achieved by intercepting the open, create,

read, and close calls of the different I/O libraries. Table I shows

the function names of these calls for the different I/O libraries

we provide bindings for. When DVLib intercepts an open call,

it sends a request to the DV that checks whether the file exists.

If not, a new simulation is restarted as in Sec. III-A. This call

is non-blocking, even if the opened file is not on disk. When

the applications tries to read from a file that is not on disk,

DVLib blocks the call (by not returning from it) until the DV

sends a notification of the file being ready. The close call is

intercepted to let DV decrease the output step. The simulation

context name accessed by an analysis transparently interfaced

to SimFS can be specified as an environment variable.

2) SimFS APIs: SimFS provides an additional API providing

more information and control about the virtualized environment.

These functions do not perform I/O: they are issued before the

I/O calls to coordinate with the DV before accessing the files.

Initialize/Finalize: An analysis tool can start an analysis

on a given simulation context by calling the SIMFS_Init

function. Multiple contexts can be open by the same application.

int SIMFS_Init(char * sim_context, SIMFS_Context * context);

int SIMFS_Finalize(SIMFS_Context * context);

Requesting Data: Before accessing a set of files with

standard I/O libraries, the analysis acquires such files with the

SIMFS_Acquire function. This function blocks until the DV

notifies that the requested files are available. A non-blocking

version of the call is available that does not wait for the requests

files to become available: the application must then explicitly

test or wait for data availability.

int SIMFS_Acquire(SIMFS_Context context, char * filenames[],

int count, SIMFS_Status * status);

int SIMFS_Acquire_nb(SIMFS_Context context,

char * filenames[], int count, SIMFS_Status * status,

SIMFS_Req * req);

int SIMFS_Release(SIMFS_Context context, char * filename);

The acquire functions return a SIMFS_Status object con-

taining information such as the error state (e.g., restart failed)

and the estimated waiting time for the requested files to

become available. The analysis can use this information for

debugging, profiling, and for saving compute hours/energy (e.g.,

by checkpointing itself and requesting to be resumed after the

estimated waiting time). Once the analysis of a file finishes,

the application releases it with a SIMFS_Release call.

Waiting for Data: The application can wait or test

for the completion of non-blocking acquire calls with the

SIMFS_Wait and SIMFS_Test functions, respectively.

These functions return a SIMFS_Status object to inform

the application about the status of the re-simulation. Since an

acquire request can target multiple files with different states

(i.e., on disk or missing), we provide the SIMFS_Waitsome

and SIMFS_Testsome calls that allow to receive availability

information for a subset of files requested in the acquire call.

int SIMFS_Wait(SIMFS_Req * req, SIMFS_Status * status);

int SIMFS_Test(SIMFS_Req * req, int * flag,

SIMFS_Status * status);

int SIMFS_Waitsome(SIMFS_Req * req, int * readycount,

int readyidx[], SIMFS_Status * status);

int SIMFS_Testsome(SIMFS_Req * req, int * readycount,

int readyidx[], SIMFS_Status * status);

Comparing Data: If bitwise reproducibility is not guaran-

teed, the analysis can check if a given file matches the one

produced by the initial simulation with the SIMFS_Bitrep

call. The check is made by comparing the checksums of the

current file and the original one. The way the checksum is

computed is simulator-specific and specified as a function of

simulator driver. The simulation context keeps a map from

filenames to checksums that can be updated through a command

line utility at the time when the first simulation is run.

int SIMFS_Bitrep(SIMFS_Context context, char * filename,

int * flag);

D. Caching Simulation Data

Simulation data virtualization is sufficient to fully solve data

storage limitations because it allows to freely adjust the space-

time-tradeoff by re-creating data on demand. Yet, re-simulating

every file may be too slow and with limited disk-space, it is

unclear which files should remain on disk and which should

be re-created on demand.

Traditional caching theory classifies cache misses using the

3Cs model [11] as compulsory, capacity, and conflict misses.

In our model, we first run a whole simulation to create restart

files and these initial compulsory misses cannot be avoided.

Conflict misses are caused by low-latency caching schemes

that map blocks to sets to optimize the performance. Since our

system is operating on a milliseconds time-frame, we employ

fully associativity, avoiding conflict misses. However, if the

data does not fit in cache, we may need to evict files from the

cache due to the limited storage, causing capacity misses.

Caching simulation data is different from caching memory

accesses in system caches: here, a cache miss leads to the

re-simulation of a number of output steps which depends on

the restart interval and the missing output step. Also, the

replacement schemes need to take into account that may not

be possible to evict some output steps if they are currently

referenced by one or more analyses. We now discuss a set

of known replacement schemes that we extend to fulfill the

requirements for simulation data virtualization.

Locality-Based (LRU/LIRS/ARC): Least-Recently-Used

(LRU) is one of the most common and simplest replacement

schemes. The idea is to keep track of the recency of each cache

entry (i.e., how many accesses have been issued from the last

access to it) and select the least recently used one as victim.

More advanced locality-based schemes have been proposed

with the aim of improving over LRU. The key change is in

how locality is defined (LRU defines it as recency). Low Inter-

reference Recency Set (LIRS) [12] leverages both recency

and reuse distance (i.e., number of accesses between two

consecutive accesses targeting the same entry) for selecting

entries to replace. Instead, Adaptive Replacement Cache

(ARC) [13] distinguishes entries that are frequently used from

the ones that have been recently accessed: they are kept in

two different sets which size is adjusted at runtime in order to

adapt to the observed access pattern.

Cost-Aware (BCL/DCL): The Basic Cost-Sensitive LRU

(BCL) and Dynamic Cost-Sensitive LRU (DCL) replacement

schemes have been proposed by Jeong et al. [14]. The main idea

is that they do not evict the LRU if there is a more recent entry

with a lower miss cost: the victim is selected as the first entry

in the recency-ordered list with a cost lower than the one of the

LRU. LRU is used as fallback if no evictable entry can be find

in this search. If the LRU is not evicted, its cost gets reduced

to avoid the case in which a costly, sporadically-accessed entry

leads to the eviction of too many cheaper, highly-reused entries.

In this context, the miss cost of an entry (i.e., output step) is the

distance, in number of output steps, from its closest previous

restart step. BCL and DCL differ by the time at which the

LRU depreciation takes place: BCL depreciates it as soon as

the LRU is not evicted, while DCL does that only if an evicted

non-LRU entry gets accessed before the LRU. Jeong et al.

propose also the Adaptive Cost-Sensitive LRU (ACL) but we

choose to not consider this algorithm since it is not designed

for fully associative caches.

● ● ●
●

●

● ● ●
●

●
● ● ● ● ●

● ● ● ● ●

Backward ECMWF Forward Random

ARC
BCL

DCL
LIR

S
LRU

ARC
BCL

DCL
LIR

S
LRU

ARC
BCL

DCL
LIR

S
LRU

ARC
BCL

DCL
LIR

S
LRU

0

50

100

150

0.0

2.5

5.0

7.5

0

10

20

30

0

5

10

Replacement Scheme

O
u

tp
u

t
S

te
p

s
 (

x
1

0
0

)

Fig. 5: Cache replacement schemes comparison for different

access patterns.

Caching Schemes Evaluation: To evaluate the discussed

caching schemes we virtualize a 4-days simulation producing

an output step every 5 minutes and a restart file every 4 hours.

The SimFS’s cache is set to 25% of the data volume.

The simulation data is accessed by a synthetic analysis

tool that replicates a given access trace. We generate different

traces for different analysis patterns: forward, where a set

of output steps are accessed on a forward-in-time trajectory;

backward, where the output steps are accessed on backward-

in-time trajectory; random, where the accessed output steps

are randomly selected. For each access pattern, we generate 50

traces starting their analysis at a random point of the simulation

timeline and accessing a different numbers of output steps

(randomly selected between 100 and 400). We then concatenate

all the single traces in a single one to be replicated by our

synthetic analysis tool. In addition, we extract traces from

the ECMWF archive [1] that provides a complete trace of all

successful accesses to the ECFS archival system from January

2012 to May 2014. The resulting trace accesses 874 different

files for a total of 659, 989 times.

Figure 5 shows the re-simulation statistics: the bars represent

the number of simulated output steps for the different replace-

ment schemes (x-axis) and different access patterns (tiles). We

also report the number of times a new simulation has been

restarted to satisfy the analysis (black points). We repeat each

experiment 100 times, generating new traces each time, and

report the median and the 95% CI of the measured counts.

Except for LIRS, we notice no important differences among

the caching schemes for scan-like access patterns (i.e., forward

and backward). LIRS performs worse in the backward case

because it prioritizes the eviction of files that are most likely

to be accessed with this trajectory. The cost-based schemes,

in particular DCL, minimize the number or restarts/produced

output steps in the ECMWF and random cases. Since multiple

analysis tools accessing data with different access patterns can

be interfaced to SimFS at the same time, we expect that the

random and ECMWF traces to be the most similar to real-

word scenarios. Hence, in the following, we fix the caching

replacement scheme to DCL.

E. Virtualizing Simulation Pipelines

Many scientific simulation are organized in stages: e.g., the

initial boundary conditions are copied from long-term storage

to start a coarse-grain simulation that outputs data that is then

used as input of a finer-grain simulation. If we virtualize the

fine-grain simulation output we may need to re-simulate parts of

it, needing the output of the coarser-grain one. However, storing

all the output of the coarse-grain simulation to re-simulate any

portion of the fine-grain one may be prohibitive, leading us to

our initial problem (i.e., we cannot keep all the data on-disk).

We have two options to address this problem: 1) the simulation

S
im

F
S

S
im

F
S

S
im

F
S

Coarse-Grain

Simulation

Fine-Grain

Simulation
Analysis Tool Slow Storage

Parallel

FileSystem

Fig. 6: Using SimFS to virtualize simulation pipelines

job of the fine-grain simulation makes sure that all the needed

input is on disk (e.g., by starting the coarser-grain simulation

first or by copying it from long-term storage); 2) we virtualize

the output of all the stages, as shown in Figure 6. In the second

case we define a simulation context for each stage: if the fine-

grain simulation accesses a part of its input that is missing,

then a coarse-grain re-simulation will be started. Similarly, if

the coarser-grain simulation accesses missing parts of its input,

then a new simulation job will be created: in this case, this

job will not start a simulation but just issue the copy of the

data from the long-term storage area.

IV. OPTIMIZING SIMULATION DATA ACCESSES

Many analysis tools access the data with simple traversal

schemes such as forward or backward in time trajectories.

These access patterns can be optimized using prefetching

strategies that can hide the simulation startup latency as well as

improve the overall production bandwidth. These prefetching

strategies can be used to adjust another resource-performance

tradeoff. For example, in the common case where the simulation

produces data slower than the analysis tool can consume it,

we can use more resources to run many simulations in parallel

and match the analysis application ingestion bandwidth.

A. Performance Model

We start by defining a performance model for the simulations

and the analysis applications that is then used in the proposed

optimizations. The idea is to have a general performance model

that allows us to not make particular assumptions on the

simulator and analysis.

Restarting a simulation may incur in non-functional delays

such as waiting for resources (e.g., VM deploying or queuing

time in a batch system), reading the restart file, and initializing

the simulation model. We define αsim(p) as the restart latency

of a simulation running with parallelism level p. Once started,

the simulation writes the output step on disk with a certain

frequency: we model the simulation inter-production time as

τsim(p), that represents the time between the production of two

consecutive output steps. In the following, we omit p for both

αsim(p) and τsim(p) if not required by the context. According

to this model, the time needed to simulate n output steps using

a parallelism level p is: Tsim(n, p) = αsim(p) + n · τsim(p).
Hence, the time to produce an output step di is the simulation

time from R(di) to di itself: Tsim(i−R(di), p).
We model the analysis application performance as τkcli, that

is the time between two consecutive k-strided accesses.

B. Prefetching Simulation Data

We associate each analysis application that is interfaced to

SimFS with a prefetch agent. The prefetch agent monitors

the application access pattern, measures τkcli, and can prefetch

new re-simulations. Forward and backward access patterns

are detected after two k-stride consecutive accesses. Once a

pattern is detected, the agent starts prefetching re-simulations

according with the monitored parameters. A prefetch agent

resets itself whenever the analysis tool changes its analysis

direction and/or stride, or terminates.

1) Prefetching forward-in-time accesses: We start with the

simplest and most common pattern: forward-in-time. This

pattern is directly supported by in-situ, where the analysis tool

runs in tandem with the simulation. While a single simulation

with in-situ analysis is always faster than re-simulation, SimFS

has many benefits if the data needs to be analyzed at varying

times (e.g., by different analysis). In fact, we can improve this

scenario at two fronts: (1) we can use all the storage available

to cache output steps for future analyses and (2) we can reduce

the analysis completion time using prefetching.

a) Masking Restart Latency: A forward-in-time analysis

reads the files in the same time trajectory they are produced by

the simulation. If no prefetching strategies are adopted, SimFS

starts a new simulation only when a miss occurs, making the

analysis application wait the full restart latency at every miss.

1 2 3 4 5 6 7 8 9 10 11 12

Restart latency (𝛼𝑠𝑖𝑚) Output step time (𝜏𝑠𝑖𝑚) Analysis tool accesses

SIM #1 SIM #2 SIM #3
1 2 3 754 6 8 9 10 11 12

time

Fig. 7: Forward analysis without prefetching.

Figure 7 shows an example of an analysis making a sequence

of (k = 1)-strided accesses with all of them resulting in a miss.

The simulation has a restart interval of ∆r = 4 timesteps, the

restart latency is αsim = 2 time units, and produces one output

step every time unit (τsim = 1 time unit). The analysis consumes

the output steps twice as fast as they are produced (τkcli = 1/2
time units). The accessed output steps are reported into the

gray bar at the bottom. The example shows how the accesses

performed by the analysis are delayed of the the restart latency

every time a miss occurs. We want to mask the restart latency

by overlapping it with the analysis, as shown in Figure 8. This

leads to two questions: How long does the re-simulation need

to be? and When to trigger a new re-simulation?

The re-simulation length n is the number of output steps that

one re-simulation produces. The number of k-stride accesses

that can be served by one re-simulation is ⌊n
k
⌋. The analysis

processing time per output step is max(k · τsim, τ
k
cli): it can be

limited by either the simulation’s or its own speed. We want to

find an n such that the time spent in analyzing ⌊n
k
⌋ output steps

covers the restart latency of the next re-simulation, reserving

the first two accesses to confirm the prefetching validity (i.e.,

same direction and stride). This n can be found by satisfying

the following inequality:
(⌊n

k

⌋

− 2
)

·max(k · τsim, τ
k
cli) ≥ αsim

Hence, n needs to be: n ≥
⌈

αsim

max(k·τsim,τ
k
cli)

+ 2
⌉

· k. We

always round n up to the nearest restart interval multiple:

n = R

(

⌈ αsim

max(k · τsim, τkcli)
+ 2

⌉

· k +
∆r

∆d

)

The abstraction we want to provide to the analysis tool

is as if there is a single simulation serving all the non-

cached output steps it requests. Hence, we need to prefetch

a new re-simulation just in time to mask its restart latency.

Since the prefetch agents see the time as discretized by the

(strided) analysis accesses, we prefetch at the time of the

last k-strided access that allows the masking of the restart

latency. This output step, named prefetching step, is computed

as: di + n−
⌈

αsim

max(k·τsim,τ
k
cli)

⌉

· k, where di is the initial output

step of the currently running simulation.

1 2 3 4
5 6 7 8

9 10 11 12

Restart latency (𝛼𝑠𝑖𝑚) Output step time (𝜏𝑠𝑖𝑚) Analysis tool accesses

SIM #1
SIM #2

SIM #3
1 2 3 754 6 8 9 10 11 12

time

13 13 15 16SIM #4

13 14 15 16 …
SIM #5

Fig. 8: Hiding simulation restart latency.

b) Matching Analysis Bandwidth: While the hiding of

the restart latency avoids delaying the analysis at every miss,

the analysis can still be faster in consuming the output steps

than the simulation in producing them: τsim >
τk

cli

k
. In this case,

we can improve the simulation production bandwidth by using

two strategies: (1) Increase the simulation parallelism level, or

(2) start multiple simulations in parallel.

Strategy (1) is the first strategy that a prefetch agent

employs if the analysis is faster than the simulation. When

the application is accessing the output steps produced by a

simulation (i.e., due to a miss), the prefetch agent monitors

both τkcli and τsim(p): whenever the analysis is faster than

the simulator, the prefetch agent increases p for the next re-

simulation that will be started to recover the misses of this

analysis. Whenever the prefetch agents determines that there are

no performance benefits in increasing p or the max parallelism

level is reached, it switches to strategy (2).

Strategy (2) runs multiple re-simulations in parallel to

increase the simulation output bandwidth. The ideal number of

parallel re-simulations needed to match the analysis bandwidth

is: sopt = ⌈k · τsim/τ
k
cli⌉. Figure 9 shows how this strategy

changes the example of Sec. IV-B1a: the prefetch agent now

starts sopt = 2 new re-simulations at each prefetching step and,

after the first batch of prefetched simulations (i.e., accessed

output step 9), the analysis can run at its full bandwidth.

However, this strategy can lead SimFS to launch a large

number of re-simulations if the analysis is much faster than the

simulation. Also, it is not guaranteed that the prefetched output

steps will be accessed by the analysis, which can terminate or

change its direction/stride at any time. To limit this issue, a

simulation context can be configured to not prefetch directly

sopt simulations at time, but start with s = 1 and double

it at each prefetching step until the analysis stays on the

same direction/stride and s < min(sopt, smax), where smax is a

simulation context parameter that limits the maximum number

of simulations that can be running at the same time.

1 2 3 4
5 6 7 8
9 10 11 12

Restart latency (𝛼𝑠𝑖𝑚) Output step time (𝜏𝑠𝑖𝑚) Analysis tool accesses

SIM #1
SIM #2
SIM #3

1 2 3 754 6 8 9 10 11 12
Matching analysis bandwidth

13 14 15 16
17 18 19 20

SIM #4
SIM #5

13 14 15 16 17 18 19 20

time

25 26 27 28SIM #6
21 22 23 24SIM #5

21 22 23 24 25...

SIM #8
SIM #7

Fig. 9: Hiding restart latency and matching forward analysis

bandwidth.

2) Prefetching backward-in-time accesses: Backward-in-

time accesses are common in root-cause analysis. They are

conceptually similar to forward-in-time but require a different

prefetching scheme because the simulation itself is always

forward-in-time. Because of this, the analysis cannot operate in

tandem with the simulation (like in-situ): if di is missing,

the analysis has to wait until the re-simulation produces

the output steps from R(di) to di, like in forward-in-time

trajectories. However, since the analysis goes backward, now it

can find other output steps produced in that interval already in

cache. The output steps produced after di (i.e., from di+1 to

R(di +∆r)) are not useful to the analysis. Hence, prefetching

25 26 27

Restart latency (𝛼𝑠𝑖𝑚) Output step time (𝜏𝑠𝑖𝑚) Analysis tool accesses

SIM #1
28 2223 21 20 19 18 17 16 15 14 13

17 18 19 20SIM #3
13 14 15 16SIM #4

27 26 25
28 21 22 23 24SIM #2 9 10 11 12SIM #5

time

24 ϭϮ ϭϭ…

5 6 7 8SIM #6
1 2 3 4SIM #7

Fig. 10: Hiding restart latency and matching backward analysis

bandwidth.

for backward-in-time analysis requires to mask not only the

restart latency but also (part of) the re-simulation itself.
Let us consider the case where the analysis is slower than the

simulation:
τk
cli

k
> τsim. To hide the re-simulation time, we have

to simulate enough output steps such that the time the analysis

needs to consume them is higher than the cost of the next

simulation: n
k
· τkcli ≥ αsim + n · τsim. Hence, the minimum

number of output steps to be simulated is: n = k·αsim

τk
cli

−k·τsim
,

rounded up to the next restart step.
If the analysis is faster than the simulation, then we have

again two strategies: increase the simulation parallelism or run

multiple simulations in parallel. The ideal number of parallel

re-simulation we need to match a backward-in-time analysis

bandwidth is different from the forward-in-time case. Here,

once a missing output step is produced, the analysis can find

in cache all the next output steps on its trajectory up to the

restart step used for the last re-simulation. Hence, we want

to produce a number of output steps such that the time the

analysis takes to process them (at its full speed) is greater than

the time to prefetch a new set of output steps:

s ·
n

k
· τkcli ≥ αsim + n · τsim

hence, the minimum number of parallel simulations is:

s =
k · αsim

n · τkcli
+

k · τsim
τkcli

This introduces a trade-off between s and n: the higher

the multiple parallel simulations (s). the lower the number of

output steps per simulation (n) that are needed to match the

backward-in-time analysis bandwidth. However, reducing n by

using more computing resources in parallel allows us to reduce

the time needed to reach the full bandwidth. Figure 10 shows a

backward analysis with αsim = 2, τsim = 1, τkcli = 1/2, k = 1,

and n = 4. In this case, the minimum number of parallel

resimulation needed to match the analysis bandwidth is s = 3.

The example shows how a new batch of re-simulations (SIM

#5,6,7) can be overlapped to the analysis of the output steps

produced by the previous one (SIM #2,3,4).

C. Prefetching Effectiveness

The discussed prefetching strategies aim to hide the restart

overhead and increase the overall simulation bandwidth. How-

ever, to avoid a too aggressive prefetching that would lead to

cache pollution, SimFS tries to kill simulations prefetched

by analyses that terminated or changed analysis direction

(e.g., from forward to backward or jumped to a different

timespan). A simulation can be killed only if there are no other

analyses waiting for the files that are going to be produced

by it. Additionally, SimFS tries to detect cache pollution by

monitoring the accesses to the prefetched output steps: if an

analysis accesses an output step that has been prefetched by

the prefetch agent associated with it and finds it missing, this

means that this file has been produced and evicted before being

accessed: this is considered a cache pollution signal and leads

to the reset of all the active prefetch agents.
1) Prefetching with high restart latencies: Before producing

their effects (i.e., masking the restart latency and matching the

analysis bandwidth) the prefetching strategies need a warm-up

period of time. The warm-up length depends, among the others,

on the restart latency, which includes the system overheads

for restarting re-simulations (e.g., queuing time in a batch

system). The overheads can vary according with the system

where SimFS is deployed (e.g., cloud or HPC systems). We

now quantify this warm-up time and discuss its effects on the

prefetching effectiveness. For simplicity, we assume an empty

SimFS cache, and a single running analysis accessing m output

steps with stride k = 1.

1 2 3 4

5 6 7 8

13 14 16 17

Restart latency (𝛼𝑠𝑖𝑚) Output step time (𝜏𝑠𝑖𝑚) Analysis tool accesses

SIM #1
1 2 3 754 6 8 9 10 11 12

Matching analysis bandwidth

ϭϯ ϭϰ ϭϱ ϭϲ …

ϭϳ ϭϴ ϭϵ ϮϬ Ϯϭ ϮϮ Ϯϯ Ϯϰ Ϯϱ …

time

SIM #2
SIM #3

9 10 11 12

18 19 20 21
SIM #4
SIM #5

22

30

23

31

…
...

Fig. 11: Prefetching with high restart latencies.

a) Forward-in-time prefetching: Let us define αi
sim as the

restart latency experienced by the i-th re-simulation. We ini-

tially assume a constant restart latency: α = αi
sim = αj

sim ∀i, j.

Figure 11 shows an example of how the restart latency

can impact the prefetching effectiveness. When the analysis

accesses the first missing output step, a full restart latency

is paid. After this, the re-simulation starts producing output

steps every τsim time units. Recall that, at time of the first

miss, SimFS has no information about the analysis access

pattern, hence a single restart interval is simulated (i.e., ∆r
∆d

output steps). Once the next two output step are requested by

the analysis, SimFS can determine the analysis direction and

prefetch a new set of s re-simulations. The maximum part of

restart latency of these re-simulations that can be masked is
∆r
∆d

· τsim time units (assuming the simulation is slower than

the analysis: τsim > τkcli). Each of these re-simulations produce

a number n of output steps that will be enough to cover the

next restart latencies (see Sec. IV-B1a). The effects of the

prefetching impact the analysis performance only after the

second simulation finishes (i.e., SIM #2). At this time, the

analysis will need the output steps produced by the third re-

simulation, that will now be in cache.
Summing up, the warm-up time, T fw

pre, can be defined as:

T fw
pre = αsim+max(2·τsim+αsim,

∆r
∆d

·τsim)+n·τsim. Assuming

τsim ≪ αsim and ∆r
∆d

· τsim < αsim, this can be approximated

with: T fw
pre ≈ 2 · αsim + n · τsim. After the prefetching warm-

up, SimFS will be able to always mask the restart latencies,

producing output steps every τsim

s
time units on average. Hence,

the analysis time can be defined as (assuming m > n):

T fw
cli ≈ T fw

pre+(m−n) ·
τsim

s
= 2 ·α+n · τsim +(m−n) ·

τsim

s
.

This shows an Amdahl’s law effect on the prefetching strategies

scalability: the higher the restart latency, the longer the

prefetching warm-up (where no speedup can be seen). This

can be compensated by longer analysis (i.e., large m), that can

make the sequential part negligible.

b) Backward-in-time prefetching: Backward-in-time anal-

ysis experience higher prefetching warm-up times. As for

the forward-in-time case, a full restart latency is paid when

the first missing access is made by the analysis (namely di).
Recall that the restarted simulation can only go forward in

time: The second access (which will determine the analysis

direction) can be made only after the first Di = di −R(di)
output steps are produced and the first missing output step is

analyzed (taking τkcli time units). After the analysis direction

is determined, SimFS can start prefetching re-simulations

as described in Sec. IV-B2. The effects of the prefetching

on the analysis time will be visible only after the first

batch of prefetched simulations will be complete. We can

define the warm-up time for backward-in-time prefetching as:

T bw
pre = αsim+Di ·τsim+τkcli+max(τkcli ·(Di−1), αsim+n·τsim).

Assuming an analysis faster than the simulation (i.e., τsim > τkcli)

and being n ≥ ∆r
∆d

≥ Di, we can approximate it as

T bw
pre ≈ 2 · αsim + Di · τsim + n · τsim. Differently from the

forward-in-time case, here the prefetching warm-up accounts

for the Di value, which depends on where the analysis starts

(i.e., di) and the restart interval.

c) Non-constant restart latencies: If the restart latencies

are not constant (e.g., high variability of the jobs queueing

times), SimFS may not be able to always mask the restart

latencies. To account for this case, SimFS keeps track of the

restart latencies using an exponential moving average, so to

consider only the most recent observation (the smoothing factor

is a parameter defined in the simulation context). Whenever

the restart latency is underestimated, the analysis is delayed

by this estimation error. If we define A as the sequence of

re-simulation serving the requests of an analysis and ᾱi
sim as

the restart latency estimation for the i-th re-simulation, we can

quantify this additional delay as:
∑

i∈A max(0, αi
sim − ᾱi

sim).

V. COST ANALYSIS

We now introduce cost models for the different simulation

data analysis solutions: on-disk, in-situ, and SimFS. We use

these models for studying the cost-effectiveness of the different

solutions. We assume that the data needs to be made available

for analyses for a fixed period of time, that we call simulation

data availability period ∆t. During this period of time, the

data is either stored on disk in the on-disk method; simulations

are started for each analysis in in-situ; or data is virtualized via

SimFS. We assume that the simulation cost does not include

the restart latency αsim, that is the non-billed waiting time

before the simulation job actually starts running (e.g., VM

deploying time or job queueing time in a batch system).

We identify two main costs: the storage cs and computation

cc costs. The first accounts for the monthly storage of one

GiB of data ($/GiB/month); the second for one hour of

computation on a single compute node ($/node/hour). The

output and restart steps sizes (GiB) are assumed to be constant:

they are represented with so and sr, respectively. The number

of output steps and restart steps produced by a simulation of

n timesteps are no =
⌊

n
∆d

⌋

and nr =
⌊

n
∆r

⌋

, respectively.

Symbol Definition

∆t Simulation data availability period
cc Compute cost ($/node/hour)
cs Storage cost ($/GiB/month)
n Number of timesteps
no Number of output steps
nr Number of restart steps
so Output step size (GiB)
sr Restart step size (GiB)
P Number of compute nodes used to run re-simulations

TABLE II: List of symbols introduced by the cost models

We now define the costs of simulating and storing a number

of output steps, that are the building blocks of the cost models

discussed below. Simulating O output steps using P compute

nodes has cost Csim(O,P) = O · τsim(P) · P · cc: This is

the time to produce a single output steps using P nodes

times the number of output steps to produce, times the hourly

compute cost. Storing F files of size s for ∆t months has cost

Cstore(F,m,∆t) = F ·m ·∆t · cs: this is cost of storing 1GiB
of data for ∆t months times the file size (in GiB). Table II

summarizes the symbols used by this cost model.

On-disk: This solution executes the full simulation and

stores the output for the entire data availability period. This

cost is independent of the analyses that are performed on the

simulation data. It can be expressed as the cost of the initial

simulation plus the storage of no output steps for ∆t months:

Con-disk(∆t) = Csim(no, N) + Cstore(no, so,∆t)

SimFS Let us define the sequence of output steps that are

accessed by all the analyses performed during ∆t as γ∆t and

let γ∆t(j) be the subsequence of accesses made by an analysis

j. The number of output steps resimulated by SimFS when

the sequence γ∆t is observed is V (γ∆t). This number depends

on the following factors: the restart interval ∆r; the number

and the type of analyses performed; the cache size M and its

replacement policy; the employed prefetching strategies. We

express the cost of enabling analysis of simulation output over

∆t months with SimFS as:

CSimFS(∆t) = Csim(no, P) + Cstore(nr, sr,∆t)+

Cstore(M, so,∆t) + Csim(V (γ∆t), P)

This cost accounts for: the initial simulation (that produces

the restart steps); the storing the restart steps and the cached

output steps; and the re-simulation of the missing output steps.

In-situ In-situ always couples a simulation with a running

analysis. Let us assume an analysis j accessing |γ∆t(j)| output

steps and starting from the output step with index ij in a

forward in time direction. With in-situ, this analysis requires

a simulation from output step d0 until dij+|γ∆t(j)|. Note that

the output steps d0 . . . dij−1 are not useful to the analysis.

Enabling in-situ analysis for ∆t months has cost:

Cin-situ(∆t) =

z
∑

j=1

Csim(ij + |γ∆t(j)|, P)

where z is the number of analyses performed during ∆t.

A. Cost-Effectiveness

We now use the cost models developed in Sec. V to compare

the costs of the standard analysis solution against SimFS.

We calibrate the cost models on the Microsoft Azure cloud

platform because the offered node types (NVIDIA Tesla

P100 GPUs [15]) are close to our experimental settings: the

compute cost is cc = 2.07$/node/hour. This is the hourly

cost of a NCv2 virtual machine [16]; the storage cost is

cs = 0.06$/GiB/month, which is the monthly cost of storing

1GiB of data in an Azure File share [17]. While cheaper and

slower cloud storage solutions are available (e.g., Azure Blob

Storage, Amazon Glacier), we choose to calibrate the model

on a solution providing file abstraction, such that it can be

directly targeted by I/O libraries (e.g., HDF5).

The performance model is calibrated on a COSMO simula-

tion executing on Piz Daint, a Cray XC50 machine running at

CSCS. COSMO is a climate model for long-term simulations

(see Sec. VI). The simulation advances with 20s timesteps

and outputs one output step every ∆d = 15 timesteps. The

simulation is executed over P = 100 compute nodes equipped

with an NVIDIA Tesla P100 GPUs, producing one output step

every 20 seconds: τsim(100) = 20s. The output step size is

so = 6 GiB, while the restart step size is sr = 36 GiB. The

total data volume produced by this configuration is 50 TiB.

We use a number of synthetic analysis tools, accessing a

sequence of output steps with a forward-in-time trajectory. Each

of these sequences starts at a randomly selected output step,

so that analyses access different subsets of the simulation

output steps. These analysis can overlap in time and this

overlap can affect the state of the SimFS cache. We express the

analysis overlap as the percentage of accesses that an analysis

performs without being interleaved with others’ execution. If

these sequences are known in advance and they can be batched,

then a single in-situ simulation is always the most cost-effective

solution. Instead, SimFS aims at a different scenario, where

the analyses are not known in advance and they need to be

served in an on-demand fashion.

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ● ●

∆r = 4h ∆r = 8h ∆r = 16h

6m1y 2y 3y 4y 5y 6m1y 2y 3y 4y 5y 6m1y 2y 3y 4y 5y

50

100

200

400

Availability Period

C
o
s
t
(x

1
0
0
0
$
)

SimFS (25%)
SimFS (50%)

in-situ
on-disk

Fig. 12: Data availability cost for different availability periods.

Simulation Data Availability Period Figure 1 shows the

cost of supporting 100 forward-in-time analyses executed over

different ∆ts (x-axis) with a 50% overlap. SimFS is configured

with a storage cache of size equal to the 25% of the total

simulation data volume and a restart interval of ∆r = 8h The

in-situ cost does not depend on ∆t since no data needs to

be permanently stored. On the contrary, the on-disk solution

stores all the simulation data, avoiding re-simulations. SimFS

combines the two approaches: while it requires less storage

than on-disk, it needs to pay the cost of re-simulating the

missing files. The cost-effectiveness of SimFS depends on the

total amount of analyses and ∆t: if the data is analyzed by

many applications in a short availability period, then on-disk

is a better because, once the data is stored, the analysis is

virtually free. Otherwise, if the same analyses are spread over

a very long time period, then in-situ is more cost-effective

because no (time-dependent) storage cost is paid. SimFS is

designed to be cost-effective for scenarios in between these

two extremes: it does not store the full simulation data, saving

on the storage cost, but uses the storage to cache simulation

data, saving on the compute cost for recurrent analysis.
Figure 12 shows this experiment varying the SimFS cache

size (25% and 50%) and ∆r. While larger restart intervals

require less storage for the restart files, they lead to an increase

of the SimFS cost for short ∆ts: in these cases, the cost is

sensible to the re-simulations and larger ∆r can lead to more

capacity misses (it acts as cache block size, see Sec. II-A).

●

●
●●●

●

●
●

●●

●

●

●

●●

∆r = 4h ∆r = 8h ∆r = 16h

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

100

250

600

Analyses overlap (%)

C
o
s
t
(x

1
0
0
0
$
)

in-situ

on-disk

SimFS (25%)

SimFS (50%)

Fig. 13: Data availability cost for different analyses overlaps.

Analyses Execution Overlap Figure 13 shows the same

experiment but varying the analyses overlaps and fixing

∆t = 2y (other settings are unchanged). Higher overlap lead

to more interleaved analyses: since they access different output

steps, this leads to a lower temporal locality, hence to an

increased number of misses. This is amplified when using larger

∆r since this can increase the number of capacity misses.

●
● ● ● ● ● ●

● ● ● ●
● ●

● ●
● ●

●

∆r = 4h ∆r = 8h ∆r = 16h

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

10

40

120

300

Number of analyses

C
o
s
t
(x

1
0
0
0
$
)

in-situ
on-disk

SimFS (25%)
SimFS (50%)

Fig. 14: Data availability cost for different numbers of analyses.

Total Number of Analyses Figure 14 shows the cost when

varying the number of analyses executing during ∆t. We fix

the availability period to ∆t = 2y and the analyses overlap at

50%. Independently from the restart interval and cache size,

SimFS cannot beat in-situ when the number of analyses is

less than 20: the cost of the initial simulation plus the storage

of restarts and cached output steps is higher than the cost

of coupling each analysis with its own simulation. However,

when increasing the number of analyses, in-situ becomes more

expensive since no data is shared among the different analyses.

B. Discussion

These cost models allow to estimate the data availability

costs for both HPC and cloud infrastructures: Figure 15a is a

heatmap showing the ratio between the minimum cost between

ondisk and in-situ and the SimFS cost, for different storage

and compute costs configurations (i.e., the darker the color, the

higher the ratio). We use the same scenario and parameters of

Sec. V-A, focusing on the case with 100 analyses, 50% overlap,

3y of data availability, and the SimFS cache set up to the 25%

of the total simulation data volume. On the heatmap we show

two real-world datapoints: the Microsoft Azure configuration

of Sec. V-A, and the Piz Daint compute and storage costs. The

Piz Daint costs are derived from the CSCS cost catalog [18].

To determine the cost-effectiveness of SimFS w.r.t. other

solutions, one needs to know, among the others, the type of

analyses performed during a given data availability period.

While this is a limiting factor of this cost model, we plan

to use online information to dynamically adapt the SimFS

configuration (e.g., cache size, restart interval) in a future

work. Figure 15b and Figure 15c show the potential effects

of these changes (same configuration of above). They report

the re-simulation cost and time as function of the storage

space reserved for restart files and for different cache sizes,

respectively. They show that (1) the restart interval and the

cache size influence cost and compute time, and (2) the reduced

compute time due to having a bigger cache might not be

justified by the higher cost: e.g., for ∆r = 8, a 50% cache

size reduces the compute time of 20% but increases the cost

of 25%.

●●

●

●

1915.84

14.26

13.46

31.68
28.51

26.93

26.14

70

80

90

100

110

120

6.33 [4]3.16 [8]1.58 [16]0.79 [32] 6.33 [4]3.16 [8]1.58 [16]0.79 [32]

Cache 25%

Cache 50%

on-disk

Total Storage Space
(cache + restart files)

●

●

●

●

●

●

●

●

19

15.84

14.26

13.46

31.68

28.51

26.93

26.14

100

150

200

250

300

6.33 [4]3.16 [8]1.58 [16]0.79 [32] 6.33 [4]3.16 [8]1.58 [16]0.79 [32]

Cache 25%

Cache 50%

Total Storage Space
(cache + restart files)

C
o
s
t

(x
1

0
0

0
$

)

C
o
m

p
u
te

 T
im

e
 (

h
o
u
rs

)

∆Restarts Space (TiB) [r] ∆Restarts Space (TiB) [r]

●●

●●

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.2 0.3
Storage Cost

C
o

m
p

u
te

 C
o

s
t

0.60 2.65Cost Ratio

Piz Daint

in-situ is cheaper

on-disk is cheaper

Microsoft Azure

Fig. 15: (a) SimFS cost-effectiveness heatmap; (b) Cost over

space; (c) Re-simulation time vs Space.

VI. EVALUATION

The benchmarks presented in this section are executed on Piz

Daint, a Cray XC50 system. The compute nodes are equipped

with two Intel Xeon E5-2695 @ 2.10GHz with eighteen cores

each. The system is interconnected with Cray’s Aries network

and uses Lustre [19] as parallel file system. The measurements

are taken by DVLib via the LibLSB library [20].
COSMO is a non-hydrostatic local area atmospheric model

used for both operational numerical weather prediction and

long-term climate simulation [21, 22]. In this benchmark we

study the strong scalability of the system composed by a

virtualized COSMO simulation, SimFS, and a (sequential)

analysis. The analysis computes mean and variance of a 1-D

field of the simulation output steps. The simulation proceeds

in one-minute timesteps, producing one output step every five

minutes (∆d = 5) and one restart file every hour (∆r = 60).
The simulation context is configured to use the optimal

number of compute nodes (P = 100) as default, hence the

prefetching strategy (2) (see Sec. IV-B) is applied. Let us define

smax as the maximum number of re-simulations that can be run

at the same time by SimFS. This parameter limits the amount

of computing resources that SimFS can employ but it also

limits the effectiveness of the prefetching strategies: once smax

simulations are running, SimFS will not be able to prefetch

new ones to mask their restart latencies, delaying the analysis.
Figure 16 shows the analysis completion time as function

of smax. We report the completion times of a forward and

backward analysis accessing the same output steps but in

different order. For comparison, we also report the time of a

full forward simulation, that is the time needed by a single

●

●

● ●

50

100

150

200

250

300

R
u

n
n

in
g

 T
im

e
 (

s
)

Forward

Backward

Full Forward Resimulation

200

400

Prefetching not accessed data

1600

2 4 8 16

800

smaxMax # of parallel re-simulations ()

Fig. 16: Strong scalability of analyses accessing virtualized

COSMO data. The data points are annotated with the number

of used compute nodes.

simulation to produce the same sequence of output steps. The

analysis tool completion time scales up to a factor of 2.4x w.r.t.

the full forward re-simulation when smax = 8. The backward

simulation shows a slightly worse scalability (up to a factor of

1.6x): this is because the first access of this analysis is served

after the simulation of an entire restart interval, delaying the

prefetching activity (see Figure 10). At smax = 16 prefetching

does not bring any further benefit because the prefetched

simulations produce output steps that are not accessed by

the analysis, which terminates after analyzing the first 6 hours

of the simulated data (i.e., 72 output steps).

●
●

●

●
●

●
● ●

● ● ●

●
●

●
● ●

● ● ● ● ●
●

● ●

m=72 (6h) m=288 (24h) m=1152 (96h)

0 200 400 600 0 200 400 600 0 200 400 600

128

512

2048

αsim

R
u
n
n
in

g
 T

im
e
 (

s
)

Tpre

TlowerSimFS

Tsingle

(seconds)

Fig. 17: Prefetching COSMO simulations under different restart

latencies and analysis lengths.

With these settings, the simulation produces an output

step every τsim = 3s on average and has restart latency

of αsim = 13s. The reported αsim does not include the re-

simulation jobs queuing time. To study the effects the re-

simulation jobs queuing times on the prefetching effectiveness

we simulate the analysis running time over different restart

latencies (now including the job queueing time) and analysis

lengths (m). We use a synthetic simulator that can be configured

to produce output steps at a given rate (i.e., 1/τsim) and after

a given restart latency. We use the same τsim of the COSMO

simulation described above, but we vary the restart latency in

order to simulate different job queuing times. Figure 17 shows

the results for smax = 8. As discussed in Sec. IV-C1, when the

restart latency is much higher than the time needed to produce

the output steps accessed by the analysis, the analysis running

time converges to the prefetching warm-up time and no benefits

arise from the prefetching of multiple simulations in parallel

(i.e., strategy (2)). The warm-up time is a factor of two higher

than Tsingle, which is the time of a single simulation serving all

the analysis accesses: Tsingle = αsim +m · τsim. This bounds the

overhead that SimFS can introduce w.r.t. an in-situ analysis. We

also report a simple lower bound for this prefetching strategy,

Tlower, that is the given by the restart latency plus the time of

serving all the output steps requested by the analysis using

smax simulations in parallel: Tlower = αsim +m · τsim

smax
.

FLASH is a multiphysics simulation framework [23]. In

this experiment we virtualize a Sedov simulation [24] which

involves the evolution of a blast wave from an initial pressure

perturbation in an otherwise homogeneous medium [25]. The

simulation is configured to have 323 cells per block (one

block per core). We simulate the first second of the blast

wave evolution. The simulation proceeds in 0.005s timesteps

and produces one output step at each timestep (∆d = 1) and

one restart file every 0.1s (∆r = 20). The analysis computes

mean and variance of the velocity field. With these settings,

we measure τsim = 14s and αsim = 7s (not including the

re-simulation jobs queuing time).

●

● ●
●500

750

1000

1250

1500

R
u

n
n

in
g

 T
im

e
 (

s
)

Forward

Backward

Full Forward Resimulation

2 4 8 16

smaxMax # of parallel re-simulations ()

54

108 216
432

Fig. 18: Strong scalability of analyses accessing virtualized

FLASH data. The data points are annotated with the number

of used compute nodes.

Figure 18 shows the analysis time over of smax: it scales

up to a factor of 3x when smax = 16. Differently from the

COSMO case, here forward and backward analysis show the

same behavior: This is due to the higher restart steps frequency

of this configuration that reduces the time needed to complete

the resimulation serving the first miss.

Figure 19 shows the analysis running time for different restart

latencies and analysis lengths, fixing smax = 8. We configure

the synthetic simulator to run as the FLASH configuration

described above. Differently from the COSMO study (i.e.,

Figure 17), here the prefetching strategy is more effective: this

is due to the number of output steps analyzed and the higher

τsim, that better composate the prefetching warm-up time Tpre.

This figure shows also how, in some cases, increasing the restart

latency leads to a reduction of the analysis running time (e.g.,

tile with m = 400, between αsim = 100s and αsim = 500s).

This is explained by the fact that, due to the higher restart

latency, SimFS determines a longer re-simulation length n (see

Sec. IV-B1a), starting the simulation of the next smax ·n output

steps at each prefetch step. The new block of simulations may

now simulate enough output steps to satisfy the remaining

analysis, avoiding the analysis to pay a new restart latency

caused by the smax parameter.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ●

●
●

m=200 (1s) m=400 (2s) m=600 (3s)

0 200 400 600 0 200 400 600 0 200 400 600

1024

4096

R
u
n
n
in

g
 T

im
e
 (

s
)

Tsingle

Tpre

Tlower

SimFS

αsim (seconds)

Fig. 19: Prefetching FLASH simulations under different restart

latencies and analysis lengths.

VII. RELATED WORK

In-situ and on-disk are widely used solutions for simulation

data analysis. In-situ avoids to store the data on disk by

performing part of the analysis (or filtering) directly at the

simulation site [26, 27], or during the data staging phase

(i.e., in transit) [28], or at the analysis tool site bypassing

the parallel file system (i.e., loosely coupled in-situ) [29]. In

all the cases, the analysis is performed as the data is simulated

and independent analysis applications have to run in tandem

with their own simulation. On-disk analysis is orthogonal to

in-situ: here the analysis accesses the data that is stored on disk,

without dealing with the simulation process. SimFS enables a

tradeoff between these two approaches, which are at the two

ends of the storage requirements spectrum. In fact, virtualizing

the simulation output allows to adjust the storage requirements

while offering to the analysis the same file abstraction of the

on-disk solution.

SimFS implements cache replacement strategies that are

based on data locality or data access cost. Cost-based schemes

are well studied in literature: Park et al. [30] consider different

costs for writing back dirty entries to flash memory disks

and prioritize the eviction of the (cheaper) non-dirty pages.

However, this binary cost approach is not suitable in our context

where the output steps have costs linear in their distance from

the previous closest restart file. Jeong et al. [14, 31] propose a

collection of cost-aware algorithms for NUMA architectures

with variable costs. Our cost-based replacement schemes build

on top of their algorithms (i.e., BCL and DCL).

VIII. SUMMARY

We argue that storing the full simulation output is not cost-

effective because the ever growing availability of computing

power enables multi-petabyte simulation runs. SimFS virtual-

izes the simulation data: the data is only partially stored and

accesses to missing data are served by restarting simulations.

The analysis applications can be transparently interfaced to

SimFS or made virtualization-aware by using the SimFS APIs.

All in all, SimFS introduces a new simulation data analysis

paradigm that relaxes the storage requirements and offers

a viable path towards exa-scale simulations. SimFS can be

downloaded at:

https://github.com/spcl/SimFS

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science

Foundation under Sinergia grant CRSII2 154486/1 and by a

grant from the Swiss National Supercomputing Centre and

PRACE. We acknowledge ECMWF for providing the access

traces dataset. We thank Christoph Schär, David Leutwyler, and

all the members of the crCLIM project for the great discussions.

REFERENCES

[1] M. Grawinkel et al., “Analysis of the ECMWF Storage Landscape,” in
Proc. of the 13th USENIX Conf. on File and Storage Technologies,
ser. FAST’15. Berkeley, CA, USA: USENIX Association, 2015. [Online].
Available: http://dl.acm.org/citation.cfm?id=2750482.2750484

[2] D. Potter et al., “PKDGRAV3: Beyond Trillion Particle Cosmological Simula-
tions for the Next Era of Galaxy Surveys,” arXiv preprint arXiv:1609.08621,
2016.

[3] M. Bernyk et al., “The theoretical astrophysical observatory: Cloud-based
mock galaxy catalogs,” The Astr. Journal Supplement Series, vol. 223, no. 1,
p. 9, 2016.

[4] A. Ragagnin et al., “An online theoretical virtual observatory for hydrodynam-
ical, cosmological simulations,” arXiv preprint arXiv:1612.06380, 2016.

[5] E. Winsberg, Science in the age of computer simulation. University of
Chicago Press, 2010.

[6] M. Folk et al., “HDF5: A file format and I/O library for high performance
computing applications,” in Proc. of Supercomputing, vol. 99, 1999.

[7] R. K. Rew and G. P. Davis, “The unidata netCDF: Software for scientific data
access,” in Sixth Int. Conf. on Interactive Information and Processing Systems
for Meteorology, Oceanography, and Hydrology, 1990.

[8] J. F. Lofstead et al., “Flexible IO and integration for scientific codes through
the adaptable IO system (ADIOS),” in Proc. of the 6th Int. Workshop on
Challenges of Large Applications in Distributed Environments. ACM, 2008.

[9] A. Arteaga, O. Fuhrer, and T. Hoefler, “Designing Bit-Reproducible Portable
High-Performance Applications,” in Proc. of the 28th IEEE Int. Parallel and
Distributed Processing Symp. (IPDPS). IEEE Computer Society, Apr. 2014.

[10] I. Müller et al., “Reproducible Floating-Point Aggregation in RDBMSs,” arXiv
preprint arXiv:1802.09883, 2018.

[11] M. D. Hill, “21st Century Computer Architecture,” SIGPLAN Not., Feb. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2692916.2558890

[12] S. Jiang and X. Zhang, “LIRS: an efficient low inter-reference recency set re-
placement policy to improve buffer cache performance,” ACM SIGMETRICS
Performance Evaluation Review, 2002.

[13] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low Overhead Replace-
ment Cache,” in FAST, 2003.

[14] J. Jeong and M. Dubois, “Cache replacement algorithms with nonuniform
miss costs,” IEEE Transactions on Computers, vol. 55, no. 4, pp. 353–365,
2006.

[15] “Microsoft Azure,” https://azure.microsoft.com, 2018, accessed: 2018/04.
[16] “Microsoft Azure VM Pricing,” https://azure.microsoft.com/en-us/pricing/

details/virtual-machines/linux/, 2018, accessed: 2018/04.
[17] “Microsoft Azure Storage Pricing,” https://azure.microsoft.com/en-us/pricing/

details/storage/files/, 2018, accessed: 2018/04.
[18] “CSCS2Go,” https://2go.cscs.ch/home/, 2018, accessed: 2018/12.
[19] P. J. Braam et al., “The Lustre storage architecture,” 2004.
[20] T. Hoefler and R. Belli, “Scientific Benchmarking of Parallel Computing

Systems.” ACM, Nov. 2015, pp. 73:1–73:12, proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC15).

[21] Consortium for small-scale modeling, “Web page,” 1998, accessed: 2017/03.
[Online]. Available: http://www.cosmo-model.org

[22] O. Fuhrer et al., “Near-global climate simulation at 1km resolution: estab-
lishing a performance baseline on 4888 gpus with cosmo 5.0,” Geoscientific
Model Development Discussions, 2017.

[23] B. Fryxell et al., “FLASH: An Adaptive Mesh Hydrodynamics Code
for Modeling Astrophysical Thermonuclear Flashes,” The Astr. Journal
Supplement Series, vol. 131, no. 1, p. 273, 2000. [Online]. Available:
http://stacks.iop.org/0067-0049/131/i=1/a=273

[24] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 1959.
[25] F. C. for Computational Science University of Chicago, “Flash user’s

guide version 4.4,” 2016, accessed: 2017-03-17. [Online]. Available:
http://flash.uchicago.edu/site/flashcode/user support/flash4 ug 4p4.pdf

[26] N. Richart et al., “Toward a computational steering environment for legacy
coupled simulations,” in Sixth Int. Symp. on Par. and Distr. Comp., 2007.
(ISPDC’07). IEEE, 2007.

[27] F. Zhang et al., “Enabling in-situ execution of coupled scientific workflow
on multi-core platform,” in 26th Int. Par. & Distr. Processing Symp. (IPDPS).
IEEE, 2012.

[28] J. C. Bennett et al., “Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis,” in Int. Conf. for High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2012. IEEE, 2012, pp. 1–9.

[29] H. Yu et al., “In situ visualization for large-scale combustion simulations,”
IEEE computer graphics and applications, vol. 30, no. 3, 2010.

[30] S.-y. Park et al., “CFLRU: a replacement algorithm for flash memory,” in
Proc. of the 2006 Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems. ACM, 2006.

[31] J. Jeong and M. Dubois, “Cost-sensitive cache replacement algorithms,” in
Proc. The Ninth Int. Symp. on High Performance Architecture. IEEE, 2003.

