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Abstract
Communication overhead is one of the major obstacles to
train large deep learning models at scale. Gradient sparsifica-
tion is a promising technique to reduce the communication
volume. However, it is very challenging to obtain real perfor-
mance improvement because of (1) the difficulty of achieving
an scalable and efficient sparse allreduce algorithm and (2)
the sparsification overhead. This paper proposes O𝑘-Top𝑘 , a
scheme for distributed training with sparse gradients. O𝑘-
Top𝑘 integrates a novel sparse allreduce algorithm (less than
6𝑘 communication volume which is asymptotically optimal)
with the decentralized parallel Stochastic Gradient Descent
(SGD) optimizer, and its convergence is proved. To reduce
the sparsification overhead, O𝑘-Top𝑘 efficiently selects the
top-𝑘 gradient values according to an estimated threshold.
Evaluations are conducted on the Piz Daint supercomputer
with neural network models from different deep learning
domains. Empirical results show that O𝑘-Top𝑘 achieves sim-
ilar model accuracy to dense allreduce. Compared with the
optimized dense and the state-of-the-art sparse allreduces,
O𝑘-Top𝑘 is more scalable and significantly improves training
throughput (e.g., 3.29x-12.95x improvement for BERT on 256
GPUs).

CCS Concepts: • Theory of computation→ Parallel al-
gorithms; • Computing methodologies → Neural net-
works.

Keywords: distributed deep learning, allreduce, gradient
sparsification, data parallelism

1 Introduction
Training deep learning models is a major workload on large-
scale computing systems. While such training may be paral-
lelized in many ways [7], the dominant and simplest form
is data parallelism. In data-parallel training, the model is
replicated across different compute nodes. After the com-
putation of local gradient on each process is finished, the
distributed gradients are accumulated across all processes,
usually using an allreduce [12] operation. However, not all
dimensions are equally important and the communication
of the distributed gradients can be sparsified significantly,
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introducing up to 99.9% zero values without significant loss
of accuracy. Only the nonzero values of the distributed gra-
dients are accumulated across all processes. See [22] for an
overview of gradient and other sparsification approaches in
deep learning.

However, sparse reductions suffer from scalability issues.
Specifically, the communication volume of the existing sparse
reduction algorithms grows with the number of processes
𝑃 . Taking the allgather-based sparse reduction [36, 41, 47]
as an example, its communication volume is proportional
to 𝑃 , which eventually surpasses the dense allreduce as 𝑃
increases. Other more complex algorithms [36] suffer from
significant fill-in during the reduction, which also leads to a
quick increase of the data volume as 𝑃 grows, and may de-
grade to dense representations on the fly. For example, let us
assume the model has 1 million weights and it is 99% sparse
at each node—thus, each node contributes its 10,000 largest
gradient values and their indexes to the calculation. Let us
now assume that the computation is distributed across 128
data-parallel nodes and the reduction uses a dissemination
algorithm [20, 28] with 7 stages. In stage one, each process
communicates its 10,000 values to be summed up. Each pro-
cess now enters the next stage with up to 20,000 values.
Those again are summed up leading to up to 40,000 values
in stage 3 (if the value indexes do not overlap). The number
of values grows exponentially until the algorithm converges
after 7 stages with 640,000 values (nearly dense!). Even with
overlapping indexes, the fill-in will quickly diminish the ben-
efits of gradient sparsity in practice and lead to large and
suboptimal communication volumes [36].
We show how to solve or significantly alleviate the scal-

ability issues for large allreduce operations, leading to an
asymptotically optimal O(𝑘) sparse reduction algorithm. Our
intuitive and effective scheme, called O𝑘-Top𝑘 is easy to
implement and can be extended with several features to im-
prove its performance: (1) explicit sparsity load balancing can
distribute the communication and computation more evenly,
leading to higher performance; (2) a shifted schedule and
bucketing during the reduction phase avoids local hot-spots;
and (3) an efficient selection scheme for top-𝑘 values avoids
costly sorting of values leading to a significant speedup.

We implement O𝑘-Top𝑘 in PyTorch [33] and compare it to
four other sparse allreduce approaches. Specifically, O𝑘-Top𝑘
enables:
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• a novel sparse allreduce incurring less than 6𝑘 (asymp-
totically optimal) communication volume which is
more scalable than the existing algorithms,

• a parallel SGD optimizer using the proposed sparse
allreduce with high training speed and convergence
guarantee,

• an efficient and accurate top-𝑘 values prediction by re-
garding the gradient values (along the time dimension)
as a slowly changing stochastic process.

We study the parallel scalability and the convergence
of different neural networks, including image classification
(VGG-16 [44] on Cifar-10), speech recognition (LSTM [21]
on AN4), and natural language processing (BERT [13] on
Wikipedia), on the Piz Daint supercomputer with a Cray
Aries HPC network. Compared with the state-of-the-art ap-
proaches, O𝑘-Top𝑘 achieves the fastest time-to-solution (i.e.,
reaching the target accuracy/score using the shortest time for
full training), and significantly improves training throughput
(e.g., 3.29x-12.95x improvement for BERT on 256 GPUs). We
expect speedups to be even bigger in cloud environments
with commodity networks. The code of O𝑘-Top𝑘 is available:
https://github.com/Shigangli/Ok-Topk

2 Background and Related Work
Mini-batch stochastic gradient descent (SGD) [9] is the main-
stream method to train deep neural networks. Let 𝑏 be the
mini-batch size,𝑤𝑡 the neural network weights at iteration
𝑡 , (𝑥𝑖 , 𝑦𝑖 ) a sample in a mini-batch, and ℓ a loss function.
During training, it computes the loss in the forward pass for
each sample as ℓ (𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖 ), and then a stochastic gradient
in the backward pass as

𝐺𝑡 (𝑤𝑡 ) =
1
𝑏

𝑏∑︁
𝑖=0

∇ℓ (𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖 ).

The model is trained in iterations such that 𝑤𝑡+1 = 𝑤𝑡 −
𝛼𝐺𝑡 (𝑤𝑡 ), where 𝛼 is the learning rate.

To scale up the training process to parallel machines, data
parallelism [18, 25, 26, 38, 52, 53] is the common method, in
which the mini-batch is partitioned among 𝑃 workers and
each worker maintains a copy of the entire model. Gradi-
ent accumulation across 𝑃 workers is often implemented
using a standard dense allreduce [12], leading to about 2𝑛
communication volume where 𝑛 is the number of gradient
components (equal to the number of model parameters).
However, recent deep learning models [10, 13, 34, 35] scale
rapidly from millions to billions of parameters, and the pro-
portionally increasing overhead of dense allreduce becomes
the main bottleneck in data-parallel training.

Gradient sparsification [2, 4, 11, 16, 19, 36, 41–43, 50] is a
key approach to lower the communication volume. By top-𝑘
selection, i.e., only selecting the largest (in terms of the ab-
solute value) 𝑘 of 𝑛 components, the gradient becomes very

sparse (commonly around 99%). Sparse gradients are accu-
mulated across 𝑃 workers using a sparse allreduce. Then, the
accumulated sparse gradient is used in the Stochastic Gradi-
ent Descent (SGD) optimizer to update the model parameters,
which is called Top𝑘 SGD. The convergence of Top𝑘 SGD
has been theoretically and empirically proved [4, 36, 41].
However, the parallel scalablity of the existing sparse allre-
duce algorithms is limited, which makes it very difficult
to obtain real performance improvement, especially on the
machines (e.g., supercomputers) with high-performance in-
terconnected networks [5, 17, 37, 40].

Table 1. Communication overhead of dense and sparse allre-
duces (𝑛 is the number of gradient components and 𝑛 ≫ 𝑘)

Algorithms Bandwidth Latency

Dense [12] 2𝑛 𝑃−1
𝑃
𝛽 2(log 𝑃)𝛼

Top𝑘A [36, 47] 2𝑘(𝑃-1)𝛽 (log 𝑃)𝛼
Top𝑘DSA [36] [4𝑘 𝑃−1

𝑃
𝛽 , (2𝑘 +𝑛)𝑃−1

𝑃
𝛽]1 (𝑃 + 2 log 𝑃 )𝛼

gTop𝑘 [42] 4𝑘 (log 𝑃)𝛽 2(log 𝑃)𝛼
Gaussian𝑘 [41] 2𝑘(𝑃-1)𝛽 2(log 𝑃)𝛼
O𝑘-Top𝑘 [2𝑘 𝑃−1

𝑃
𝛽 , 6𝑘 𝑃−1

𝑃
𝛽]1 (2𝑃 +2 log 𝑃 )𝛼

1 Intervals.

Table 1 summarizes the existing dense and sparse allre-
duce approaches. We assume all sparse approaches use the
coordinate (COO) format to store the sparse gradient, which
consumes 2𝑘 storage, i.e., 𝑘 values plus 𝑘 indexes. There are
other sparse formats (see [22] for an overview), but format
selection for a given sparsity is not the topic of this work.
To model the communication overhead, we assume bidirec-
tional and direct point-to-point communication between the
compute nodes, and use the classic latency-bandwidth cost
model. The cost of sending a message of size 𝐿 is 𝛼 + 𝛽𝐿,
where 𝛼 is the latency and 𝛽 is the transfer time per word.

For dense allreduce, Rabenseifner’s algorithm [12] reaches
the lower bound [45] on the bandwidth term (i.e., about 2𝑛).
Top𝑘A represents the Allgather based approach [36, 42],
in which each worker gathers the sparse gradients across
𝑃 workers, and then the sparse reduction is conducted lo-
cally. Although Top𝑘A is easy to realize and does not suf-
fer from the fill-in problem, the bandwidth overhead of all-
gather is proportional to 𝑃 [12, 45] and thus not scalable.
Top𝑘DSA represents the Dynamic Sparse Allreduce used in
SparCML [36], which consists of reduce-scatter and allgather
(motivated by Rabenseifner’s algorithm) on the sparse gra-
dients. In the best case of that the indexes of top-𝑘 values
are fully overlapped across 𝑃 workers and the top-𝑘 values
are uniformly distributed in the gradient space, Top𝑘DSA
only incurs about 4𝑘 communication volume. However, the
best case is almost never encountered in the real world of
distributed training, and Top𝑘DSA usually suffers from the
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fill-in problem and switches to a dense allgather before spar-
sity cannot bring benefit, which incurs about 2𝑘+𝑛 commu-
nication volume. gTop𝑘 [42] implements the sparse allre-
duce using a reduction tree followed by a broadcast tree. To
solve the fill-in problem, gTop𝑘 hierarchically selects top-𝑘
values in each level of the reduction tree, which results in
4𝑘 log 𝑃 communication volume. Gaussian𝑘 [41] uses the
same sparse allreduce algorithm as Top𝑘A with a further
optimization for top-𝑘 selection. For our O𝑘-Top𝑘 , the com-
munication volume is bounded by 6𝑘 . Although O𝑘-Top𝑘
has a little higher latency term than the others, we target
large-scale models and thus the bandwidth term dominates.
Since the bandwidth term of O𝑘-Top𝑘 is only related to 𝑘 ,
our algorithm is more efficient and scalable than all others.
See Section 5.4 for experimental results.

Gradient quantization [3, 8, 14, 23, 30, 48], which reduces
the precision and uses a smaller number of bits to represent
gradient values, is another technique to reduce the com-
munication volume. Note that this method is orthogonal to
gradient sparsification. A combination of sparsification and
quantization is studied in SparCML [36].
Another issue is the sparsification overhead. Although

gradient sparsification significantly reduces the local mes-
sage size, top-𝑘 selection onmany-core architectures, such as
GPU, is not efficient. A native method is to sort all values and
then select the top-𝑘 components. Asymptotically optimal
comparison-based sorting algorithms, such as merge sort
and heap sort, have O(𝑛 log 𝑛) complexity, but not friendly to
GPU. Bitonic sort is friendly to GPU but requires O(𝑛 log2 𝑛)
comparisons. The quickselect [29] based top-𝑘 selection has
an average complexity of O(𝑛) but again not GPU-friendly.
Bitonic top-𝑘 [39] is a GPU-friendly algorithm with complex-
ity O(𝑛 log2 𝑘), but still not good enough for large 𝑘 . To lower
the overhead of sparsification, Gaussian𝑘 [41] approximates
the gradient values distribution to a Gaussian distribution
with the same mean and standard deviation, and then es-
timates a threshold using the percent-point function and
selects the values above the threshold. The top-𝑘 selection
in Gaussian𝑘 is GPU-friendly with complexity O(𝑛), but it
usually underestimates the value of 𝑘 because of the dif-
ference between Gaussian and the real distributions (see
Section 3.1.3). Adjusting the threshold adaptively (e.g., lower
the threshold for an underestimated 𝑘) [41] is difficult to be
accurate. In O𝑘-Top𝑘 , we use a different method for the top-𝑘
selection. We observe that the distribution of gradient values
changes slowly during training. Therefore, we periodically
calculate the accurate threshold and reuse it in the following
iterations within a period. Empirical results show that this
threshold reuse strategy achieves both accuracy (see Sec-
tion 5.2) and efficiency (see Section 5.4) when selecting local
and global top-𝑘 values in O𝑘-Top𝑘 .
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Figure 1. Gradient space split with balanced top-𝑘 values
and reduction on subspace.

3 O(𝑘) Sparse Allreduce
In this section, we will present the sparse allreduce algo-
rithm of O𝑘-Top𝑘 , analyze the complexity using the afore-
mentioned latency (𝛼) - bandwidth (𝛽) cost model, and prove
its optimality. We use COO format to store the sparse gradi-
ent. Since the algorithm incurs less than 6𝑘 communication
volume, we call it O(𝑘) sparse allreduce.
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3.1 Sparse allreduce algorithm
O(𝑘) sparse allreduce mainly includes two phases: (1) split
and reduce, and (2) balance and allgatherv. During the two
phases, we propose to use an efficient top-𝑘 selection strategy
to select (what we call) local top-𝑘 values and global top-𝑘
values, respectively. Specifically, the semantic of O(𝑘) sparse
allreduce is defined by Top𝑘 (∑𝑃−1

𝑖=0 Top𝑘 (𝐺𝑖
𝑡 )), where 𝐺𝑖

𝑡 is
the sparse gradient on worker 𝑖 at training iteration 𝑡 , the
inner Top𝑘 operator is the local top-𝑘 selection, and the outer
Top𝑘 operator is the global top-𝑘 selection.

3.1.1 Split and reduce. Figure 1 presents the split and
reduce phase. Suppose we have 4 workers and each worker
has a 2D gradient of size 16x4. In Figure 1(a), each worker
selects the local top-𝑘 values to sparsify the gradient. How
to efficiently select the top-𝑘 values will be discussed in Sec-
tion 3.1.3. Then, a straightforward split and reduce for the
sparse gradients is presented in Figure 1(b), in which the
2D space of the sparse gradient is evenly partitioned into 𝑃
regions and worker 𝑖 is responsible for the reduction on re-
gion 𝑖 . Each worker 𝑖 receives sparse regions from the other
workers and then conducts the reduction locally. However,
this simple partitioning method may lead to severe load im-
balance, since the top-𝑘 values may not be evenly distributed
among the regions. In an extreme case, all local top-𝑘 values
will be in region 0 of each worker, then worker 0 has to
receive a total of 2(𝑃 − 1)𝑘 elements (i.e., values and indexes)
while the other workers receive zero elements.

Without loss of generality, we can make a more balanced
partition (as shown in Figure 1(c)) based on our observations
for deep learning tasks: the coordinates distribution of the
local top-𝑘 values of the gradient is approximately consistent
among the workers at the coarse-grained (e.g., region-wise)
level, and changes slowly during training. To achieve a bal-
anced partition, each worker calculates the local boundaries
of the 𝑃 regions by balancing the local top-𝑘 values. Then,
a consensus is made among 𝑃 workers by globally averag-
ing the 𝑃-dimensional boundary vectors, which requires an
allreduce with message size of 𝑃 elements. The boundaries
are recalculated after every 𝜏 iterations. We empirically set
𝜏 = 64 to get a performance benefit from periodic space
repartition as shown in Section 5.3. Note that the small over-
head of allreduce (i.e., (log 𝑃)𝛼) is amortized by the reuse
in the following 𝜏-1 iterations, resulting in only (log 𝑃)𝛼/𝜏
overhead per iteration. Therefore, the overhead of boundary
recalculation can be ignored. After making a balanced split,
each worker approximately receives 2𝑘/𝑃 elements from any
of the other 𝑃 − 1 workers. Therefore, the overhead is

𝐶𝑠𝑝𝑙𝑖𝑡_𝑎𝑛𝑑_𝑟𝑒𝑑𝑢𝑐𝑒 = (𝑃 − 1)𝛼 + 2𝑘
𝑃 − 1
𝑃

𝛽 (1)

We further make two optimizations for split and reduce,
including destination rotation and bucketing. As shown in

Figure 2(a), a native communication pattern is that all work-
ers send data toworker 𝑖 at step 𝑖 , whichmay lead to endpoint
congestion [49]. To avoid these hot-spots, we rotate the desti-
nations of each worker as shown in Figure 2(b). Furthermore,
to utilize the network parallelism, we bucketize the com-
munications. The messages with in a bucket are sent out
simultaneously using non-blocking point-to-point communi-
cation functions. Communications in the current bucket can
be overlapped with the computation (i.e., local reduction) of
the previous bucket.
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Figure 2. Top-𝑘 values reduction with endpoint congestion
avoidance and network parallelism exploitation.

3.1.2 Balance and allgatherv. Figure 3 presents the phase
of balance and allgatherv. First, eachworker selects the global
top-𝑘 values from the reduced top-𝑘 values in the region
that the worker is in charge of. Note that the global top-𝑘
selection only happens locally according to an estimated
threshold (will be discussed in detail in Section 3.1.3). Next,
each worker packages the selected global top-𝑘 values (and
the corresponding indexes) into a consecutive buffer. Similar
to the local top-𝑘 values, the global top-𝑘 values may also
not be evenly distributed among the workers, causing load
imbalance. In an extreme case, all global top-𝑘 values will
be in one worker. The classic recursive doubling based all-
gatherv [45] would incur 2𝑘 log 𝑃 communication volume,
namely, total log 𝑃 steps with each step causing 2𝑘 traffic.
To bound the communication volume by 4𝑘 , we conduct

a data balancing step after packaging. Before balancing, an
allgather is required to collect the consecutive buffer sizes
from 𝑃 workers, which only incurs (log 𝑃)𝛼 overhead (the
bandwidth term can be ignored). Then, each worker uses the
collected buffer sizes to generate the communication scheme
(i.e., which data chunk should be sent to which worker) for
data balancing. We use point-to-point communication (blue
arrows in the step of data balancing) to realize the scheme.
The overhead of data balancing is bounded by the extreme
case of all global top-𝑘 values locate in one worker, where
data balancing costs 𝑃𝛼 + 2𝑘 𝑃−1

𝑃
𝛽 . Data balancing in any
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Figure 3. Data balancing and allgatherv for global top-𝑘
values.

other case has less cost than the extreme case. At last, an
allgatherv using recursive doubling on the balanced data has
the overhead of (log 𝑃)𝛼 + 2𝑘 𝑃−1

𝑃
𝛽 . Therefore, the overhead

of balance and allgatherv is

𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑎𝑛𝑑_𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣 ≤ (𝑃 + 2 log 𝑃)𝛼 + 4𝑘
𝑃 − 1
𝑃

𝛽. (2)

By adding the costs of the two phases, the total overhead
of O(𝑘) sparse allreduce is

𝐶𝑂𝑘_𝑠𝑝𝑎𝑟𝑠𝑒_𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 ≤ (2𝑃 + 2 log 𝑃)𝛼 + 6𝑘
𝑃 − 1
𝑃

𝛽 (3)

3.1.3 Efficient selection for top-𝑘 values. O𝑘-Top𝑘 re-
lies on estimated thresholds to approximately select the local
and global top-𝑘 values. The key idea is to regard the gradi-
ent values (along the time dimension) as a slowly changing
stochastic process 𝐺 (𝑡). Specifically, the statistics (such as
top-𝑘 thresholds) of𝐺 (𝑡),𝐺 (𝑡 +1), ...𝐺 (𝑡 +𝜏 ′−1) change very
slowly. Therefore, we only calculate the accurate thresholds
for local and global top-𝑘 values after every 𝜏 ′ iterations, and
then reuse the thresholds in the following 𝜏 ′-1 iterations. The
accurate threshold can be obtained by sorting the gradient
values and returning the 𝑘-th largest value. Top-𝑘 selection
according to a threshold only requires 𝑛 comparisons and is
quite efficient on GPU. The overhead of accurate threshold
calculation is amortized by the reuse.

We validate our claim by the empirical results from differ-
ent deep learning tasks presented in Figure 4. The gradient
value distribution shown in Figure 4 is for a selected itera-
tion where O𝑘-Top𝑘 uses a threshold calculated more than
25 iterations ago. We can see the threshold of O𝑘-Top𝑘 is
still very close to the accurate threshold (see Section 5.2 for

0.02 0.04 0.060.00-0.02-0.04-0.06
0

5.0E+4

1.0E+5

1.5E+5

2.0E+5

C
ou

nt

Gaussian

Real
distribution

distribution

Accurate

Gaussiank

threshold

threshold

Ok-Topk
threshold

Gradient value

0.03

0.04

3968 4032

Accurate threshold curve

Training iteration

(a) VGG-16 [44] on Cifar-10 with density = 1.0%.

Gaussian

Real
distribution

distribution Accurate

Gaussiank

threshold

threshold

Ok-Topk
threshold

1.0 1.5 2.00.50.0-0.5-1.0
Gradient value

-1.5-2.0
0

1.0E+5

2.0E+5

3.0E+5

4.0E+5

C
ou

nt

0.8

1.0

1280 1312

Accurate threshold curve

Training iteration

(b) LSTM [21] on AN4 [1] with density = 2.0%.

Gaussian

Real
distribution

distribution

Ok-Topk
threshold

Accurate
threshold

Gaussiank
threshold

0.040.020.00-0.02-0.04
Gradient value

0

1.0E+6

2.0E+6

3.0E+6

C
ou

nt

0.028

0.036

49920 50048
Training iteration

Accurate threshold curve

(c) BERT [13] on Wikipedia [13] with density = 1.0%.

Figure 4. Gradient value distribution and local top-𝑘 thresh-
old predictions. Density is defined as 𝑘/𝑛.

the accuracy verification for top-𝑘 selections of O𝑘-Top𝑘 in
the scenario of full training). On the contrary, Gaussian𝑘
severely underestimates the value of 𝑘 by predicting a larger
threshold, especially after the first few training epochs. This
is because as the training progresses, the gradient values are
getting closer to zero. Gaussian distribution, with the same
mean and standard deviation as the real distribution, usually
has a longer tail than the real distribution (see Figure 4).

3.1.4 Pseudocode of O(𝑘) sparse allreduce. We present
the pseudocode of O(𝑘) sparse allreduce in Algorithm 1. In
Lines 2-4, the local top-𝑘 threshold is re-evaluated after ev-
ery 𝜏 ′ iterations. In Lines 5-7, the region boundaries are
re-evaluated after every 𝜏 iterations. Split and reduce is con-
ducted in Line 8, which returns the reduced local top-𝑘 values
in region 𝑖 and the indexes of local top-𝑘 values. In Lines
9-12, the global top-𝑘 threshold is re-evaluated after every
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Algorithm 1 O(𝑘) sparse allreduce

1: Inputs: stochastic gradient 𝐺𝑖
𝑡 at worker 𝑖 , iteration 𝑡

(𝑡>0), value 𝑘 , space repartition period 𝜏 , thresholds re-
evaluation period 𝜏 ′.

2: if (𝑡-1) mod 𝜏 ′ == 0 then
3: 𝑙𝑜𝑐𝑎𝑙_𝑡ℎ = 𝑡ℎ_𝑟𝑒_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐺𝑖

𝑡 , 𝑘)
4: end if
5: if (𝑡-1) mod 𝜏 == 0 then
6: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 = 𝑠𝑝𝑎𝑐𝑒_𝑟𝑒𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐺𝑖

𝑡 , 𝑙𝑜𝑐𝑎𝑙_𝑡ℎ)
7: end if
8: 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑡𝑜𝑝𝑘𝑖 , 𝑙𝑜𝑐𝑎𝑙_𝑡𝑜𝑝𝑘_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 =

𝒔𝒑𝒍 𝒊𝒕_𝒂𝒏𝒅_𝒓𝒆𝒅𝒖𝒄𝒆(𝐺𝑖
𝑡 , 𝑙𝑜𝑐𝑎𝑙_𝑡ℎ, 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠)

9: if (𝑡-1) mod 𝜏 ′ == 0 then
10: 𝑎𝑙𝑙_𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑡𝑜𝑝𝑘 = 𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣(𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑡𝑜𝑝𝑘𝑖 )
11: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡ℎ = 𝑡ℎ_𝑟𝑒_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑙𝑙_𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑡𝑜𝑝𝑘 , 𝑘)
12: end if
13: 𝑢𝑡 , 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑜𝑝𝑘_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 =

𝒃𝒂𝒍𝒂𝒏𝒄𝒆_𝒂𝒏𝒅_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓𝒗(𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑡𝑜𝑝𝑘𝑖 , 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡ℎ)
14: 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = 𝑙𝑜𝑐𝑎𝑙_𝑡𝑜𝑝𝑘_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ∩ 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑜𝑝𝑘_𝑖𝑛𝑑𝑒𝑥𝑒𝑠
15: return 𝑢𝑡 , 𝑖𝑛𝑑𝑒𝑥𝑒𝑠

𝜏 ′ iterations. Balance and allgatherv is conducted in Line 13,
which returns a sparse tensor 𝑢𝑡 with global top-𝑘 values
and the indexes of global top-𝑘 values. Line 14 calculates the
intersection of the indexes of local top-𝑘 values and the in-
dexes of global top-𝑘 values. This intersection (will be used in
O𝑘-Top𝑘 SGD in Section 4) covers the indexes of local values
which eventually contribute to the global top-𝑘 values.

3.2 Lower bound for communication volume
Theorem 3.1. For sparse gradients stored in COO format,
O(𝑘) sparse allreduce incurs at least 2𝑘 𝑃−1

𝑃
communication

volume.

Proof. For O(𝑘) sparse allreduce, each worker eventually ob-
tains the global top-𝑘 values. Assume that all workers receive
less than𝑘 𝑃−1

𝑃
values from the others, whichmeans that each

worker already has more than 𝑘
𝑃
of the global top-𝑘 values

locally. By adding up the number of global top-𝑘 values in
each worker, we obtain more than 𝑘 global top-𝑘 values,
which is impossible. Therefore, each worker has to receive at
least 𝑘 𝑃−1

𝑃
values. Considering the corresponding 𝑘 indexes,

the lower bound is 2𝑘 𝑃−1
𝑃
.

□

The lower bound in Theorem 3.1 is achieved byO(𝑘) sparse
allreduce in the following special case: All local top-𝑘 values
of worker 𝑖 are in region 𝑖 that worker 𝑖 is in charge of, so that
the reduction across 𝑃 workers is no longer required. Fur-
thermore, the global top-𝑘 values are uniformly distributed
among 𝑃 workers, namely each worker has exactly 𝑘

𝑃
of the

global top-𝑘 values. Then, an allgather to obtain the global
top-𝑘 values (plus 𝑘 indexes) incurs 2𝑘 𝑃−1

𝑃
communication

volume. Therefore, the lower bound is tight. SinceO(𝑘) sparse
allreduce incurs at most 6𝑘 𝑃−1

𝑃
communication volume (see

Equation 3), it is asymptotically optimal.

Algorithm 2 O𝑘-Top𝑘 SGD

1: Inputs: stochastic gradient 𝐺𝑖 (·) at worker 𝑖 , value 𝑘 ,
learning rate 𝛼 .

2: Initialize 𝜖𝑖0 = 0, 𝐺𝑖
0 = 0

3: for 𝑡 = 1 to 𝑇 do
4: 𝑎𝑐𝑐𝑖𝑡 = 𝜖𝑖𝑡−1 + 𝛼𝐺𝑖

𝑡−1(𝑤𝑡−1) ⊲ Accumulate residuals
5: 𝑢𝑡 , 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = 𝑶𝒌_𝒔𝒑𝒂𝒓𝒔𝒆_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆(𝑎𝑐𝑐𝑖𝑡 , 𝑡 , 𝑘)
6: 𝜖𝑖𝑡 = 𝑎𝑐𝑐𝑖𝑡 − 𝑎𝑐𝑐𝑖𝑡 (𝑖𝑛𝑑𝑒𝑥𝑒𝑠) ⊲ Update residuals
7: 𝑤𝑡 = 𝑤𝑡−1 − 1

𝑃
𝑢𝑡 ⊲ Apply the model update

8: end for

4 O𝑘-Top𝑘 SGD Algorithm
We discuss how O(𝑘) sparse allreduce works with the SGD
optimizer for distributed training in this section. An algorith-
mic description of O𝑘-Top𝑘 SGD in presented in Algorithm 2.
The key point of the algorithm is to accumulate the residuals
(i.e., the gradient values not contributing to the global top-𝑘
values) locally, which may be chosen by the top-𝑘 selection
in the future training iterations to make contribution. Em-
pirical results of existing work [4, 36, 42] show that residual
accumulation benefits the convergence. We use 𝜖𝑖𝑡 to repre-
sent the residuals maintained by worker 𝑖 at iteration 𝑡 . In
Line 4 of Algorithm 2, residuals are accumulated with the
newly generated gradient to obtain the accumulator 𝑎𝑐𝑐𝑖𝑡 .
Then, in Line 5, 𝑎𝑐𝑐𝑖𝑡 is passed to O(𝑘) sparse allreduce (pre-
sented in Algorithm 1), which returns the sparse tensor 𝑢𝑡
containing global top-𝑘 values and the 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 marking the
values in 𝑎𝑐𝑐𝑖𝑡 which contribute to 𝑢𝑡 . In Line 6, residuals are
updated by setting the values in 𝑎𝑐𝑐𝑖𝑡 marked by 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 to
zero. In Line 7, 𝑢𝑡 is applied to update the model parameters.

4.1 Convergence proof
Unless otherwise stated, ∥ · ∥ denotes the 2-norm.

Theorem 4.1. Consider the O𝑘-Top𝑘 SGD algorithm when
minimizing a smooth, non-convex objective function 𝑓 . Then
there exists a learning rate schedule (𝛼𝑡 )𝑡=1,𝑇 such that the
following holds:

min
𝑡 ∈{1,...,𝑇 }

E[∥∇𝑓 (𝑤𝑡 )∥2]
𝑇→∞→ 0 (4)

Proof. The update to𝑤𝑡+1 in O𝑘-Top𝑘 SGD is

Top𝑘
(
1
𝑃

𝑃−1∑︁
𝑖=0

Top𝑘
(
𝛼𝐺𝑖

𝑡 (𝑤𝑡 ) + 𝜖𝑖𝑡

))
,

while top-𝑘 components of the sum of updates across all
𝑃 workers, i.e., the true global top-𝑘 values intended to be
applied, is
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Top𝑘
(
1
𝑃

𝑃−1∑︁
𝑖=0

(
𝛼𝐺𝑖

𝑡 (𝑤𝑡 ) + 𝜖𝑖𝑡

))
.

We assume the difference between the update calculated
by O𝑘-Top𝑘 SGD and the true global top-𝑘 values is bounded
by the norm of the true gradient 𝐺𝑡 (𝑤𝑡 ) = 1

𝑃

∑𝑃−1
𝑖=0 𝐺𝑖

𝑡 (𝑤𝑡 ).
Then, we make the following assumption:

Assumption 1. There exists a (small) constant 𝜉 such that,
for every iteration 𝑡 ≥ 0, we have:

Top𝑘 ( 1𝑃 𝑃−1∑︁
𝑖=0

(
𝛼𝐺𝑖

𝑡 (𝑤𝑡 ) + 𝜖𝑖𝑡

))
− Top𝑘

(
1
𝑃

𝑃−1∑︁
𝑖=0

Top𝑘
(
𝛼𝐺𝑖

𝑡 (𝑤𝑡 ) + 𝜖𝑖𝑡

)) ≤ 𝜉 ∥𝛼𝐺𝑡 (𝑤𝑡 )∥
(5)

We validate Assumption 1 by the empirical results on dif-
ferent deep learning tasks in Section 5.1. Then, we utilize the
convergence proof process for Top𝑘 SGD in the non-convex
case, presented in the work of [4], to prove Theorem 4.1.

□

Regarding Theorem 4.1, we have the following discussion.
First, since we analyze non-convex objectives, a weaker no-
tion of convergence than in the convex case (where we can
prove convergence to a global minimum) is settled. Specifi-
cally, for a given sequence of learning rates, we prove that
the algorithm will converge to a stationary point of negli-
gible gradient. Second, like most theoretical results, it does
not provide a precise set for the hyperparameters, except the
indication of diminishing learning rates.

5 Evaluations
We conduct our experiments on the CSCS Piz Daint super-
computer. Each Cray XC50 compute node contains an Intel
Xeon E5-2690 CPU, and one NVIDIA P100 GPU with 16
GB global memory. We utilize the GPU for acceleration in
all following experiments. The compute nodes of Piz Daint
are connected by a Cray Aries interconnect network in a
Dragonfly topology.

Table 2. Neural networks used for evaluation.

Tasks Models Parameters Dataset

Image classification VGG-16 [44] 14,728,266 Cifar-10
Speech recognition LSTM [21] 27,569,568 AN4 [1]
Language processing BERT [13] 133,547,324 Wikipedia [13]

We use three neural networks from different deep learning
domains summarized in Table 2 for evaluation. For VGG-16,
we use SGD optimizer with initial learning rate of 0.1; for

LSTM, we use SGD optimizer with initial learning rate of 1e-
3; for BERT, we use Adam [24] optimizer with initial learning
rate of 2e-4, 𝛽1 =0.9, 𝛽2 =0.999, weight decay of 0.01, and lin-
ear decay of the learning rate. For BERT, sparse allreduce is
conducted on the gradients and Adam optimizer is applied af-
terwards. We compare the performance of O𝑘-Top𝑘 with the
parallel SGD schemes using the dense and sparse allreduce
algorithms listed in Table 1, which covers the state-of-the-art.
For a fair comparison, all schemes are implemented in Py-
Torch [33] withmpi4py as the communication library, which
is built against Cray-MPICH 7.7.16. Commonly, the gradients
of network layers locate in non-contiguous buffers. We use
Dense to denote a single dense allreduce on a long message
aggregated from the gradients of all neural network layers.
Furthermore, we use DenseOvlp to denote dense allreduce
with the optimization of communication and computation
overlap. For DenseOvlp, the gradients are grouped into buck-
ets and the message aggregation is conducted within each
bucket; once the aggregated message in a bucket is ready, a
dense allreduce is fired. The sparse allreduce counterparts
(i.e., Top𝑘A, Top𝑘DSA, gTop𝑘 , and Gaussian𝑘) are already
discussed in Section 2. In all following experiments, we de-
fine 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 as 𝑘/𝑛, where 𝑛 is the number of components
in the gradient.
We utilize the 𝑡𝑜𝑝𝑘 function provided by PyTorch [33],

which is accelerated on GPU, to realize the top-𝑘 selection in
Top𝑘A, Top𝑘DSA, and gTop𝑘 , as well as the periodic thresh-
old re-evaluation in O𝑘-Top𝑘 .

5.1 Evaluate the empirical value of 𝜉
To validate Assumption 1, we present the empirical values of
𝜉 when training two models until convergence with different
densities in Figure 5. For VGG-16 and BERT, the value of 𝜉
increases quickly in the first few epochs or training itera-
tions, and then turns to be stable. For LSTM, the value of 𝜉
gradually increases at the beginning and tends to plateau
in the second half of the training. For all three models, the
value of 𝜉 with a higher density is generally smaller than
that with a lower density, especially in the stable intervals.
This can be explained trivially by the reason that, the higher
the density the higher probability that the results of sparse
and dense allreduces get closer.
As shown in Equation 14 of [4], the effect of 𝜉 is damp-

ened by both 𝑃 and small (i.e., less than 1) learning rates.
If 𝜉<𝑃 (satisfied by all three models in Figure 5) or not too
larger than 𝑃 , we consider it has no significant effect on the
convergence. Although 𝜉 slightly grows in Figure 5b, which
is caused by the decreasing of the true gradient norm as
the model converges, a small learning rate (e.g., 0.001) can
restrain its effect. Overall, Assumption 1 empirically holds
with relatively low, stable or slowly growing values of 𝜉 .
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0

2

4

6

0 2500 5000 7500 10000
Training iteration

Ok−Topk (density=1.0%,

Ok−Topk (density=2.0%,

=128)τ ' 
=128)τ ' 

V
al

ue
 o

f
𝜉 

(c) BERT on Wikipedia on 32 GPU nodes.

Figure 5. The empirical value of 𝜉 .

5.2 Top-𝑘 values selection
We will verify the accuracy of the top-𝑘 selection strategy
used by O𝑘-Top𝑘 on different neural network models. For
VGG-16 and LSTM, the models are trained for 160 epochs
until convergence with 𝜏 ′=32. Recall that 𝜏 ′ is the period of
thresholds re-evaluation. For BERT, the model is trained for
200,000 iterations (more than 20 hours on 32 GPU nodes)
with 𝜏 ′=128. The numbers of local and global top-𝑘 values
selected by O𝑘-Top𝑘 during training are monitored. We also
record the values of 𝑘 predicted by Gaussian𝑘 for compari-
son. The results are reported in Figure 6. We can see that the
numbers of both local and global top-𝑘 values selected by
O𝑘-Top𝑘 are very close to the accurate number for a given
density, except that O𝑘-Top𝑘 overestimates the value of 𝑘 in
the early epochs of VGG-16 and LSTM. For both local top-
𝑘 and global top-𝑘 on three models, the average deviation
from the accurate number is below 11%. For example, the
average deviation for local top-𝑘 selection on BERT is only
1.4%. These results demonstrate the accuracy of the thresh-
old reuse strategy adopted by O𝑘-Top𝑘 . On the contrary,
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(c) BERT on Wikipedia on 32 GPUs (density=1.0%, 𝜏 ′=128).

Figure 6. Selections for local and global top-𝑘 values

Gaussian𝑘 overestimates the value of𝑘 in the first few epochs
and then severely underestimate 𝑘 (an order of magnitude
lower than the accurate number) in the following epochs.
This can be explained by the difference between Gaussian
and the real distributions, as discussed in Section 3.1.3.

As a comparison, we also count the density of the output
buffer (i.e., the accumulated gradient) for Top𝑘DSA (Top𝑘A
has the same density), which expands to 13.2% and 34.5% on
average for VGG-16 (local density = 1.0%, on 16 GPUs) and
LSTM (local density = 2.0%, on 32 GPUs), respectively. These
statistics show the effect of the fill-in issue for Top𝑘DSA.

5.3 Optimizations for load balancing in O𝑘-Top𝑘
To evaluate the effectiveness of the load balancing optimiza-
tions of O(𝑘) sparse allreduce, we train BERT for 8,192 itera-
tions and report the average values.
First, we evaluate the periodic space repartition strategy

(discussed in Section 3.1.1) for load balancing in the phase of
split and reduce. The results are presented in Figure 7(a). Re-
call that we set the period 𝜏 to 64. The repartition overhead is
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Figure 7. Evaluation for communication balancing in O𝑘-
Top𝑘 using BERT with density = 1.0%.

counted and averaged in the runtime of the balanced reduce.
In the naive reduce, the gradient space is partitioned into
equal-sized regions, regardless of the coordinate distribution
of the local top-𝑘 values. The balanced reduce achieves 1.13x
to 1.75x speedup over the naive one, with a trend of more sig-
nificant speedup on more GPUs. This trend can be explained
by that the load imbalance in the naive reduce incurs up to
2(𝑃 − 1)𝑘 communication volume (proportional to 𝑃 ). While
the balanced reduce incurs less than 2𝑘 communication vol-
ume, which is more scalable.
Next, we evaluate the data balancing strategy (discussed

in Section 3.1.2) in the phase of balance and allgatherv. Al-
though data balancing helps to bound the bandwidth over-
head of allgatherv, there is no need to conduct it if the data is
roughly balanced already. Empirically, we choose to conduct
data balancing before allgatherv if the max data size among 𝑃
workers is more than four times larger than the average data
size, and otherwise use an allgatherv directly. Figure 7(b)
presents the results for the iterations where data balancing
is triggered. Data balancing and allgatherv achieve 1.12x to
1.43x speedup over the direct allgatherv. For similar reasons
as split and reduce, more speedup is achieved on more GPUs.

5.4 Case studies on training time and model
convergence

We study the training time and model convergence using
real-world applications listed in Table 2. For training time
per iteration, we report the average value of full training. To
better understand the results, we make a further breakdown
of the training time, including sparsification (i.e., top-𝑘 selec-
tion from the gradient), communication (i.e., dense or sparse
allreduces), and computation (i.e., forward and backward
passes) plus I/O (i.e., sampling from dataset).
As discussed in Section 5.2, Gaussian𝑘 usually under-

estimates the value of 𝑘 , which makes the actual density
far below the setting. Both empirical and theoretical re-
sults [4, 36, 42] show that a very low density would jeopar-
dize the convergence. To make a fair comparison between
the counterparts for both training time and model accuracy,
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(b) Running on 32 GPU nodes with global batch size = 512.

Figure 8.Weak scaling of training VGG-16 on Cifar-10 with
density = 2.0%.

we gradually scale the predicted threshold of Gaussian𝑘 un-
til the number of selected values is more than 3𝑘/4. The
threshold adjustment is also suggested by [41], although it
is difficult to be accurate. The threshold adjustment may
slightly increase the sparsification overhead of Gaussian𝑘 ,
but compared with the other overheads it can be ignored
(see the following results).

5.4.1 Image classification. Figure 8 presents the results
of weak scaling for training VGG-16 on Cifar-10. DenseOvlp
outperforms Dense by enabling communication and compu-
tation overlap. Although Top𝑘A and Top𝑘DSA have lower
communication overhead than DenseOvlp, they have a high
overhead for sparsification, which makes the benefit of lower
communication disappear. Note that the communication
overhead of gTop𝑘 seemsmuch higher than the others; this is
because the overhead of hierarchical top-𝑘 selections in the
reduction-tree (with log 𝑃 steps) is also counted in the com-
munication overhead. Among all sparse allreduce schemes,
Gaussian𝑘 has the lowest sparsification overhead. O𝑘-Top𝑘
has the lowest communication overhead; by using the thresh-
old reuse strategy, O𝑘-Top𝑘 only has a slightly higher spar-
sification overhead than Gaussian𝑘 . When scaling from 16
GPUs to 32 GPUs, the communication overhead of Top𝑘A
and Gaussian𝑘 almost doubles. This is because allgather-
based sparse allreduce is not scalable (see the performance
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Figure 9. Top-1 test accuracy for VGG-16 on Cifar-10 with
density = 2.0% training for 160 epochs.

model in Table 1). On 32 GPU nodes, O𝑘-Top𝑘 outperforms
the other schemes by 1.51x-8.83x for the total training time.

Figure 9 presents the Top-1 test accuracy as a function of
runtime by training VGG-16 on Cifar-10 for 160 epochs. On
both 16 and 32 GPUs, the accuracy achieved by O𝑘-Top𝑘 is
very close to dense allreduce. We did not do any hyperpa-
rameter optimization except simply diminishing the learning
rate. The accuracy results are consistent with these reported
in machine learning community [6, 41]. On both 16 and 32
GPUs, O𝑘-Top𝑘 achieves the fastest time-to-solution.

5.4.2 Speech recognition. Figure 10 presents the results
of weak scaling for training LSTM on AN4. Similar to the
results on VGG-16, O𝑘-Top𝑘 has a better scalability than the
counterparts. On 64 GPUs, O𝑘-Top𝑘 outperforms the other
schemes by 1.34x-7.71x for the total training time.
Figure 11 presents the test Word Error Rate (WER, the

smaller the better) as a function of runtime by training for 160
epochs. On 32 GPUs, O𝑘-Top𝑘 is 1.39x faster than DenseOvlp,
and achieves 0.309 WER, which is very close to DenseOvlp
(0.308). On 64 GPUs, all schemes achieve higher WERs than
these on 32 GPUs. This is because the model accuracy is
compromised by using a larger global batch size, which is
also observed in many other deep learning tasks [7, 51, 53].
How to tune hyperparameters for better accuracy with large
batches is not the topic of this work. Surprisingly, on 64
GPUs, O𝑘-Top𝑘 , Gaussian𝑘 , Top𝑘A and Top𝑘DSA achieve

0.0

0.5

1.0

1.5

2.0

Dense DenseOvlp TopkA TopkDSA gTopk Gaussiank Ok−Topk

R
un

tim
e

 p
er

 it
er

a
tio

n 
(s

)

sparsification
communication
computation + io

(a) Running on 32 GPU nodes with global batch size = 64.

0.0

0.5

1.0

1.5

2.0

Dense DenseOvlp TopkA TopkDSA gTopk Gaussiank Ok−Topk

sparsification
communication
computation + io

R
un

tim
e

 p
er

 it
er

a
tio

n 
(s

)
(b) Running on 64 GPU nodes with global batch size = 128.

Figure 10. Weak scaling of training LSTM on AN4 with
density = 2.0%.
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training for 160 epochs.
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Figure 13. BERT pre-training on 32 GPU nodes for 400,000
iterations with global batch size = 256 and density = 1.0%.

lower WERs than DenseOvlp, which may be caused by the
noise introduced by the sparsification. Overall, on both 32
and 64 GPUs, O𝑘-Top𝑘 achieves the fastest time-to-solution.

5.4.3 Natural language processing. BERT [13] is a popu-
lar language model based on Transformer [46]. The model is
usually pre-trained on a large dataset and then fine-tuned for
various downstream tasks. Pre-training is commonly much
more expensive (years on a single GPU) than fine-tuning.
Therefore, we focus on pre-training in the evaluation.

Figure 12 presents the results of weak scaling for pre-
training BERT. When scaling to 256 GPUs, the communi-
cation overhead of Top𝑘A and Gaussian𝑘 is even higher
than the dense allreduce, which again demonstrates that the
allgather-based sparse allreduce is not scalable. Top𝑘DSA
exhibits better scalablity than the allgather-based sparse
allreduce, but its communication overhead also significantly
increases, since the more workers, the more severe the fill-
in problem [36]. On 256 GPUs, O𝑘-Top𝑘 outperforms all
counterparts by 3.29x-12.95x. Using 32 nodes as the base-
line, O𝑘-Top𝑘 achieves 76.3% parallel efficiency on 256 GPUs
in weak scaling, which demonstrates a strong scalalibity of
O𝑘-Top𝑘 .
In Figure 13, we report the training loss by pre-training

BERT from scratch on the Wikipedia dataset (containing
114.5 million sequences with a max length of 128) for 400,000
iterations. Eventually, the training loss of O𝑘-Top𝑘 decreases
to 2.43, which is very close to DenseOvlp (2.33). These re-
sults show that O𝑘-Top𝑘 has a similar convergence rate as

the dense allreduce for BERT pre-training. Compared with
DenseOvlp, O𝑘-Top𝑘 reduces the total training time on 32
GPUs from 150 hours to 47 hours (more than 3x speedup),
and also outperforms Gaussian𝑘 by 1.30x. Since pre-training
BERT is very costly (energy- and time-consuming), in Fig-
ure 13we only present the results for two important baselines
(i.e., Gaussian𝑘 , with the highest training throughput among
all baselines, and DenseOvlp, a lossless approach). Since the
other baselines are inferior to Gaussian𝑘 and DenseOvlp in
terms of training throughput and not better than DenseOvlp
in terms of convergence rate, it is sufficient to show the
advantage of O𝑘-Top𝑘 by comparing it with these two im-
portant baselines in Figure 13.

6 Conclusion
O𝑘-Top𝑘 is a novel scheme for distributed deep learning
training with sparse gradients. The sparse allreduce of O𝑘-
Top𝑘 incurs less than 6𝑘 communication volume, which is
asymptotically optimal and more scalable than the coun-
terparts. O𝑘-Top𝑘 enables an efficient and accurate top-𝑘
values prediction by utilizing the temporal locality of gradi-
ent value statistics. Empirical results for data-parallel train-
ing of real-world deep learning models on the Piz Daint
supercomputer show that O𝑘-Top𝑘 significantly improves
the training throughput while guaranteeing the model accu-
racy. The throughput improvement would be more signifi-
cant on commodity clusters with low-bandwidth network.
We foresee that our scheme will play an important role in
scalable distributed training for large-scale models with low
communication overhead. In future work, we aim to further
utilize O𝑘-Top𝑘 to reduce the communication overhead in
distributed training with a hybrid data and pipeline paral-
lelism [15, 27, 31, 32].
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